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Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics
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The first regulaexactblack hole solution in general relativity is presented. The source is a nonlinear
electrodynamic field satisfying the weak energy condition, which in the limit of weak field becomes the
Maxwell field. The solution corresponds to a charged black hole lgith= 2s.m =~ 0.6m, having the
metric, the curvature invariants, and the electric field regular everywhere. [S0031-9007(98)06332-7]

PACS numbers: 04.20.Jb, 04.70.Bw

In general relativity the existence of singularities ap- — (- 2mr? n q’r’ dr
pears to be a property'inhe'rent to most qf the physically (r2 + ¢2)32 (2 + ¢?)2
relevant solutions of Einstein equations, in particular, to ) ) 5 -1
all known up-to-date black holexactsolutions [1]. The + (1 _ __2mr + 91 ) dr’
Penrose cosmic censorship conjecture states that these sin- (r2+ ¢?P2 (2 + ¢%)?

gularities must be dressed by event horizons; no causal + r2dQ2, (1)
connection could exist between the interior of a black . . P

hole with the exterior fields, thus pathologies occurring’VNilé the associated electric fieldis given by

at the singular region would have no influence on the ex- E— r4< r* — 5¢* 15 m ) 2
terior region, and the physics outside would be well be- g (r2 + g2)4 2 (r2 4 22 )

haved (cf. [2] for a review on the recent status of thIS‘Notice that this solution asymptotically behaves as the

conjecture). Reissner-Nordstrém solution, i.e
To avoid the black hole singularity problem, some P

regular modelshas been proposed [3—8]. All of them g =1=2m/r + ¢*/r* + 0(1/r),

have been referred to as “Bardeen blqck holes” _[Q], E=q/r*+ 001/,

since Bardeen was the first author producing a surprisin )

regular black hole model [3]. No one of these modelstNus the parameters and g are related correspondingly

is an exact solution to Einstein equations; there are noWith the mass and the electric charge. For a certain range

known physical sources associated with any of themOf the mass and charge our metric (1) is a black hole,

The attempts to solve this problem have usually beephich in addition is regular everywhere. Accomplishing

addressed to the search of more general gravity theoriefle substitutionsc = r/|g| ands = [g]/2m, we rewrite

The best candidate today to produce singularity-freg« as

solutions, even at the classical level, due to its intrinsic B 1 x? x?

nonlocality, is string theory [10]. There are examples ~ &# — Alx,s) =1 - s (1 + x2)32 + (1 + x2)2°

in other contexts, for instance, iV = 1 supergravity 3)

domain wall solutions with horizons but no singularities o )

have been found (cf. [11], and references therein), anoth&¥hich, for any nonvanishing value of, has a single

example is given in exact conformal field theory [12]. minimum; cf. Fig. 1. There exists a single _real critical
We show in this Letter that in the framework of the Value ofx, x., and one ofs, s., to be determined from

standard general relativity one can find singularity-freeA(xc. s¢) = 0 anda,A(xc, sc) = 0, namely

solutions of the Einstein field equations coupled to a s P , |t

suitable nonlinear electrodynamics, which in the weak - tret 5 1=0,
field approximation becomes the usual linear Maxwell 3

theory. Previous efforts on this direction with nonlinear L 212 — 3t +4=0,
electrodynamics either have been totally unsuccessful or § §

only partially solve the considered singularity problemwherer? = x> + 1. To solve these equations, one substi-
[13—15]. We propose a new nonlinear electrodynamicsutess = (1> — 3)/(2t> — 4) from the second equation
which coupled to gravity actually produces a nonsingulainto the first one arriving at® — 4¢* + 21> — 1 = 0,
exact black hole solution satisfying the weak energywhich has only one real solution faf, thus the corre-

condition. sponding critical values are. = 0.317 and x. = 1.58.
The gravitational field of our solution is described by For s < s. the quoted minimum is negative, far= s,
the metric the minimum vanishes, and far> s. the minimum is
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For|g| = 2s.m, the horizons shrink into a single one, cor-
responding to an extreme black ho¥g [k ,k*) = 0]. The
extension of the metric beyond the horizons becomes

