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Atomic Detection and Matter-Wave Coherence
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We analyze several models of atomic detectors in the context of the measurement of cohe
properties of matter waves. In particular, we show that an ionization scheme measures normally or
correlation functions of the Schrödinger field, in analogy with the optical situation. However, it exhib
a sensitivity to exchange processes that is normally absent in optics. [S0031-9007(98)06310-8]

PACS numbers: 03.75.–b, 32.80.–t, 42.50.Vk
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Optical coherence theory is based on the observat
that most quantum measurements that can be perform
on the electromagnetic field yield a signal proportional
normally ordered correlation functions of that field [1]
A quantized multimode field is then said to be cohere
to order N if all normally ordered correlation functions
up to orderN factorize. No such theory is presently
available for atomic coherence, probably because un
recently it had not been necessary to think of atom
samples as Schrödinger fields. But the experimental wo
on ultracold atoms, Bose-Einstein condensation (BE
[2–6], and atom lasers [7] has changed that situation, a
the need for a proper theory of atomic coherence is no
quite urgent [8].

At least for the case of bosonic fields, it is temptin
to simply transpose Glauber’s coherence theory [1]. A
pealing as it might sound, this approach must be appl
with caution, due to the fundamental difference betwe
electromagnetic and matter-wave fields. Most optical e
periments detect light by absorption, i.e., by “removing
photons from the light field. This is the reason why no
mally ordered correlation functions are so important. B
atomic detectors work in a number of different ways: On
can choose to measure electronic properties, or cen
of-mass properties, or both. Additional difficulties aris
from the fact that atomic fields are self-interacting, whic
significantly complicates the propagation of atomic cohe
ence as compared to the case of light. From these
marks, it should be clear that a theory of matter-wa
coherence is much richer than its optical equivalen
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Yet, like Glauber’s coherence theory, it should be opera
tional and based on explicit detection schemes.

The goal of this Letter is to analyze ideal atom detec
tors and to determine which correlation functions of th
matter-wave field they are sensitive to. The systems w
explicitly consider are nonresonant atomic imaging sys
tems such as used, e.g., in the MIT BEC experiments, a
detectors working via atomic ionization. We show tha
in contrast to off-resonance imaging, which is known t
be sensitive to density correlation functions, narrow-ban
ionization detectors measure normally ordered correlatio
functions of the Schrödinger field. This is analogous t
the optical case, with the difference that higher-order d
tection schemes involve additional exchange terms usua
absent in optics.

Nonresonant imaging.—To set the stage for our dis-
cussion, we first briefly review atomic detection by non
resonant imaging [3,9]. These measurements involve
strongly detuned electromagnetic field interacting with th
atoms in the sample in such a way that it induces on
virtual transitions. We consider for concreteness groun
state atoms described by the Schrödinger field opera
Ĉsrd with fĈsrd, Ĉysr0dg ­ dsr 2 r0d for bosons, and
decompose the electromagnetic field into a classical
populated mode of wave vectork0 and polarizatione0
and a series of weakly excited side modes of wave ve
tors k, and polarizationse,. After adiabatic elimination
of the upper electronic state of the atomic transition un
der consideration, the interaction between the Schröding
field and the radiation field is described to lowest order i
the side modes by the effective Hamiltonian
V ­ h̄
Z

d3r
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where k, is the wave vector of the,th mode of the
field, of frequencyv,, and of polarizatione,, the sum
is over all field modes in the quantization volumeV ,
E, ­ fh̄v,y2e0V g1y2, and fa,, a

y
,0 g ­ d,,,0. We have

also introduced the Rabi frequenciesV0srd ­ dE0srd se ?

e0dyh̄, e being the direction of the atomic dipole, an
V, ­ dE,se ? e,dyh̄, and the atom-field detuningd0 ;
va 2 v0 is such thatjd0j ¿ jV0srdj.
d

