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Analytic Approach to Nonlinear Rayleigh-Taylor and Richtmyer-Meshkov Instabilities

Karnig O. Mikaelian
University of California, Lawrence Livermore National Laboratory,

Livermore, California 94550
(Received 19 August 1996)

We present analytic formulas for the nonlinear evolution of the bubble amplitude in Rayleigh-
Taylor and Richtmyer-Meshkov instabilities in two and three dimensions. Direct numerical simulations
of HeyXe shock tube experiments are also presented and the results are found to agree well with
the analytic formulas which are based on an extension of Layzer’s theory [Astrophys. J.122, 1
(1955)]. [S0031-9007(97)05039-4]

PACS numbers: 47.20.–k, 52.35.Py
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The Rayleigh-Taylor (RT) instability occurs when a
heavy fluid is supported by a lighter fluid. It controls as
trophysical, geophysical, and industrial processes such
supernova explosions, the formation of salt domes, a
the implosion of inertial-confinement-fusion (ICF) cap
sules. The Richtmyer-Meshkov (RM) instability occur
when a shock crosses an interface between two fluids, a
has equally wide applications [1].

The linear regime is well understood. The nonlinea
regime is usually treated by numerical simulations [1,2
or high-order expansion of the fluid equations [3,4]. Th
purpose of this Letter is to present analytic formulas fo
the evolution of RT and RM instabilities from the linea
to the nonlinear regime. We find that these formula
compare well with previous numerical results [1–4], agre
with known asymptotic properties of such flows [5,6]
and predict new ones. We also present direct numeri
simulations for new shock tube experiments and compa
the numerical results with our analytic formulas.

Our starting point is Layzer’s theory [7]. This theory
has been used previously [2,8] but, as far as we know, h
not been solved analytically. The theory applies to th
bubble amplitude, which we denote byhstd. Given the
initial amplitudeh0 and its initial growth rateÙh0, we find
hstd for RT and RM instabilities, treating the latter as a
impulsive acceleration, as was done first by Richtmyer [
and is common practice [1–3].

Layzer treated the RT problem assumingh0 ­ 0. We
extended his theory toh0 fi 0 for two purposes: first, to
see if and how memory of initial conditions is lost in the
nonlinear regime, as the asymptotic properties mention
0031-9007y98y80(3)y508(4)$15.00
-
as

nd
-
s
nd

r
]
e
r

r
s
e
,
cal
re

as
e

n
9]

ed

above appear to be independent ofh0 and Ùh0; second, to
apply his theory to the RM instability, one needs a finiteh0

because, in this case,Ùh0 ~ h0 and, indeed, RM simulations
and experiments start withh0 fi 0.

We will treat in parallel 2D and 3D geometries consid
ered by Layzer in reverse order. In the first and muc
more commonly considered geometry [1–5,9], the flow
between two “parallel walls” separated by a distancel.
In the second geometry, also called “tubular flow” (se
Fig. 1 in [7]), a bubble rises in a tube of radiusR. Hence,
the surface of the fluid is given initially by

y0sx0d ­ h0 cosskx0d (1a)

and

z0sr0d ­ h0J0sb1r0yRd , (1b)

for 2D and 3D, respectively. Except forJ0, which is the
Bessel function of order zero, the zero subscript denot
t ­ 0 values;y andx refer to the vertical and horizontal
coordinates, and similarly forz andr. Here,k ­ 2pyl

and b1 ø 3.832, the first zero of the Bessel function of
order one.

Rayleigh-Taylor.—Our procedure is the same as
Layzer’s: Assume that, in the neighborhood of the bubbl
the velocity potential [Eq. (11) in [7] ] satisfies the Ber-
noulli equation [Eq. (10) in [7] ] for 3D flow, similarly for
2D. For h0 ­ 0, Layzer obtained the second order non
linear differential equation for the all-important func-
tion Tstd, which determineshstd. [There are misprints in
Layzer’s Eqs. (27) and (28).] Forh0 fi 0, we find
us2u3 1 1 2 3h0kdü 1 su3 2 1 1 3h0kd Ùu2 2 gku2su3 2 1 1 3h0kd ­ 0 , (2a)

usu2 1 1 2 2h0b1yRdü 2 s1 2 2h0b1yRd Ùu2 2 sgb1yRdu2su2 2 1 1 2h0b1yRd ­ 0 , (2b)
be
ty,
for 2D and 3D, respectively. The functionustd is defined
as u ­ esh2h0dk and u ­ esh2h0db1yR and is related to
Layzer’s T std via u ­ 1 1 sT 2 1de2h0k and u ­ 1 1

sT 2 1de2h0b1yR for 2D and 3D, respectively. As a check
,

for h0 ­ 0, we haveu ­ T and Eqs. (2a) and (2b) reduce
to Layzer’s Eqs. (55) and (32), respectively.

