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Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics
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The first regularexactblack hole solution in general relativity is presented. The source is a nonlinea
electrodynamic field satisfying the weak energy condition, which in the limit of weak field becomes th
Maxwell field. The solution corresponds to a charged black hole withjqj # 2scm ø 0.6m, having the
metric, the curvature invariants, and the electric field regular everywhere. [S0031-9007(98)06332-7
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In general relativity the existence of singularities a
pears to be a property inherent to most of the physica
relevant solutions of Einstein equations, in particular,
all known up-to-date black holeexactsolutions [1]. The
Penrose cosmic censorship conjecture states that these
gularities must be dressed by event horizons; no cau
connection could exist between the interior of a bla
hole with the exterior fields, thus pathologies occurrin
at the singular region would have no influence on the e
terior region, and the physics outside would be well b
haved (cf. [2] for a review on the recent status of th
conjecture).

To avoid the black hole singularity problem, som
regular modelshas been proposed [3–8]. All of them
have been referred to as “Bardeen black holes” [9
since Bardeen was the first author producing a surpris
regular black hole model [3]. No one of these mode
is an exact solution to Einstein equations; there are n
known physical sources associated with any of the
The attempts to solve this problem have usually be
addressed to the search of more general gravity theor
The best candidate today to produce singularity-fr
solutions, even at the classical level, due to its intrins
nonlocality, is string theory [10]. There are example
in other contexts, for instance, inN ­ 1 supergravity
domain wall solutions with horizons but no singularitie
have been found (cf. [11], and references therein), anot
example is given in exact conformal field theory [12].

We show in this Letter that in the framework of th
standard general relativity one can find singularity-fre
solutions of the Einstein field equations coupled to
suitable nonlinear electrodynamics, which in the we
field approximation becomes the usual linear Maxwe
theory. Previous efforts on this direction with nonlinea
electrodynamics either have been totally unsuccessfu
only partially solve the considered singularity proble
[13–15]. We propose a new nonlinear electrodynam
which coupled to gravity actually produces a nonsingu
exact black hole solution satisfying the weak energ
condition.

The gravitational field of our solution is described b
the metric
0031-9007y98y80(23)y5056(4)$15.00
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g ­ 2

√
1 2

2mr2

sr2 1 q2d3y2 1
q2r2

sr2 1 q2d2

!
dt2

1

√
1 2

2mr2

sr2 1 q2d3y2 1
q2r2

sr2 1 q2d2

!21

dr2

1 r2dV2, (1)

while the associated electric fieldE is given by

E ­ qr4

√
r2 2 5q2

sr2 1 q2d4 1
15
2

m
sr2 1 q2d7y2

!
. (2)

Notice that this solution asymptotically behaves as th
Reissner-Nordström solution, i.e.,

2gtt ­ 1 2 2myr 1 q2yr2 1 Os1yr3d ,

E ­ qyr2 1 Os1yr3d ,

thus the parametersm and q are related correspondingly
with the mass and the electric charge. For a certain ran
of the mass and charge our metric (1) is a black hol
which in addition is regular everywhere. Accomplishing
the substitutionsx ­ ryjqj and s ­ jqjy2m, we rewrite
gtt as

2gtt ­ Asx, sd ; 1 2
1
s

x2

s1 1 x2d3y2 1
x2

s1 1 x2d2 ,

(3)

which, for any nonvanishing value ofs, has a single
minimum; cf. Fig. 1. There exists a single real critica
value of x, xc, and one ofs, sc, to be determined from
Asxc, scd ­ 0 and≠xAsxc, scd ­ 0, namely

t4 2
t3

s
1 t2 1

t
s

2 1 ­ 0 ,

t3

s
2 2t2 2

3t
s

1 4 ­ 0 ,

wheret2 ; x2 1 1. To solve these equations, one subst
tutess ­ tst2 2 3dys2t2 2 4d from the second equation
into the first one arriving att6 2 4t4 1 2t2 2 1 ­ 0,
which has only one real solution fort2, thus the corre-
sponding critical values aresc ø 0.317 and xc ø 1.58.
For s , sc the quoted minimum is negative, fors ­ sc

the minimum vanishes, and fors . sc the minimum is
© 1998 The American Physical Society
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FIG. 1. Behavior of2gtt for different values of charge.

positive. Evaluating the curvature invariantsR, RmnRmn ,
andRmnabRmnab for metric (1) one establishes that the
are all regular everywhere, cf. Fig. 2; thus fors # sc the
singularities appearing in (1) due to the vanishing ofA
are only coordinate singularities describing the existen
of horizons; consequently, we are in the presence of bla
hole solutions forjqj # 2scm ø 0.6m.

