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Analytic Approach to Nonlinear Rayleigh-Taylor and Richtmyer-Meshkov Instabilities
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We present analytic formulas for the nonlinear evolution of the bubble amplitude in Rayleigh-
Taylor and Richtmyer-Meshkov instabilities in two and three dimensions. Direct numerical simulations
of He/Xe shock tube experiments are also presented and the results are found to agree well with
the analytic formulas which are based on an extension of Layzer's theory [Astropty&2 J1
(1955)]. [S0031-9007(97)05039-4]

PACS numbers: 47.20.—k, 52.35.Py

The Rayleigh-Taylor (RT) instability occurs when a above appear to be independentrgfand 7o; second, to
heavy fluid is supported by a lighter fluid. It controls as-apply his theory to the RM instability, one needs a finjte
trophysical, geophysical, and industrial processes such deecause, in this casgy « 7, and, indeed, RM simulations
supernova explosions, the formation of salt domes, andnd experiments start withy # 0.
the implosion of inertial-confinement-fusion (ICF) cap- We will treat in parallel 2D and 3D geometries consid-
sules. The Richtmyer-Meshkov (RM) instability occursered by Layzer in reverse order. In the first and much
when a shock crosses an interface between two fluids, amdore commonly considered geometry [1-5,9], the flow is
has equally wide applications [1]. between two “parallel walls” separated by a distance

The linear regime is well understood. The nonlinearin the second geometry, also called “tubular flow” (see
regime is usually treated by numerical simulations [1,2]Fig. 1 in [7]), a bubble rises in a tube of radiRs Hence,
or high-order expansion of the fluid equations [3,4]. Thethe surface of the fluid is given initially by
purpose of this Letter is to present analytic formulas for
the evolution of RT and RM instabilities from the linear yo(xo) = mo cogkxp) (1a)
to the nonlinear regime. We find that these formulas
compare well with previous numerical results [1-4], agree
with knoyvn asymptotic properties of such flows [5,6_], 20(r0) = moJo(B1ro/R), (1b)
and predict new ones. We also present direct numerical
simulations for new shock tube experiments and compartr 2D and 3D, respectively. Except fdg, which is the
the numerical results with our analytic formulas. Bessel function of order zero, the zero subscript denotes

Our starting point is Layzer's theory [7]. This theory + = 0 values;y andx refer to the vertical and horizontal
has been used previously [2,8] but, as far as we know, hamordinates, and similarly far andr. Here,k = 27 /A
not been solved analytically. The theory applies to theand 8, = 3.832, the first zero of the Bessel function of
bubble amplitude, which we denote by(r). Given the order one.
initial amplituden, and its initial growth ratep,, we find Rayleigh-Taylor—Our procedure is the same as
1(¢) for RT and RM instabilities, treating the latter as anLayzer’'s: Assume that, in the neighborhood of the bubble,
impulsive acceleration, as was done first by Richtmyer [9the velocity potential [Eq. (11) in [7]] satisfies the Ber-
and is common practice [1-3]. noulli equation [Eq. (10) in [7]] for 3D flow, similarly for

Layzer treated the RT problem assuming= 0. We  2D. Formn = 0, Layzer obtained the second order non-
extended his theory tg, # 0 for two purposes: first, to linear differential equation for the all-important func-
see if and how memory of initial conditions is lost in the tion T'(¢), which determines;(¢). [There are misprints in
nonlinear regime, as the asymptotic properties mentionetdayzer's Egs. (27) and (28).] Faj, # 0, we find

|
0(20° + 1 — 3n0k)6 + (0% — 1 + 3mok)6* — gk6*(6° — 1 + 3mok) = 0, (2a)
06> + 1 — 2moB1/R)G — (1 — 2moB1/R)6* — (¢B1/R)6*(6> — 1 + 2moB1/R) = 0, (2b)

for 2D and 3D, respectively. The functidtir) is defined | for no = 0, we haved = T and Egs. (2a) and (2b) reduce
as 0 = ¢~k and § = ¢(1"MPAI/R and is related to to Layzer's Egs. (55) and (32), respectively.