Despite their nonlinear nature, Eqs. (2a) and (2b) can
integrated to reveal the existence of a conserved quanti
© 1998 The American Physical Society
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which we denote byE. We find

Ùu2fu 1 s1 2 3h0kdy2u2g 2 gkfu3y3 2 s1 2 3h0kd ln ug ­ E , (3a)

Ùu2f1 1 s1 2 2h0b1yRdyu2g 2 sgb1yRd fu2 2 2s1 2 2h0b1yRd ln ug ­ E . (3b)
e
y
t
y p-
Equation (2) follows from conservation ofE sdEydt ­
0d. E should not be taken as the energy of the syst
although Eq. (3b) withh0 ­ Ry2b1 suggests the energ
of a harmonic oscillator with a negative “spring constan
For h0 ­ 0, E coincides with the constant found b
Layzer [see his Eq. (46)]. In general,E is determined by
the initial data
m,

.”

Eygk ­ 3s Ùh0d2s1 2 h0kdky2g 2
1
3 , (4a)

ERygb1 ­ 2s Ùh0d2s1 2 h0b1yRdb1ygR 2 1 . (4b)

We have achieved our first purpose—how the asym
totic bubble velocity, which we denote byÙh`, is ap-
proached starting from arbitrary initial conditionsh0 and
Ùh0: Using the definitions foru, Eqs. (3a) and (3b) read
Ùh ­ sgy3kd1y2

∑
e3sh2h0dk 2 3s1 2 3h0kd sh 2 h0dk 1 3Eygk

e3sh2h0dk 1
1
2 2 3h0ky2

∏1y2

, (5a)

Ùh ­ sgRyb1d1y2

∑
e2sh2h0db1yR 2 2s1 2 2h0b1yRd sh 2 h0db1yR 1 ERygb1

e2sh2h0db1yR 1 1 2 2h0b1yR

∏1y2

. (5b)
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As h grows Ùh ! Ùh` given by

Ùh` ­ sgy3kd1y2, (6a)

Ùh` ­ sgRyb1d1y2, (6b)

as found by Layzer [7] (he identifiedk with pyR —see
below).

To find hstd for any timet, one must integrate Eq. (5).
Although this task is simplified considerably by the fac
that the right-hand sides of these equations are functions
h only, so that the problem reduces to a simple quadratu
the integrals cannot be performed analytically and on
must resort to numerical integration, as Layzer did fo
h0 ­ 0.

Except for the cases whenh0 ­ 1
3 k or Ry2b1 for 2D

or 3D flow, when the equations simplify so much that
completely analytic answer is obtained:

hk ­ h0k 1 s 2
3 d lnhcoshfs3gkd1y2ty2g

1 s Ùh0y Ùh`d sinhfs3gkd1y2ty2gj ,
(7a)

hb1yR ­ h0b1yR 1 lnhcoshfsgb1yRd1y2tg

1 s Ùh0y Ùh`d sinhfsgb1yRd1y2tgj ,
(7b)

where h0k ­ 1
3 and h0b1yR ­ 1

2 , with asymptotic ve-
locities Ùh` as defined in Eqs. (6a) and (6b) for 2D and 3D
flow, respectively.

We have used Eq. (7) to check our numerical integratio
of Eq. (5). Although Eqs. (7a) and (7b) apply for specifi
values ofh0 (there are no constraints onÙh0), we have
found that they also describe well the numerical resul
for other values ofh0 also. For example, ifÙh0 is less
(greater) thanÙh`, then Ùh increases (decreases) towardsÙh`.
t
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If Ùh0 ­ Ùh`, then Eq. (7) predicts that

h ­ h0 1 Ùh0t ­ h0 1 Ùh`t , (8)

and this is also what we find by numerical integration
Eq. (5). In other words, if the initial growth rate equals th
terminal velocity, then the perturbation grows linearly wit
time in the case of the RT instability. Of course, one wa
to achieve large initialÙh0 is to start with a shock followed
by a constant acceleration, a situation quite common in I
implosions.

Richtmyer-Meshkov.—Taking t ­ 0 as the shock ar-
rival time andDy as the jump velocity induced by the
shock, we letg ! Dydstd in the Bernoulli equations.
Richtmyer [9] initiated this incompressible approach an
found that compressible effects could be summed up a
simple prescription to use post-shock densities and am
tudes. Although there are subtle exceptions to this p
scription [10], one finds that it works in practically al
cases [1,9–11].