For these values of mass and charge we have, under
strict inequalityjqj , 2scm, inner and event horizons for
the killing field k ­ ≠y≠t, defined by the real solutions o
the quartic equation2kmkm ­ A ­ 0, which are given by

r6 ­ jqj

√"
1
4s

1

p
fssd
12s

6

p
6

12s

3

√
9
2

2 12s2 2
fssd

6

2
9s12s2 2 1dp

fssd

!1y2#2

2 1

!1y2

, (4)

fssd ­ 6

√
3
2

2 4s2 1 sgssd1y3 2
4ss11s2 2 3d

gssd1y3

!
,

gssd ­ 4s9s 1 74s3

1
p

27s400s6 2 112s4 1 47s2 2 4d d .
FIG. 2. Regular behavior of the Ricci,q2R, Ricci square,q4RmnRmn, and the Riemann square,q4RmnabRmnab, scalars for
different values of charge; the abscissa isryjqj.
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For jqj ­ 2scm, the horizons shrink into a single one, cor
responding to an extreme black hole [=nskmkmd ­ 0]. The
extension of the metric beyond the horizonsr6 becomes
apparent by passing to the standard advanced and retar
Eddington-Finkelstein coordinates, in terms of which th
metric is smooth everywhere, even in the extreme cas
Following step by step the procedure presented in Ref. [1
(Chap. V) to derive the global structure of the Reissne
Nordström black hole, one can arrive at the global structu
of our solution and construct the Penrose diagrams; nev
theless, because of journal length restrictions we omit he
the corresponding calculations and diagrams, leaving th
issue for an extended publication. Briefly, what one en
counters in the case of our nonextreme black hole solutio
jqj , 2scm, is the splitting of the space-time into three re
gions, I:r . r1, II: r2 , r , r1, and III: 0 # r , r2;
cf. Fig. 1. In each region one introduces advanced a
retarded coordinatesu and y, related withr through the
so called tortoise coordinaterp ;

R
A21dr , which in our

case is quite involved. Further, by the inversion ofu and
y, u ! 2u, y ! 2y, one obtains the remaining regions
I′, II ′, and III′. Introducing a new set of null coordinates
one arrives at the maximal extension of the nonextrem
black hole. The Penrose diagram of the maximal analy
cal extension of our solution is obtained by gluing appro
priately copies of these six regions upward and downwa
ad infinitum. In the extreme black hole case,jqj ­ 2scm,
there arise two regions, I:r . rc and III: 0 # r , rc;
cf. Fig. 1, in which again one introduces advanced an
retardedu and y coordinates to accomplish the maxima
analytical extension; these two regions determine the ma
building block of the extension. To construct the Penros
diagram of the maximal analytical extension, one glue
copies of this block in a suitable way. In both cases, e
treme and nonextreme, there is no singularity atr ­ 0,
which is now simply the origin of the spherical coordi-
nates. Summarizing, our space-time possesses the s
global structure as the Reissner-Nordström black hole e
cept that the singularity, atr ­ 0, of this last solution has
been smoothed out.

For jqj . 2scm, there are no horizons and the cor
responding exact solution represents a globally regu
5057
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space-time. It is worthwhile to mention in this respe
the existence of globally smooth solutions to the E
stein+matter (Yang-Mills, Yang-Mills-Higgs) equation
although there are demonstrations of the existence of th
solutions [17,18], they are numerically given and there
no analytical closed expressions for them [19]; cf. [2
and references therein.