LayzersT(f) via @ =1+ (T — 1)e ™ andg =1 + Despite their nonlinear nature, Egs. (2a) and (2b) can be
(T — 1)e~™Pi/R for 2D and 3D, respectively. As a check, integrated to reveal the existence of a conserved quantity,
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which we denote by. We find

0°[60 + (1 — 3mok)/26%] — gk[6°/3 — (1 — 3mok)In6] = E,
60°[1 + (1 — 2m0B1/R)/6] — (B1/R)[6* — 2(1 — 2mB1/R)In0] = E.

(32)
(3b)

Equation (2) follows from conservation @& (dE/dt = !

0). E should not be taken as the energy of the system,

although Eq. (3b) withyy = R/28, suggests the energy
of a harmonic oscillator with a negative “spring constant.”
For o = 0, E coincides with the constant found by
Layzer [see his Eq. (46)]. In generdl,is determined by
the initial data

E/gk = 3(00)(1 — mok)k/2g — 5, (4a)
ER/gB1 = 2(70)*(1 — moB1/R)B1/gR — 1. (4b)
We have achieved our first purpose—how the asymp-

totic bubble velocity, which we denote by.., is ap-

proached starting from arbitrary initial conditiomg and
10: Using the definitions fop, Egs. (3a) and (3b) read

3=mk — 3(1 = 3mk) (n — modk + 3E/gk 1"/
. 3k l/2|:€ 0 0 i| , 5a
n = (g/3k) e3m—mk 4 % — 3mok/2 o
2n-mIBI/R — 5(1 — 2moB1/R) (n — mo)Bi/R + ER/gB1 1"
. 1l e M0B1 m_— Mo)bi §P1
n = (gR/B1) [ e2m=m)Bi/R + 1 — 2myB1/R } ' (5b)
As 1 grows”n — 7. given by If 70 = 7, then Eq. (7) predicts that
7 = (g/3K)72, (6a) n =m0+ fot = 0 + At (®)
. 1/2
N = (gR/B1) 2, (6b) and this is also what we find by numerical integration of

as found by Layzer [7] (he identified with 7/R—see
below).

To find 5 () for any timez, one must integrate Eq. (5).
Although this task is simplified considerably by the fact
that the right-hand sides of these equations are functions

7 only, so that the problem reduces to a simple quadrature
the integrals cannot be performed analytically and one
must resort to numerical integration, as Layzer did for,

Mo = 0.

Except for the cases when, = %k or R/2B, for 2D
or 3D flow, when the equations simplify so much that a
completely analytic answer is obtained:

nk = nok + (3)Infcosti(3gk)"/%/2]
+ (10/ ) SN (3gk)"/1/21},
(7a)
nB1/R = noB1/R + In{coshi(gB1/R)"*1]
+ (710/ 1) SinH (g B1/R)*11},
(7b)
where nok = 3 and noB;/R = % with asymptotic ve-

locities 1. as defined in Egs. (6a) and (6b) for 2D and 3D
flow, respectively.

Eq. (5). Inotherwords, if the initial growth rate equals the
terminal velocity, then the perturbation grows linearly with
time in the case of the RT instability. Of course, one way
to achieve large initiak is to start with a shock followed
by a constant acceleration, a situation quite common in ICF
plosions.
' Richtmyer-Meshkow-Taking + = 0 as the shock ar-
ival time andAv as the jump velocity induced by the
shock, we letg — Avé(¢) in the Bernoulli equations.
Richtmyer [9] initiated this incompressible approach and
found that compressible effects could be summed up as a
simple prescription to use post-shock densities and ampli-
tudes. Although there are subtle exceptions to this pre-
scription [10], one finds that it works in practically all
cases [1,9-11].
In this way, we find

(9a)
(9b)

