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Uniqueness of Scalar Field Energy and Gravitational Energy in the Radiating Regime
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The usual approaches to the definition of energy give an ambiguous result for the energy of fields in
the radiating regime. We show that for a massless scalar field in Minkowski spacetime the definition
may be rendered unambiguously by adding the requirement that the energy cannot increase in retarded
time. We present a similar theorem for the gravitational field, proved elsewhere, which establishes that
the Trautman-Bondi energy is the unique (up to a multiplicative factor) functional, within a natural
class, which is monotonic in time for all solutions of the vacuum Einstein equations admitting a smooth
“piece” of conformal null infinity 7. [S0031-9007(98)06232-2]

PACS numbers: 04.20.Cv, 03.50.-z, 11.10.Ef

In Lagrangian field theories one can usually definewe will use hyperboloids = u + /1 + x2 + y2 + 72
the energy of an isolated system by a volume intein Minkowski space.
gral over a spacelike hypersurfasSestretching to spatial Now the choice of the Lagrangian becomes important,
infinity—say, S = {x = 7} in Minkowskian or quasi- because the weaker asymptotic decay of the fields in the
Minkowskian coordinates. The integrand may be am+adiation regime, as compared to the asymptotic behavior
biguous, because there is a freedom in the choice of then hypersurfaces of constant Minkowskian time, will give
Lagrangian, but, as discussed in detail below, for a masdifferent values for the energy integral when a different
less scalar field and for hypersurfaces stretching to spatidlagrangian function is used. So one needs a prescription
infinity the total energy so defined does not depend upoffor the choice of this “energy.” Here we prove that for
this choice. Moreover, the boundary conditions guaranteenassless scalar fields the requirement that the energy
that the result will not depend upon a property which  of the sources be nonincreasing, which has the obvious
is known as the conservation of energy. The same is truphysical motivation that outgoing radiation always carries
for the Maxwell or Yang-Mills-Higgs fields with the usual energy away from rather than towards the source, gives a
asymptotic conditions. The corresponding consemned unique prescription, which is in fact the formula normally
ergy at spatial infinityin general relativity is the Arnowitt- used. We also state a similar result, proved by a similar
Deser-Misner (ADM) mass (though one needs to furthemethod with additional technical complications which will
require that the energy be a Hamiltonian in an appropriatbe given elsewhere, for gravitational radiation in general
function space to get rid of the ambiguities that arise).  relativity, where the resulting energy is the Trautman-

When there is radiation, one would like to measure theBondi (TB) mass (given by Freud [1], Trautman [2],
amount of energy radiated away. This cannot be achieveBondiet al. [3], and Sachs [4]).
by integrals over hypersurfaces extending to spatial To be more specific, consider a Lagrangian theory of
infinity: For massless fields, the radiation propagategields ¢* defined on a manifold¥ with a Lagrange
along null directions, and the energy transport is definedunction density
where ¢ and r both approach infinity but with a finite
difference between them. This region is avoided by L = L[pY 0™ 00, 04 0"], (1)
hypersurfaces. In this case to measure the energy left
in the system at a retarded time— r = uy one can for somek € N, whered, denotes partial differentiation
integrate an appropriate integrand [cf. Eqgs. (2) and (3ith respect tox*. Suppose further that there exists a
below] on a null hypersurface — r = uy, or on any function + on M such thatM can be decomposed as
hypersurface> which asymptotes to that hypersurface;R X 3, where2 = {r = 0} is a hypersurface i/ and
the result will not depend upon that choice when anthe vectord/dt is tangent to théR factor. The proof of
appropriate rate of approach is imposed. For definitenedbe Noether theorem, as presented, e.g., in Sect. 10.1 of
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Ref. [5], shows that the vector density Now for various field theories on the Minkowski back-
A A k=1 4 ground, including the scalar field, and for the gravita-
EY= —LX + X" Y ¢" araen tional field, one can impose some further conditions on
=0

1
first derivatives of the field only, which render it unique

k=€ ' ar
X (=1Yd,, -0y | —————
,Zo 7 yj(ad)A,/\al---aeylmy/ [8—10]. However, the condition in [9] that the energy-
momentum pseudotensor of the gravitational field should

has vanishing divergencé? , = 0, when the fieldsp, B2 ; oy .
are sufficiently smooth and satisfy the variational equa-be guadratic in the first derivatives of the metric tensor

tions associated with a sufficiently smooth (cf. also ~ 2PPEars to us too restrictive. Thus it seems worthwhile
Ref. [6]). Here” — 9y 00 P, ANdXHa, = to find a more natural criterion, which would encompass
. . Sy a ag ! 12

both general relativity and field theories on a Minkowski
background, and which would single out a preferred ex-
pression for energy in the radiation regime. In this Let-

E3) = f EMS, , (3) ter we point out that the requirement ofonotonicity of

> energy in retarded timallows one to single out an en-

with dS, = 9,1dx° A ...dx*, where_l denotes contrac- ergy expression in a unique way, within a natural class of
tion. The addition tal of a functional of the form “energies.”

