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Uniqueness of Scalar Field Energy and Gravitational Energy in the Radiating Regime
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The usual approaches to the definition of energy give an ambiguous result for the energy of fields in
the radiating regime. We show that for a massless scalar field in Minkowski spacetime the definition
may be rendered unambiguously by adding the requirement that the energy cannot increase in retarded
time. We present a similar theorem for the gravitational field, proved elsewhere, which establishes that
the Trautman-Bondi energy is the unique (up to a multiplicative factor) functional, within a natural
class, which is monotonic in time for all solutions of the vacuum Einstein equations admitting a smooth
“piece” of conformal null infinityI . [S0031-9007(98)06232-2]
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In Lagrangian field theories one can usually defin
the energy of an isolated system by a volume int
gral over a spacelike hypersurfaceS stretching to spatial
infinity—say, S ­ hx0 ­ tj in Minkowskian or quasi-
Minkowskian coordinates. The integrand may be am
biguous, because there is a freedom in the choice of
Lagrangian, but, as discussed in detail below, for a ma
less scalar field and for hypersurfaces stretching to spa
infinity the total energy so defined does not depend up
this choice. Moreover, the boundary conditions guarant
that the result will not depend upont, a property which
is known as the conservation of energy. The same is tr
for the Maxwell or Yang-Mills-Higgs fields with the usual
asymptotic conditions. The corresponding conserveden-
ergy at spatial infinityin general relativity is the Arnowitt-
Deser-Misner (ADM) mass (though one needs to furth
require that the energy be a Hamiltonian in an appropria
function space to get rid of the ambiguities that arise).

When there is radiation, one would like to measure th
amount of energy radiated away. This cannot be achiev
by integrals over hypersurfacesS extending to spatial
infinity: For massless fields, the radiation propagat
along null directions, and the energy transport is defin
where t and r both approach infinity but with a finite
difference between them. This region is avoided b
hypersurfacesS. In this case to measure the energy le
in the system at a retarded timet 2 r ­ u0 one can
integrate an appropriate integrand [cf. Eqs. (2) and (
below] on a null hypersurfacet 2 r ­ u0, or on any
hypersurfaceS which asymptotes to that hypersurface
the result will not depend upon that choice when a
appropriate rate of approach is imposed. For definitene
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we will use hyperboloidst ­ u 1
p

1 1 x2 1 y2 1 z2

in Minkowski space.
Now the choice of the Lagrangian becomes importan

because the weaker asymptotic decay of the fields in t
radiation regime, as compared to the asymptotic behav
on hypersurfaces of constant Minkowskian time, will give
different values for the energy integral when a differen
Lagrangian function is used. So one needs a prescripti
for the choice of this “energy.” Here we prove that fo
massless scalar fields the requirement that the ene
of the sources be nonincreasing, which has the obvio
physical motivation that outgoing radiation always carrie
energy away from rather than towards the source, gives
unique prescription, which is in fact the formula normally
used. We also state a similar result, proved by a simil
method with additional technical complications which wil
be given elsewhere, for gravitational radiation in gener
relativity, where the resulting energy is the Trautman
Bondi (TB) mass (given by Freud [1], Trautman [2]
Bondi et al. [3], and Sachs [4]).

To be more specific, consider a Lagrangian theory
fields fA defined on a manifoldM with a Lagrange
function density

L ­ L ffA, ≠mfA, . . . , ≠m1 · · · ≠mk
fAg , (1)

for somek [ N, where≠m denotes partial differentiation
with respect toxm. Suppose further that there exists a
function t on M such thatM can be decomposed as
R 3 S, whereS ; ht ­ 0j is a hypersurface inM and
the vector≠y≠t is tangent to theR factor. The proof of
the Noether theorem, as presented, e.g., in Sect. 10.1
© 1998 The American Physical Society
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Ref. [5], shows that the vector density

El ­ 2L Xl 1 Xm
k21X
,­0

fA
,a1···a,m

3

k2,21X
j­0

s21dj≠g1 · · · ≠gj

√
≠L

≠fA
,la1···a,g1···gj

!
(2)

has vanishing divergence,El
,l ­ 0, when the fieldsfA

are sufficiently smooth and satisfy the variational equ
tions associated with a sufficiently smoothL (cf. also
Ref. [6]). HerefA

,a1···a,
­ ≠a1 · · · ≠a,

fA, andXm≠m ­
≠t . The total energy associated with the hypersurfaceS

can be defined by the formula

EsSd ­
Z

S
EldSl , (3)

with dSl ­ ≠l dx0 ^ . . . dx3, where denotes contrac-
tion. The addition toL of a functional of the form