The measurement of specific properties of th
Schrödinger field can then be carried out in various way
For instance, one can detect interferences between
classical incident field and scattered light, as in the MIT
experiments [3]. This results in a signal proportiona
to the densitykr̂sr, tdl, where we have introduced the
operator r̂sr, td ; Ĉysr, tdĈsr, td, whose expectation
value is the local density of the sample. Alternatively
© 1998 The American Physical Society
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one can measure the spectrum of the scattered light
in a fashion familiar from resonance fluorescence expe
ments. For side modes initially in a vacuum state, th
most important nontrivial contribution to the fluorescenc
signal is proportional to the intensityjV0j

2 of the incident
field,

w ­
jV0j

2

d
2
0

X
,

jV,j
2
Z

d3r d3r 0
Z t1Dt

t
dt dt0

3 eifsk02k,d?sr2r 0d2sv02v,d st2t 0dg

3 kr̂sr, tdr̂sr0, t0dl , (2)

and hence is sensitive to the second-order correlat
function of the sample density. Indeed, it can be show
that any measurement involving the electromagnetic fie
scattered by the atomic sample under conditions of o
resonant imaging is determined by correlation functio
of the Schrödinger field density.

Ionization.—The reason off-resonant imaging yield
a signal dependent on̂rsr, td is that the electric dipole
interaction is bilinear in the Schrödinger field operator
This difficulty can, however, be eliminated if, instead o
making measurements on the radiation field, one dete
the atoms directly [10,11]. One scheme that achieves t
goal is the ionization method that we now discuss.

Consider a detector consisting of a tightly focuse
laser beam that can ionize atoms by inducing transitio
from their ground electronic leveljgl to a continuum
level jil. The corresponding single-particle Hamiltonia
is H ­ Hcm 1 Hel 1 V srd ; H0 1 V srd, whereHcm is
the center-of-mass Hamiltonian,Hel the electronic Hamil-
tonian, andV srd describes the electric dipole interac
tion between the atom and the ionizing laser field.Hel

has eigenstateswn and eigenfrequenciesvn, Heljwnl ­
h̄vnjwnl. The corresponding atomic many-body Hami
tonian isH0 ­

R
d3r ĈysrdH0Ĉsrd where in the Born-

Oppenheimer approximation̂Csrd is a multicomponent
[9],
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field with componentsĈnsrd, the indexn labeling elec-
tronic states of the atoms.

We are interested in measuring properties of the groun
state component̂Cgsrd of this field, which is electric dipole
coupled to continuum stateŝCisrd. We assume for sim-
plicity that the center-of-mass wave function of these latte
states is well described by plane waves of momentumq,
so thatH0 may be expressed asH0 ­ Hg 1

P
iq Hiq,

whereHiq ­ h̄viqb
y
i,qbi,q. Here we expanded̂Cisrd in

plane waves aŝCisrd ­
P

q fqsrdbi,q with fbi,q, b
y
i0,q0g ­

dqq0dii0, andviq ­ h̄q2y2M 1 vi . (Note that the inclu-
sion of ground-state collisions is straightforward and doe
not affect our conclusions.)

In terms of the componentŝCnsrd of the Schrödinger
field, the electric dipole interaction Hamiltonian is

V ­ h̄
X

i

Z
d3r VisrdĈy

i srdĈgsrde2ivLt 1 H.c.,

(3)

whereVi is the Rabi frequency between the levelsjgl and
jil, and the ionizing laser field of frequencyvL is treated
classically.

In this detection scheme, one extracts information abo
the state of the fieldĈgsr, td by standard methods, such
as, e.g., the detection of the quasifree electrons of th
continuum states.

For ground-state atoms cooled well below the reco
temperature and tightly focused laser beams, the spat
size of the atomic wave function is much larger than
the laser spot, and we can approximate the electric fie
Esrd by Esrd . Edsr 2 r0d, so that Eq. (3) becomes
V ­ h̄