HA(YA[¢A,8a¢A,.--,8aI ---HaHCﬁA]), (4) Let us start with the case of a massless scalar field
where k is as in (1), which does not affect the field in Mlnkowskl spacetime. The varlgnonal for'mallsm de-
scribed above leads one to consider functionals of the

) E* such as Lorentz covariance, and dependence upon the
)

d;. The total energy associated with the hypersurface
can be defined by the formula

equations, will chang&(3) by a boundary integral (see,

e.g., Ref. [7] for an explicit formula foA E#1): form
E(X)— E3)=EQ) + /2 AEdS,,  (5) H[$,t] = E(X,) + f H¥dS,p,
8 a3,
whereS,pg = 9,1951dx" A... A dx3. If 93 is a “sphere (8)
at infinity” the integral overa has to be understood E(X) = fz T*,X"dS,,  X"9, =,

by a limiting process. Unless the boundary conditions
at 9% force all such boundary integrals to give a zerowhereH“? is a twice continuously differentiable function
contribution, if one wants to define energy for radiatingof ¢ (x), 94, ¢ (x),...,dq, --- o, ¢(x), for somen. The
systems using this framework one has to have a criteriofhdices « refer to Minkowski coordinates, in which the
for choosing a “best” functional, within the class of all F*£’s depend upon the coordinates through the fields
functionals obtainable in this way. In several cases obnly. (Explicit coordinate dependence iH“# could
interest, including a massless scalar field and generalrise if there were explicit coordinate dependence in
relativity, such boundary integrals do not automatically £ ; this could then lead taE*’s which do not have
vanish. _ _ ' ~ vanishing divergence. While the hypothesis of coordinate

As an example, consider a scalar fighdn Minkowski  independence of seems to us to be a natural hypothesis
spacetime, taking = {r = 0} asX. Assuming that¢  for the problem at hand, it would certainly be of interest
satisfies the rather strong falloff conditions &n to find all monotonic functionals which arise when some

Doy "+ Do, p = o(r7?), 0=j=2k-—1), (6) coordinate dependence is allowed.) Here as before the
where k is the integer appearing in (1), the boundary.E’S are unit hyperboloids in Minkowski spacetimet’,

is the standard energy-momentum tensor for the scalar

integral in (5) will vanish for all smoottY#’s in Eq. (4). ; ; 27 .
This shows that Eq. (3) leads to a well-defined notionfleld [with the normalization determined by Eq. (2)], and

of energy on this space of fields aof (whatever the the_ i?te_gralfin (8) isl understO(()j(_:I as ?)“I:nit ?St%ngs
Lagrange functionL), as long as the volume integral to infinity of integrals on coordinate balls of radi

there converges. included in%,. -
Now take a massless scalar field in Minkowski space- Before analyzing convergence of functionals (8) we

: 1 ' ; need to specify the class of fields of interest. Con-
grrw;e, sothatl = 31*"0,$ 0,4, and the field equations sider solutions of (7) which have smooth compactly sup-

ported initial data on the hyperplade® = 0}, wherex®
H¢ = 0. (7)  is a standard Minkowski coordinate. Using conformal co-
Let 3 be the hyperboloid = /1 + x2 + y2 + z2. In  variance of Eq. (7) it can be shown that there will ex-
that case solutions of Eqg. (7) which are obtained by evolvist smooth functiong:(u, 6, ¢) andd(u, 8, ¢) defined on
ing compactly supported data ¢n= 0} [see Eq. (9) be- (—, %) X §? such that
low] do not satisfy (6) or®, and the boundary term in (5)
does not vanish in general. Thus, even for scalar fields in 4, 9, ¢) — cu.0,.¢) du.6,¢) _ o),
Minkowski spacetime, a supplementary condition singling r r?
out a preferredz” is needed in the radiation regime. (9)
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with u = x° — r. Moreover (9) is preserved under dif- follows that (8) can be rewritten as
ferentiation in the obvious way. (The hypothesis that the,, s
initial data are compactly supported is not necessary, ang = E(2)
is made only to avoid unnecessary technical discussions.) A 1 k 1 k 5