≠lsYlffA, ≠afA, . . . , ≠a1 · · · ≠ak21f
Agd , (4)

where k is as in (1), which does not affect the field
equations, will changeEsSd by a boundary integral (see
e.g., Ref. [7] for an explicit formula forDEml):

EsSd ! ÊsSd ­ EsSd 1
Z

≠S
DEmldSml , (5)

whereSab ­ ≠a ≠b dx0 ^ . . . ^ dx3. If ≠S is a “sphere
at infinity” the integral over≠S has to be understood
by a limiting process. Unless the boundary condition
at ≠S force all such boundary integrals to give a zer
contribution, if one wants to define energy for radiatin
systems using this framework one has to have a criter
for choosing a “best” functional, within the class of a
functionals obtainable in this way. In several cases
interest, including a massless scalar field and gene
relativity, such boundary integrals do not automatical
vanish.

As an example, consider a scalar fieldf in Minkowski
spacetime, takingS ­ ht ­ 0j as S. Assuming thatf
satisfies the rather strong falloff conditions onS

≠a1 · · · ≠aj f ­ osr22d, 0 # j # 2sk 2 1d , (6)

where k is the integer appearing in (1), the boundar
integral in (5) will vanish for all smoothYm’s in Eq. (4).
This shows that Eq. (3) leads to a well-defined notio
of energy on this space of fields onS (whatever the
Lagrange functionL ), as long as the volume integra
there converges.

Now take a massless scalar field in Minkowski spac
time, so thatL ­ 1

2 hmn≠mf≠nf, and the field equations
are

hf ­ 0 . (7)

Let S be the hyperboloidt ­
p

1 1 x2 1 y2 1 z2. In
that case solutions of Eq. (7) which are obtained by evo
ing compactly supported data onht ­ 0j [see Eq. (9) be-
low] do not satisfy (6) onS, and the boundary term in (5)
does not vanish in general. Thus, even for scalar fields
Minkowski spacetime, a supplementary condition singlin
out a preferredEl is needed in the radiation regime.
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Now for various field theories on the Minkowski back
ground, including the scalar field, and for the gravit
tional field, one can impose some further conditions
El such as Lorentz covariance, and dependence upon
first derivatives of the field only, which render it uniqu
[8–10]. However, the condition in [9] that the energy
momentum pseudotensor of the gravitational field shou
be quadratic in the first derivatives of the metric tens
appears to us too restrictive. Thus it seems worthwh
to find a more natural criterion, which would encompa
both general relativity and field theories on a Minkows
background, and which would single out a preferred e
pression for energy in the radiation regime. In this Le
ter we point out that the requirement ofmonotonicity of
energy in retarded timeallows one to single out an en
ergy expression in a unique way, within a natural class
“energies.”

Let us start with the case of a massless scalar fi
in Minkowski spacetime. The variational formalism de
scribed above leads one to consider functionals of
form

Hff, tg ­ EsStd 1
Z

≠St

HabdSab ,

EsStd ­
Z

St

Tm
nXndSm, Xn≠n ­ ≠t ,

(8)

whereHab is a twice continuously differentiable function
of fsxd, ≠a1fsxd, . . . , ≠a1 · · · ≠an fsxd, for somen. The
indices a refer to Minkowski coordinates, in which the
Hab ’s depend upon the coordinates through the fiel
only. (Explicit coordinate dependence inHab could
arise if there were explicit coordinate dependence
L ; this could then lead toEl’s which do not have
vanishing divergence. While the hypothesis of coordina
independence ofL seems to us to be a natural hypothes
for the problem at hand, it would certainly be of intere
to find all monotonic functionals which arise when som
coordinate dependence is allowed.) Here as before
St ’s are unit hyperboloids in Minkowski spacetime,Tm

n

is the standard energy-momentum tensor for the sca
field [with the normalization determined by Eq. (2)], an
the integral in (8) is understood as a limit asR tends
to infinity of integrals on coordinate balls of radiusR
included inSt.