08 ////’ apparent by passing to the standard advanced and retarded
0.61 g=m // Eddington-Finkelstein coordinates, in terms of which the
o4l metric is smooth everywhere, even in the extreme case.
g = 2s.m Following step by step the procedure presented in Ref. [16]
o2t \ (Chap. V) to derive the global structure of the Reissner-

— it

Nordstrom black hole, one can arrive at the global structure

0 2 6 8 10
02 r/|q| of our solution and construct the Penrose diagrams; never-
oal q=0.4m theless, because of journal length restrictions we omit here
. the corresponding calculations and diagrams, leaving this
067 issue for an extended publication. Briefly, what one en-
r_ T counters in the case of our nonextreme black hole solution,

lg| < 2s.m, is the splitting of the space-time into three re-

gions, Lr > ry, Il r- <r <ry,and 0 = r < r_;

cf. Fig. 1. In each region one introduces advanced and

retarded coordinates and v, related withr through the

so called tortoise coordinaté = [A~'dr, which in our

case is quite involved. Further, by the inversiorucdind

v, u — —u, v — —v, one obtains the remaining regions

I, 1", and III'. Introducing a new set of null coordinates,
ne arrives at the maximal extension of the nonextreme

FIG. 1. Behavior of—g,, for different values of charge.

positive. Evaluating the curvature invarial®sR ,, R*",
andR,,.pR*"*P for metric (1) one establishes that they
are all regular everywhere, cf. Fig. 2; thus fok s, the
singularities appearing in (1) due to the vanishingdof
are only coordinate singularities describing the existenc

of horizons; consequently, we are in the presence of blac lack hole. The Penrose diagram of the maximal analyti-

hole solutions foilg| = 2s.m =~ 0.6m. al extension of our solution is obtained by gluing appro-

C

I':or' these yalues of mass and charge we ha\{e, under ﬂﬁ(ﬁately copies of these six regions upward and downward
strict inequality|g| < 2s.m, inner and event horizons for ad infinitum. In the extreme black hole cade] = 2s.m
the killing fieldk = o/a¢, defined by the real solutions of there arise two regions, & > r, and Ill: 0 < r <Cr !
H . c . - Cc

the quartic equatiorrk, k* = A = 0, which are given by cf. Fig. 1, in which again one introduces advanced and

—lal 1 n VT (s) . ﬁ retardedu andv coordinates to accomplish the maximal
L dg 12s  ~ 12s analytical extension; these two regions determine the main

building block of the extension. To construct the Penrose
% S _ 1252 — f(s) diagram of the maximal analytical extension, one glues
6 copies of this block in a suitable way. In both cases, ex-

91252 — 1)>1/2T )1/2 treme and nonextreme, there is no singularity- at 0,

Vf(s)

fs) = 6(% — 457 + 5g(s)'3 —

which is now simply the origin of the spherical coordi-
nates. Summarizing, our space-time possesses the same
4s5(11s> — 3) global structure as the Reissner-Nordstrom black hole ex-
g(s)1/3 ’ cept that the singularity, at = 0, of this last solution has
o 3 been smoothed out.
gls) = 40s + T4s For |g| > 2s.m, there are no horizons and the cor-
+ V/27(400s° — 112s* + 4752 — 4)). responding exact solution represents a globally regular

¢ R, R 7 RWMR‘“/"‘G

g=04m
300

200

100

1 1
’ 0'5 "r/lgl r/la| 7/ldl

FIG. 2. Regular behavior of the Ricci’R, Ricci square,g*R,,R*”, and the Riemann squarg;R,,.sR*"*#, scalars for
different values of charge; the abscissa ji$q|.
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space-time. It is worthwhile to mention in this respect (1 — 8/-24?P — 6q2p)

the existence of globally smooth solutions to the Ein- L =P

stein+matter (Yang-Mills, Yang-Mills-Higgs) equations; (1 +=2¢°P)*

although there are demonstrations of the existence of these 3 (_2q2p)5/4<3 - ZJTqZP)
solutions [17,18], they are numerically given and there are - (8)
no analytical closed expressions for them [19]; cf. [20], 4q°s <1 + V—2¢*P )7/2

and references therein.