P
i Visr0dĈy

i sr0dĈgsr0de2ivLt 1 H.c.
We take the atomic system to be initially in the state

jcl ­ jhci,qj, cgl. To first order in perturbation theory,
the transition probability away from that state during the
time intervalDt is
w .
X

i,q,i0,q0

jVisr0dj2
Z t1Dt

t
dt

Z t1Dt

t
dt0feivLst2t0dkcgjĈy

g sr0, tdĈgsr0, t0djcgl khci,qjjĈisr0, tdjhfi0,q0jl

3 khfi0,q0jjĈy
i sr0, t0djhci,qjl 1 e2ivLst2t0dkcgjĈgsr0, tdĈy

g sr0, t0djcgl

3 khci,qjjĈy
i sr0, tdjhfi0,q0jl khfi0,q0jjĈisr0, t0djhci,qjlg , (4)
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where the sum is over all final statesjhfi0,q0jl in the
excited state manifold. In this expression, we ha
neglected contributions involving the product of tw
creation or annihilation operators, a result of the impli
assumption that any atom in the continuum will
removed from the sample instantaneously. In additi
we explicitly carried out the sum over all final states of t
ground-state field, but not for the excited fields manifo
This is because we want to allow for the possibil
of selective detection of the ionized atoms. Followi
Ref. [1], this can easily be achieved by replacing the s
e
o
it
e
n,
e
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over final states in Eq. (4) by a weighted sumX
i0,q0

°!
X
i0,q0

Rsi0, q0d , (5)

whereRsi0, q0d is the detector sensitivity to atoms in state
jfi0 ,q0l. In practice, we have in mind energy-selective
detectors,Rsi0, q0d ! RsEd, and the degeneracy of the
levels must then, of course, be accounted for.

There is a fundamental distinction between the situ
ation at hand and Glauber’s photodetection theory, b
cause in the present case both the detected and dete
5037
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fields consist of matter waves. There is a complete sy
metry between these two fields so far, and their rol
are interchangeable. In order to break this symme
and to truly construct a detector, we now make a s
ries of assumptions on the state of the detector fie
Ĉisr, td. Physically, this amounts to making a stateme
about the way the detector is prepared prior to a measu
ment. Specifically, we assume that all atoms are in t
ground state,Cisr0, 0d jhci,qjl ­ 0, and that any atom in
an ionized state will be removed from the sample insta
taneously, as already mentioned. In that case, the sec
term in Eq. (4) vanishes.

We concentrate in the following on the example o
energy-selective detectors, and consider specifically
limits of narrow bandand broad banddetection [1,12].
In the first case the detector bandwidthDEd is assumed
to be much narrower than the energy widthDEg of the
ground-state Schrödinger field, which is determined sole
by the spread in center-of-mass momentum (temperatu
since all atoms occupy the same internal state. T
reverse is true in the second case. We note that
contrast to optical fields detection, the narrow ban
regime can now be achieved only by manipulating th
detector sensitivityRsEd. Indeed, even a monochromatic
excitation of the atomic fields results inDEg ­ DEd due
to atomic center-of-mass dispersion.

For a narrow band detection and for large enoug
detection timesDt ¿ sh̄yDEgd the integrals in Eq. (4)
can be extended to6`. After substitution of Eq. (5)
into Eq. (4) this leads to the following expression for th
ionization raternbsvd ­ wnbsvdyDt

rnbsvd ~
Z `

2`
dt e2isv2vLdtGAst, t 1 t; r0, r0d 1 c.c.,

(6)

where h̄v is the energy of the registered photoelectron
and we introduced the normally ordered first-order corr
lation function of the ground state Schrödinger field

GAst, t0; r0, r0d ­ kĈy
g sr0, tdĈgsr0, t0dl . (7)
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In this limit, the detector measures the Fourier compon
of the atomic correlation functionGAst, t0; r0, r0d. For
stationary fields, the Wiener-Khintchine theorem impli
that tuning the detector sensitivityRsEd yields the
spectrum of the Schrödinger field̂Cgsr, td.