Before analyzing convergence of functionals (8) w
need to specify the class of fieldsf of interest. Con-
sider solutions of (7) which have smooth compactly su
ported initial data on the hyperplanehx0 ­ 0j, wherex0

is a standard Minkowski coordinate. Using conformal c
variance of Eq. (7) it can be shown that there will ex
ist smooth functionscsu, u, fd anddsu, u, fd defined on
s2`, `d 3 S2 such that

fsu, r , u, fd 2
csu, u, fd

r
2

dsu, u, fd
r2

­ Osr23d ,

(9)
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with u ­ x0 2 r. Moreover (9) is preserved under dif
ferentiation in the obvious way. (The hypothesis that th
initial data are compactly supported is not necessary, a
is made only to avoid unnecessary technical discussion
In what follows we will consider only solutions of (7) sat
isfying (9). Again standard results on the wave equati
together with conformal covariance show thatgiven arbi-
trary functions c on, sayfu0 2 1, u0 1 1g 3 S2 and d0

on S2 there exists a solution of the wave equation defin
on Minkowski spacetime such that (9) holds, with

≠d
≠u

­ 2
1
2

D2c, dsu0, u, fd ­ d0su, fd . (10)

HereD2 denotes the Laplace operator onS2 with the stan-
dard round metric. [Equation (10) is obtained by insertin
the expansion (9) in (7)]. We claim the following.

Theorem 1.—Let H be as described above and suppos
that (8) converges for all solutions of the wave equatio
satisfying (9). IfdHydt # 0, then for all suchf’sZ

≠St

HabdSab ­ 0 ,

so that the numerical value ofH equals the standard
canonical energy.

PROOF: We can Taylor expandHab at f ­ 0 up to
second order to obtain

Hab ­ Hab

Ç
f­0

1
X

0#jIj#k

≠Hab

≠fI

Ç
f­0

fI

1
X

0#jIj,jJj#k

≠2Hab

≠fI≠fJ

Ç
f­0

fIfJ 1 rab, (11)

where we use the symbolfI to denote objects of the
form ≠a1 · · · ≠a,

f, with jIj ­ jsa1, . . . , a,dj ­ ,. By
hypothesisHabjf­0 depends only upon the metric and it
derivatives, so in Minkowski coordinates the coefficien
Hab jf­0, ≠Hab

≠fI
jf­0 etc. in (11) are constants. By wel

known properties of Taylor expansions and by (9) w
have rab ­ osr22d, so thatrab will not contribute to
H in the limit r ! `. In Minkowski coordinate systems
(9) can be rewritten as

≠

≠xa1 · · · ≠

≠xaj f ­
csjd

r na1 · · · naj 1
La1···aj

r2 1 Osr23d ,

(12)

≠

≠xa1 · · · ≠

≠xaj
d
r2 ­

dsjd

r2 na1 · · · naj
1 Osr23d , (13)

where csmdst, r , u, wd ­
≠m

≠um fcsu, u, wdgju­t2r , similarly
for dsmd, and nm ­ s1, 2xiyrd. Here La1···aj

is a linear
function of c, its u and angular derivatives up to orde
j. Inserting (9) in (11) and making use of (12) an
(13) might produce several terms which do not obvious
converge, but those have to cancel out or integrate
to zero by our hypothesis of convergence of (8). It the
5054
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follows that (8) can be rewritten as

H ­ EsStd

1
Z

S2
ĥfc, cs1d, . . . , cskd, d, ds1d, . . . , dskd, u, fgd2m ,

(14)

for some functional̂h, smooth in all its arguments, with
d2m ­ sinududw. Moreoverĥ is linear in d and itsu
derivatives. Equation (10) allows one to eliminate theu
derivatives ofd in terms of derivatives ofc, so that (14)
can be rewritten as

H ­ EsStd

1
Z

S2
shfc, cs1d, . . . , cskd, u, fg 1 afd, u, fgd d2m ,

(15)

for some functionalsh anda, with a linear in d. Theu
derivative of (15) gives

dH
dt

­
Z

S2

µ
2scs1dd2 1

dh
dc

cs1d 1 · · ·

1
dh

dcskd csk11d 1
da

dd
ds1d

∂
d2m .