The fields (1) and (2) arise as a solution of the Einst
nonlinear electrodynamic field equations derived from
action proposed in Einstein-dual nonlinear electrodyna
theory [21], which in the studied case becomes

S ­
Z

dy

µ
1

16p
R 2

1
4p

L sFd

!
, (5)

whereR is scalar curvature andL is a function ofF ;
1
4 FmnFmn . Alternatively, one can describe the consider
system using another function obtained by means o
Legendre transformation [21]:

H ; 2FLF 2 L . (6)

Defining Pmn ; LFFmn, it can be shown thatH is
a function of P ; 1

4 PmnPmn ­ sLFd2F, i.e., dH ­
sLFd21dfsLFd2Fg ­ HPdP. With the help ofH one
expresses the nonlinear electromagnetic Lagrangian
the action (5) asL ­ 2PHP 2 H , depending on the
antisymmetric tensorPmn. The specific functionH ,
determining the nonlinear electrodynamic source used
given as

H sPd ­ P

≥
1 2 3

p
22q2P

¥
s1 1

p
22q2P d3

2
3

2q2s

√ p
22q2P

1 1
p

22q2P

!5y2

, (7)

where s ­ jqjy2m and the invariantP is a negative
quantity. The corresponding Lagrangian occurs to be
FIG. 3. Behavior ofq2H andHP with respect to the positive abscissa22q2P for different values of charge.
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L ­ P

≥
1 2 8

p
22q2P 2 6q2P

¥
s1 1

p
22q2P d4

2
3

4q2s

s22q2Pd5y4
≥
3 2 2

p
22q2P

¥
≥
1 1

p
22q2P

¥
7y2

. (8)

The function (7) satisfies the plausible conditions, need
for a nonlinear electromagnetic model, of (i) correspon
dence to Maxwell theory, i.e.,H ø P for weak fields
(P ø 1), and (ii) the weak energy condition, which re-
quiresH , 0 andHP . 0; cf. Fig. 3. We would like
to point out that our solution, in addition to being regula
and to satisfying the weak energy condition, is chara
terized by another feature: it does not admit a Cauch
surface. Hence, it does not contradict the Penrose sing
larity theorem supported on the hypotheses of: fulfillmen
of the null energy condition, existence of a noncompa
Cauchy surface, and existence of a closed trapped surf
and concluding no null geodesically completeness of th
space-time.

In what follows, we shall briefly give the main lines of
the integration process yielding the studied solution. Th
Einstein and nonlinear electrodynamic equations arisin
from action (5) are

Gn
m ­ 2fHPPmlPnl 2 dn

ms2PHP 2 H dg , (9)

=mPam ­ 0 . (10)

In order to obtain the solution (1),(2), we consider th
static and spherically symmetric configuration

g ­ 2

√
1 2

2m
r

1
Qsrd

r2

!
dt2

1

√
1 2

2m
r

1
Qsrd

r2

!21

dr2 1 r2dV2, (11)
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and the following ansatz for the antisymmetric field
Pmn ­ 2d

t
fmd

r
ngDsrd. With these choices the equations

(10) integrate as

Pmn ­ 2d
t
fmd

r
ng

q
r2 ! P ­ 2

D2

2
­

q2

2r4 , (12)

where we have chosen the integration constant asq since,
as it was previously anticipated, it actually plays the rol
of the electric charge. The evaluation of the electric fiel
E ­ Ftr ­ HPD, using expression (7) forH , gives just
the formula (2). The t

t component of Einstein equations
(9) yields the basic equation

rQ0 2 Q
r4

­ 2H sPd . (13)

SubstitutingH from (7) with P ­ 2q2y2r4 one can
write the integral of (13) as

Q ­ q2r
Z `

r
dy

√
6my2

s y2 1 q2d5y2 1
y2s y2 2 3q2d

s y2 1 q2d3

!
,

(14)

the integrand above can be expressed as≠yf2my3y
q2s y2 1 q2d3y2 2 y3ys y2 1 q2d2g, thus one arrives at

Q ­ 2mr 2
2mr4

sr2 1 q2d3y2 1
q2r4

sr2 1 q2d2 . (15)

SubstitutingQ into 2gtt ­ 1 2 2myr 1 Qyr2 one fi-
nally gets Eq. (1).
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