In this way, we find

Ùh0 ­ Dykh0 , (9a)

Ùh0 ­ Dyb1h0yR , (9b)

for 2D and 3D, respectively. Equation (9a) agrees w
Richtmyer’s result Ùh0 ­ DykAh0 (note that we are
considering the caseA ­ 1, whereA is the Atwood num-
ber). It is possible to ignore Eq. (9) and initiate a proble
with h0 ­ 0 and some arbitraryÙh0 (this was done,
for example, in Ref. [2]), but in real applications th
perturbation is seeded by a finiteh0. For example, to
initiate the RT problem discussed earlier withÙh0 ­ Ùh`,
use a shockDy ­ s g

3 d1y2yh0k3y2 to impart the needed
terminal velocity from the beginning. As we saw in
Eq. (8), the subsequent acceleration will keeph growing
509
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,
linearly with time. Without that acceleration,h will slow
down and grow only logarithmically with time, as we will
see below.

After the passage of the shock, the evolution equ
tions are the same as in the RT case withg ­ 0. Equa-
t
c
t

h
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tions (2a) and (2b) can now be solved analytically and
for the 2D case, we find

hk ­ h0k 1 s 2
3 d lns1 1 3 Ùh0kty2d, h0k ­

1
3 ,

(10)
3Y0 Ùh0kty2 ­ Y 2 Y0 1 sb1y2y2d ln

∑
sY 2 b1y2d sY0 1 b1y2d
sY 1 b1y2d sY0 2 b1y2d

∏
, h0k ,

1
3 , (11)

3Y0 Ùh0kty2 ­ Y 2 Y0 1
p

2b farctansY0y
p

2b d 2 arctansYy
p

2b dg, h0k .
1
3 . (12)

Here, Y0 ­
p

3s1 2 h0kdy2, b ­ s1 2 3h0kdy2, and Y is defined byY 2 ­ u3 1 b ­ e3sh2h0dk 1 1
2 2 3h0ky2.

For 3D flow, we find

hb1yR ­ h0b1yR 1 lns1 1 b1 Ùh0tyRd, h0b1yR ­
1
2 , (13)

Y0 Ùh0b1tyR ­ Y 2 Y0 1 b1y2 ln

∑
usY0 1 b1y2d

Y 1 b1y2

∏
, h0b1yR ,

1
2 , (14)

Y0 Ùh0b1tyR ­ Y 2 Y0 1
p

2b farccoss
p

2b d 2 arccoss
p

2byudg, h0b1yR .
1
2 . (15)
th
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and
Here, Y0 ­
p

2s1 2 h0b1yRd, b ­ 1 2 2h0b1yR, and
Y is defined by Y2 ­ u2 1 b ­ e2sh2h0db1yR 1 1 2

2h0b1yR. As in the RT case, we find that Eqs. (10) an
(13) are good representatives for other values ofh0 also.

The asymptotic velocities can be obtained directly fro
Eq. (3):

Ùh` ­ 2y3kt , (16a)

Ùh` ­ Ryb1t , (16b)

for 2D and 3D, respectively, and are independent ofh0

and Ùh0.
In Layzer’s theory, the surface of the fluid is effectivel

represented by a quadratic function near the tip of t
bubble and higher-order terms are neglected. This exp
sion yields accurate results for the asymptotic bubble v
locity Ùh` because in steady state the bubble is round a
the higher-order terms vanish. At intermediate times, ho
ever, this approximation may overestimate the transie
velocity Ùh.

Comparing 2D and 3D geometries, we findÙh`s3Ddy
Ùh`s2Dd ­ s3kRyb1d1y2 and 3kRy2b1 for RT and RM,
respectively. If we identifykR with p , we get

p
3pyb1 ø

1.6 and 3py2b1 ø 1.2, respectively. If we identifykR
with b1, we get

p
3 ø 1.7 and 1.5, respectively. The firs

identification, adopted by Layzer, is perhaps more physi
(the radius of the tube is half the distance between
parallel walls), while the second identification yields equ
initial growth rates [see Eq. (9)]. In either case, the rat
is larger for RT than for RM. The RT ratio quoted in
Ref. [6] is 1.6. We know of no other investigation into
the RM ratio.