Mo = Avkno,
Mo = AvBino/R,

for 2D and 3D, respectively. Equation (9a) agrees with
Richtmyer's result o = AvkAn, (note that we are
considering the casé = 1, whereA is the Atwood num-
ber). Itis possible to ignore Eg. (9) and initiate a problem
with o = 0 and some arbitraryny (this was done,

We have used Eq. (7) to check our numerical integratiorior example, in Ref. [2]), but in real applications the

of Eq. (5). Although Egs. (7a) and (7b) apply for specific
values ofnq (there are no constraints oi), we have

perturbation is seeded by a finitgy. For example, to
initiate the RT problem discussed earlier with = 7.,

found that they also describe well the numerical resultsise a shockAv = (£)'/2/79ok*? to impart the needed

for other values ofpy also. For example, ify is less
(greater) thanm.., thenn increases (decreases) towaids

terminal velocity from the beginning. As we saw in
Eqg. (8), the subsequent acceleration will keggrowing
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linearly with time. Without that acceleratiom, will slow  tions (2a) and (2b) can now be solved analytically and,
down and grow only logarithmically with time, as we will for the 2D case, we find

see below. 2 . 1
: k = nok + (3)In(1 + 3mpkt/2), k=73,
After the passage of the shock, the evolution equa- K 0 (5)In( M0kt /2) 0 3

tions are the same as in the RT case with 0. Equa- | (10)
Y = b2 (Yo + b'?) |

Y'kt2=Y—Y+b1/22I[( } k<3 11

3Ygmokt/2 = Y — Y, + vV —b[arctariY,/v—b) — arctaY /v/=b )],  mok > 5. (12)

Here, Yo = /3(1 — mok)/2, b = (1 — 3n0k)/2, and Y is defined byY? = 3 + b = ¢3n—mk 4 % — 3m0k/2.
For 3D flow, we find

nB1/R = noBi/R + In(1 + Bi7ot/R), M0B1/R = % (13)

12
Y()‘l"]()ﬂlt/R =Y —Yy) + b1/2|n[%:|, WO,BI/R < %, (14)
YonoBit/R =Y — Y, + /—b[arcco$y/—b) — arcco$v/—b/6)], noB1/R > 5. (15)

Here, Yo = +/2(1 — n9B1/R), b = 1 — 219B:/R, and | our analytic formulas show very good agreement with
Y is defined by Y2 = 02 + b = ¢21=mA/R 4 | —  their result. (See Fig. 1 in Ref. [2]. We suspect that
210B81/R. As in the RT case, we find that Egs. (10) andthe scaleA = 2 in that figure caption must reatll = 1.)
(13) are good representatives for other valueggélso. More interesting are the direct numerical simulations with
The asymptotic velocities can be obtained directly fromincompressible fluids reported in Ref. [2], which agree

Eq. (3): quite well with their numerical integration of Layzer's
Nw = 2/3kt, (16a)
’):]oo:R/Bll, (16b) :I PPPTPTTTTITITTITTTN Liseriananans 1

for 2D and 3D, respectively, and are independent)pf 2.5 E '

and 7. ]

In Layzer’s theory, the surface of the fluid is effectively
represented by a quadratic function near the tip of the
bubble and higher-order terms are neglected. This expan-
sion yields accurate results for the asymptotic bubble ve-
locity 1. because in steady state the bubble is round and
the higher-order terms vanish. Atintermediate times, how- & 3
ever, this approximation may overestimate the transient 4 4 3
velocity 7. ]

Comparing 2D and 3D geometries, we firg(3D)/
7.(2D) = (3kR/B:1)"/? and 3kR/2B; for RT and RM, 0.5 -
respectively. If we identifkR with 77, we gety/37 /8, =
1.6 and37 /2B, = 1.2, respectively. If we identifykR ]
with 8, we gety/3 = 1.7 and 1.5, respectively. The first 0.0 ':.
identification, adopted by Layzer, is perhaps more physical
(the radius of the tube is half the distance between the
parallel walls), while the second identification yields equalgg 1 nk as a function ofAwki for mok = L, 1, and
initial growth rates [see Eq. (9)]. In either case, the ratio2  1he continuous curves are from direct numerical simula-
is larger for RT than for RM. The RT ratio quoted in tions with 5, = 0.35, 0.70, and 1.40 cmk = 27/13 cm !
Ref. [6] is 1.6. We know of no other investigation into A Mach 1.2 shock traveling atW; = 121 cm/ms in he-
the RM ratio. lium strikes a Hg¢Xe interface (an example is shown in