In what follows we will consider only solutions of (7) sat- * fsz e, c9.d.d,....dY.0. 41w,
isfying (9). Again standard results on the wave equation (14)
together with conformal covariance show tlgaten arbi-
trary functions ¢ on, sajug — 1,uo + 1] X §? and d,

on S? there exists a solution of the wave equation define
on Minkowski spacetime such that (9) holds, with

for some functionali, smooth in all its arguments, with
612,u = sin@dfde. Moreoverh is linear ind and itsu
derivatives. Equation (10) allows one to eliminate the
derivatives ofd in terms of derivatives o€, so that (14)
can be rewritten as

od _ _% Ase,  d(ug,0,¢) = do(6, ).  (10)

u
HereA, denotes the Laplace operator $hwith the stan- ) ® )
dard round metric. [Equation (10) is obtained by inserting + [Sz(h[c’c s €, 0,9] + ald, 6, oD d e,
the expansion (9) in (7)]. We claim the following. (15)
Theorem 1—Let H be as described above and suppose

that (8) converges for all solutions of the wave equation© S0me functionalé ande, with « linear ind. Theu

satisfying (9). IfdH/dt = 0, then for all suchg’s derivative of (15) gives
dH Sh
aH _ ey L 2 g
HdSas =0, dt L( (@) * 5 ¢
a3,

oh da
. (k+1) M) 42
so that the numerical value o/ equals the standard + Sc € + S5d d )d K-

canonical energy.
PROOFE We can Taylor expand/“? at ¢ = 0 up to
second order to obtain

$=0 o=|i|=k Ipr lp=0

Since ¢**1 is an arbitrary function ons? at fixed
c,...,c® andd,, we can choose it so thatd /dt = 0
unlessdh/5¢% = 0, k = 1. A suitable redefinition of
leads to

1
HO = B + [ 00,061+ old.0.0) 2p,
(16)

S O PHP e e, (1)

=+ 1PJ + r N

o=iil=k 91991 lo=0 T = f [(—c® + 2™ — 12 A, a2
SZ

where we use the symbap; to denote objects of the Consider now solutions of the wave equation with

form aan."'jge¢' with 1] = l(ai,...,a0l = €. By )y, = up) = 0. In this case (16) and arbitrariness of
hypothesist |4, depends only upon the metric and its c(u = up) imply that dH /dt will be nonpositive if and

derivativesa,Hso in Minkowski coordinates the coefficientsOnly if A,(Sa/5d) = 0, which forcesda/8d to be a

af .
HPly—o, g ls=o €tc. in (11) are constants. By well constant.” We note that for any constarthe integral
known properties of Taylor expansions and by (9) we

have r*# = o(r~?), so thatr*# will not contribute to f ad &’ (17)
H in the limit r — . In Minkowski coordinate systems 52
(9) can be rewritten as is a constant of motion [see also [11] (Sect. 8.2)]. How-
. ) ever, integrals of the form (17) cannot arise in the class
R g, L 4 07, of functionals considered here. Indeed, the identity (13)

shows that all the terms which would give a nonvanishing
(12)  contribution toH and which contain derivatives af con-
tain at least one derivative ofd. Then the only possible

3 9 d dv term which would contai would come from the term

A T 3 = T My ha, + O(FY), (13)
; OHP s
where ¢™(t,r,0,¢) = ~=[c(u, 0, )=, similarly s 0 ¢=0¢ ap
for d™, andn, = (1, —x'/r). HereL,. .., is a linear .
. M e oH 5
function of ¢, its u and angular derivatives up to order = (cr +d)d u,
j. Inserting (9) in (11) and making use of (12) and 52 99 lp=0

(13) might produce several terms which do not obviouslywhich for genericc diverges whenr goes to infinity,
converge, but those have to cancel out or integrate outnless identically vanishing. We thus obtaia/6d = 0.
to zero by our hypothesis of convergence of (8). It thenThe right hand side of Eq. (16) can be made positive by
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choosing ¢V (u = ug) = %Sh/éc, unless h/8c = 0, ties are excluded by the hypothesis that the boundary in-
and our claim follows. O tegrandH“# which appears in the integrals we consider
For general relativity, the appropriate spacelike surfacedepends on the coordinates only through the fields.

analogous to hyperboloids are spacelike hypersurfaces We note that a key ingredient of the proof of The-
which intersect the future null infinit? * in a compact orem 2 is the Friedrich-Kannar [14,15] construction of
cross sectiork. In [7] we show that the TB energy is, up spacetimes “having a piece &t”

to a multiplicative constantr € R, the only functional Let us finally mention that one can set up a Hamiltonian
of the gravitational field, in a certain natural class offramework in a phase space which consists of Cauchy
functionals, which is monotonic in time for all vacuum data on hyperboloids together with values of the fields
field configurations which admit (a piece of) a smoothon appropriate parts of future null infinity to describe the
null infinity I7*. More precisely, in [7] we show the dynamics in the radiation regime [16]. Unsurprisingly,

following. the Hamiltonians one obtains in such a formalism are
Theorem 2—Let H be a functional of the form again not unigue, but the nonuniqueness can be controlled
in a very precise way. The Trautman-Bondi mass turns

H[g.u] = ] HoB ’ L o )dSas out to_be a Hamiltonian, and an appropriate version of
L. ul 2 R the uniqueness Theorem 2 can be used to single out the

(18)  TB mass amongst the family of all possible Hamiltonians.
In the Hamiltonian framework the freedom of multiplying
the functional by a constant disappears.
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