Since csk11d is an arbitrary function onS2 at fixed
c, . . . , cskd and d0, we can choose it so thatdHydt # 0
unlessdhydcskd ­ 0, k $ 1. A suitable redefinition ofh
leads to

Hstd ­ EsStd 1
Z

S2
shfc, u, fg 1 afd, u, fgd d2m ,

dH
dt ­

Z
S2

fs2cs1d 1
dh
dc dcs1d 2

1
2

da

dd D2cg d2m .
(16)

Consider now solutions of the wave equation wi
cs1dsu ­ u0d ­ 0. In this case (16) and arbitrariness o
csu ­ u0d imply that dHydt will be nonpositive if and
only if D2sdayddd ­ 0, which forcesdaydd to be a
constant. We note that for any constanta the integralZ

S2
ad d2m , (17)

is a constant of motion [see also [11] (Sect. 8.2)]. How
ever, integrals of the form (17) cannot arise in the cla
of functionals considered here. Indeed, the identity (1
shows that all the terms which would give a nonvanishi
contribution toH and which contain derivatives ofd con-
tain at least oneu derivative ofd. Then the only possible
term which would containd would come from the termZ

S2

≠Hab

≠f

Ç
f­0

f dSab

­
Z

S2

≠Hrt

≠f

Ç
f­0

scr 1 dd d2m ,

which for genericc diverges whenr goes to infinity,
unless identically vanishing. We thus obtaindaydd ­ 0.
The right hand side of Eq. (16) can be made positive
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choosing cs1dsu ­ u0d ­ 1
2 dhydc, unless dhydc ­ 0,

and our claim follows. h
For general relativity, the appropriate spacelike surfac

analogous to hyperboloids are spacelike hypersurfac
which intersect the future null infinityI 1 in a compact
cross sectionK. In [7] we show that the TB energy is, up
to a multiplicative constanta [ R, the only functional
of the gravitational field, in a certain natural class o
functionals, which is monotonic in time for all vacuum
field configurations which admit (a piece of) a smooth
null infinity I 1. More precisely, in [7] we show the
following.

Theorem 2.—Let H be a functional of the form

Hfg, ug ­
Z

S2sud
Habsgmn , gmn,s , . . . , gmn,s1···sk

d dSab ,

(18)

where theHab are twice differentiable functions of their
arguments, and the integral overS2sud is understood
as a limit as r goes to infinity of integrals over the
spherest ­ u 1 r, r ­ r. Suppose thatH is finite and
monotonic inu for all vacuum metricsgmn satisfying

gmn ­ hmn 1
h1

mnsu, u, fd
r

1
h2

mnsu, u, fd
r2

1 osr22d ,

≠s1 · · · ≠si

√
gmn 2

h1
mnsu, u, fd

r
2

h2
mnsu, u, fd

r2

!
(19)

­ osr22d ,

with 1 # i # k, for someCk functionsha
mnsu, u, fd, a ­

1, 2. If H is invariant under passive Bondi-Metzner-Sach
(BMS) supertranslations, then the numerical value ofH
equals (up to a proportionality constant) the Trautman
Bondi mass.

Some comments are in order. First, the volume integr
EsStd which was present in (8) does not occur in (18), be
cause the Trautman-Bondi mass is itself a boundary int
gral. Next, Theorem 2 imposes the further requirement
passive BMS invariance,which did not occur in the scalar
field case. This requirement arises as follows: Recall th
the coordinate systems in which the metric satisfies (1
are, roughly speaking, defined only modulo BMS trans
formations. Then the requirement ofpassive BMS invari-
anceis the rather reasonable requirement that the conce
of energy be independent of the coordinate system chos
to measure this energy. We note that we believe that t
requirement of monotonicity forces the energy to be in
variant under (passive) supertranslations, but we have n
succeeded in proving this so far.

It is natural to ask why the Newman-Penrose constan
of motion [12], or the logarithmic constants of motion of
[13], do not occur in our results of [7]. These quanti
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ties are excluded by the hypothesis that the boundary
tegrandHab which appears in the integrals we conside
depends on the coordinates only through the fields.

We note that a key ingredient of the proof of The
orem 2 is the Friedrich-Kannar [14,15] construction o
spacetimes “having a piece ofI .”

Let us finally mention that one can set up a Hamiltonia
framework in a phase space which consists of Cauc
data on hyperboloids together with values of the field
on appropriate parts of future null infinity to describe th
dynamics in the radiation regime [16]. Unsurprisingly
the Hamiltonians one obtains in such a formalism a
again not unique, but the nonuniqueness can be contro
in a very precise way. The Trautman-Bondi mass tur
out to be a Hamiltonian, and an appropriate version
the uniqueness Theorem 2 can be used to single out
TB mass amongst the family of all possible Hamiltonian
In the Hamiltonian framework the freedom of multiplying
the functional by a constant disappears.
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[9] J. Bičák, in Relativity and Gravitation,edited by C. G.

Kuper and A. Peres (Gordon and Breach, New Yor
London, Paris, 1971), pp. 47–67, N. Rosen Festschrift.
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