We now turn to earlier calculations of the 2D RM Fig- 2) giving Av =825 cm/ms. The dashed curves are
bubbl locit h letelv diff t method from Egs. (10)—(12). We have used Richtmyer’'s prescription
ubble velocity, where completely different methods were;, " 'A% kA’ -t “\ith Ay = 0.94 (this i alS0 Aperore
used. In Ref. [2], Layzer's equations withy = 0 were  the He and Xe get compressed by the same amount) and

integrated numerically, so we expect, and indeed find, thab,se. = (1 — Av/W;)n0 = 0.937,.

2.0
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Equations (10)—(12) are plotted in Fig. 1 fgsk = é
%, and%. Equation (10) is an equally good representation
for all three curves, differing by no more than 10% from
the exact results. For each value bf we also plot
the results of direct numerical simulations with the fully
compressible hydrocodeALE. We chose perturbations
of A =13 cm andny = 0.35, 0.7, and 1.4 cm at the
interface between heliunp(= 0.17 mg/cm’, y = %) and
xenon p = 5.4 mg/cn?, y = 3) which have an Atwood
number of 0.94. A Mach 1.2 shock directed from He to
Xe induces a\v = 8.25 cm/ms. These parameters were
chosen from Cal Tech’s 17 in. shock tube with a 122 cm
long test section which is about twice the recently reported
value [13]. The extra length allows us to view the interface
over a longer period of time without interference from a
reflected shock and, thus, follow the evolution from the
linear to the nonlinear regime.

Figure 1 shows good agreement between Egs. (10)—
(12) and the direct numerical simulations. Snapshots
of the large-amplitude rungpy, = 1.4 cm, are shown in

FIG. 2. Isodensity contours from a Mach 1.2 & simula- Fig. 2. Mgny fe{:ltures of the interface, particularly the’
tion with perturbations ofy, = 1.40 cm andA = 13 cm. The  Mmushrooming spikes, are beyond the scope of Layzer's
26 cm X 26 cm frames move down with the interface located theory. What we have shown is that his theory, generalized
initially at y = 122 cm. The bubble vertex is well described tg 4, + 0 and applied to the RM instability, can be solved
by y(x = 6.5 or19.5,1) = 122 — 8.251 — 5(1), where all di- 5 a\vtically and captures well the motion of the bubble
mensions are in cny,is in ms, andy(¢) is given by Eq. (12). . . .

vertex from the linear to the nonlinear regime.

This work was performed under the auspices of the

equations and, in turn, with our analytic result. In fact,U-S- Department of Energy by the Lawrence Livermore
using Eq. (10), we find Laboratory under Contract No. W-7405-ENG-48.
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which automatically gives the corregt and 7. (=2/3kt).
For intermediate values of sayr = 1, Eq. (17) gives 0.07
(setno = 0.2 andk = 27), which agrees very well with

Fig. 1 in Ref. [2]. )
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was used in Ref. [3]. The resulting analytic exXpressions(3; A L. Velikovich and G. Dimonte, Phys. Rev. LetZ6,
are presumably too long and have not appeared in the ~ 3112 (1996).
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bubble velocity given in their Fig. 3 agree very well with [5] G. Birkhoff and D. Carter, J. Math. Mecl6, 769 (1957).
the expressiol’ = 1/(1 + 37/2), which follows from [6] N.A. Inogamov and S.l. Abarzhi, Physica (Amsterdam)
Eq. (17). For example, at = 3 we findT" = 5 =~ 0.3, 87D, 339 (1995).
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