We now turn to earlier calculations of the 2D RM
bubble velocity, where completely different methods we
used. In Ref. [2], Layzer’s equations withh0 ­ 0 were
integrated numerically, so we expect, and indeed find, t
d
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our analytic formulas show very good agreement wi
their result. (See Fig. 1 in Ref. [2]. We suspect th
the scalel ­ 2 in that figure caption must readl ­ 1.)
More interesting are the direct numerical simulations wi
incompressible fluids reported in Ref. [2], which agre
quite well with their numerical integration of Layzer’s

FIG. 1. hk as a function ofDykt for h0k ­ 1
6 , 1

3 , and
2
3 . The continuous curves are from direct numerical simu
tions with h0 ­ 0.35, 0.70, and 1.40 cm,k ­ 2py13 cm21.
A Mach 1.2 shock traveling atWi ø 121 cmyms in he-
lium strikes a HeyXe interface (an example is shown in
Fig. 2) giving Dy ø 8.25 cmyms. The dashed curves ar
from Eqs. (10)–(12). We have used Richtmyer’s prescripti
Ùh0 ­ DykAafterhafter with Aafter ­ 0.94 (this is alsoAbefore,
the He and Xe get compressed by the same amount)
hafter ­ s1 2 DyyWidh0 ø 0.93h0.
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FIG. 2. Isodensity contours from a Mach 1.2 HeyXe simula-
tion with perturbations ofh0 ­ 1.40 cm andl ­ 13 cm. The
26 cm 3 26 cm frames move down with the interface locate
initially at y ­ 122 cm. The bubble vertex is well described
by ysx ­ 6.5 or 19.5, td ­ 122 2 8.25t 2 hstd, where all di-
mensions are in cm,t is in ms, andhstd is given by Eq. (12).

equations and, in turn, with our analytic result. In fac
using Eq. (10), we find

Ùhstd ­
Ùh0

1 1 3 Ùh0kty2
, (17)

which automatically gives the correctÙh0 and Ùh` s­2y3ktd.
For intermediate values oft, sayt ­ 1, Eq. (17) gives 0.07
(set Ùh0 ­ 0.2 andk ­ 2p), which agrees very well with
Fig. 1 in Ref. [2].

A completely different technique (Padé approximant
was used in Ref. [3]. The resulting analytic expressio
are presumably too long and have not appeared in
literature. Nevertheless, their numerical results for t
bubble velocity given in their Fig. 3 agree very well with
the expressionG ­ 1ys1 1 3ty2d, which follows from
Eq. (17). For example, att ­ 3

2 we find G ­ 4
13 ø 0.3,

in good agreement with Ref. [3].
A different result was reached in Ref. [12]:Ùh` de-

pends onh0. This was based on first and second ord
Padé approximants and, presumably, the results of Ref.
based on a tenth order Padé approximant are more a
rate. For example, the lowest-order result from Ref. [12]
Ùh` ­ P0

1 ­ 1yh0k2t. It is possible, of course, that mem
ory of initial conditions is lost as higher- and higher-orde
terms are included in the approximation.
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Equations (10)–(12) are plotted in Fig. 1 forh0k ­ 1
6 ,

1
3 , and 2

3 . Equation (10) is an equally good representatio
for all three curves, differing by no more than 10% from
the exact results. For each value ofk, we also plot
the results of direct numerical simulations with the fully
compressible hydrocodeCALE. We chose perturbations
of l ­ 13 cm and h0 ­ 0.35, 0.7, and 1.4 cm at the
interface between helium (r ­ 0.17 mgycm3, g ­ 5

3 ) and
xenon (r ­ 5.4 mgycm3, g ­ 5

3 ) which have an Atwood
number of 0.94. A Mach 1.2 shock directed from He to
Xe induces aDy ø 8.25 cmyms. These parameters were
chosen from Cal Tech’s 17 in. shock tube with a 122 cm
long test section which is about twice the recently reporte
value [13]. The extra length allows us to view the interfac
over a longer period of time without interference from a
reflected shock and, thus, follow the evolution from th
linear to the nonlinear regime.

Figure 1 shows good agreement between Eqs. (10
(12) and the direct numerical simulations. Snapsho
of the large-amplitude run,h0 ­ 1.4 cm, are shown in
Fig. 2. Many features of the interface, particularly the
mushrooming spikes, are beyond the scope of Layze
theory. What we have shown is that his theory, generalize
to h0 fi 0 and applied to the RM instability, can be solved
analytically and captures well the motion of the bubbl
vertex from the linear to the nonlinear regime.

This work was performed under the auspices of th
U.S. Department of Energy by the Lawrence Livermor
Laboratory under Contract No. W-7405-ENG-48.
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