The fields (1) and (2) arise as a solution of the Einsteinrhe function (7) satisfies the plausible conditions, needed
nonlinear electrodynamic field equations derived from thgor a nonlinear electromagnetic model, of (i) correspon-
action proposed in Einstein-dual nonlinear electrodynamiclence to Maxwell theory, i.eH ~ P for weak fields

theory [21], which in the studied case becomes (P < 1), and (ii) the weak energy condition, which re-
quiresH < 0 and Hp > 0; cf. Fig. 3. We would like
S = f dv(LR - — L((F ), (5) to point out thgt our solution, in addition tp_bein.g regular
16 4 and to satisfying the weak energy condition, is charac-

terized by another feature: it does not admit a Cauchy
whereR is scalar curvature and is a function ofF = surface. Hence, it does not contradict the Penrose singu-
7F ., F*7. Alternatively, one can describe the consideredarity theorem supported on the hypotheses of: fulfillment
system using another function obtained by means of @&f the null energy condition, existence of a noncompact

Legendre transformation [21]: Cauchy surface, and existence of a closed trapped surface
. B and concluding no null geodesically completeness of the
H =2FLp — L. 6) space-time.

Defining P,, = LrF,,, it can be shown that”{ is In what follows, we shall briefly give the main lines of
a function of P = Lp prv — (LpPF, ie., d#f — the integration process yielding the studied solution. The
— 44 pv 3 by

(L7) 'd[(Lr)2F] = HpdP. With the help of 4 one Einstein and nonlinear electrodynamic equations arising

expresses the nonlinear electromagnetic Lagrangian ﬁﬁom action (5) are

the action (5) asf = 2PHp — H , depending on the v _ VA e _
antisymmetric tensorP,,. The specific functiond{, Gy = AHpPuaP 8,P3Hp = H)1. (9)
determining the nonlinear electrodynamic source used, is

given as VP =0. (10)

1 — 3\—24%P
p< 4 ) In order to obtain the solution (1),(2), we consider the
+4—2¢°P )} static and spherically symmetric configuration

3 (2P " oo
Ms(HJquP)’ 7) g=—(1—r )dtz

where s = |¢|/2m and the invariantP is a negative I I (r) ar? + 2402 (11)
guantity. The corresponding Lagrangian occurs to be r ’

H(P) =

—2¢*°P
100

16
—2¢*P

FIG. 3. Behavior ofg> H and HH, with respect to the positive absciss&q>P for different values of charge.
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and the following ansatz for the antisymmetric field
P, = 26{M5£]D(r). With these choices the equations

(10) integrate as

D2
Puy = 280,80 L — P =—-— =1

2
r? 2 2r4’ (12)

where we have chosen the integration constant sisice,

as it was previously anticipated, it actually plays the role
of the electric charge. The evaluation of the electric field

E = F,, = HpD, using expression (7) fa# , gives just
the formula (2). The' component of Einstein equations
(9) yields the basic equation
I
rQr—4Q —2H(P). (13)
Substituting H from (7) with P = —4?/2r* one can

write the integral of (13) as
B 6my* y(y* = 3¢°)
= 42 +
¢=q rfr dy((y2 + @2 (Yt g )

(14)

the integrand above can be expressed daR2my?/

G*(y2 + ¢»*? = y3/(y? + ¢?)?], thus one arrives at

4

2mr n q2r4
(r2 + q2)3/2 (r2 + g2’

SubstitutingQ into —g, =1 — 2m/r + Q/r? one fi-
nally gets Eq. (1).

0 =2mr — (15)
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