In the case of broad band detection, in contrast,
energy distributionDEc of the ionized states is much
broader thanDEg. This situation can be realized, e.g
by exciting the ground state with a broad band las
pulse and detecting the resulting electrons (or ions) w
a broad band detector,RsEd . const. Assuming that
the spectrum of the ground atoms Schrödinger field
centered at̄v we find

rbb . hsr0dGAst, t; r0, r0d , (8)

where we have introduced in prevision of the followin
discussion the “detector cross efficiency”

hsr1, r2d ­
X

i

Visr1dV?
i sr2d

3
Z Dt

0
dt kCisr2, t 1 tdCy

i sr1, tdle2isv̄2vLdt ,

(9)

from which the usual detector efficiency is simply reco
ered ashsr0d ; hsr0, r0d. As expected, a broad band de
tector is not able to resolve any spectral feature of
Schrödinger field, and only measures the local atom
density, like off-resonant imaging.

Higher-order correlations.—The detection of higher-
order correlation functions of the Schrödinger field c
be achieved by a straightforward generalization of t
ionization detector. For instance, second-order cohere
measurements can be carried out by focusing the lase
two locationsr1 andr2, in which case

V ­ h̄
X

m­1,2

X
j

VjsrmdĈy
j srmdĈgsrmde2ivLt 1 H.c.

The joint probability to ionize an atom atr1 and another
one atr2 is then
w2 .
X

hji j hqij

Z t1Dt

t
dt1

Z t1Dt

t
dt2

Z t1Dt

t
dt3

Z t1Dt

t
dt4e2ivLst11t22t32t4dV?

j1
sr1dV?

j2
sr2dVj3sr2dVj4sr1d

3 kĈj1 sr1, t1dĈj2 sr2, t2dĈy
j3

sr2, t3dĈy
j4

sr1, t4dl kĈy
g sr1, t1dĈy

g sr2, t2dĈgsr2, t3dĈgsr1, t4dl . (10)
r

r
de
d

This joint probability involves two detected atoms, henc
it is now necessary to properly account for the quantu
statistics of the measured particles. For this purpos
we describe the ionized atoms as ion-electron pai
whereby the electrons are described by the creati
and annihilation operatorsc

y
ks and cks satisfying Fermi

commutation relationsfcks, c
y
k0s0g1 ­ dss0dkk0 . Here s

labels the electron spin andk its momentum. We
similarly introduce ion creation and annihilation operator
e
m
e,
s,
on

s

a
y
ks, aks, also satisfying Fermi commutation relations (fo

bosonic atoms). For a spin-zero atom, the atomic mo
operatorsbj,q can be expressed in terms of the ion an
electron operators as

bj,q ; jjql k0j ­
X

kk0ss0

jkk0ss0l kkk0ss0jjql k0j

­
X
ks

wjskdaqsck2s ­
X

s
aqscj2s , (11)
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wherewjskd are electron wave functions ink space,cjs ­
P

k wjskdcks, and we have assumed that the center-of-ma
wave function iseiq?r with r being the ion (or atomic center-of-mass) position. Because of spin conservation the v
of electron and ion spins are clearly opposite.

Substituting this result into Eq. (10) yields, in the case of broad band detection,

w2 ­ hsr1dhsr2d
Z t1Dt

t
dt1

Z t1Dt

t
dt2kFy

g sr1, t1dFy
g sr2, t2dFgsr2, t2dFgsr1, t1dl

1 hsr1, r2dhsr2, r1d
Z t1Dt

t
dt1

Z t1Dt

t
dt2kFy

g sr1, t1dFy
g sr2, t2dFgsr2, t1dFgsr1, t2dl

1 hxsr1, r2d
Z t1Dt

t
dt1kFy

g sr1, t1dFy
g sr2, t1dFgsr2, t1dFgsr1, t1dl , (12)

where the detector sensitivity due to processes involving electron exchangehxsr1, r2d is

hxsr1, r2d ­
Z t1Dt

t
dt2

Z t1Dt

t
dt3

Z t1Dt

t
dt4e2ivLst11t22t32t4d

3
X

abkq
feifvkst12t3d1vqst22t4d1vast12t4d1vbst22t3dgjVasr1dj2jVbsr2dj2f?

ksr1dfksr2df?
q sr2dfqsr1d

1 V?
asr1dVasr2dV?

bsr2dVbsr1d jfksr1dj2jfqsr2dj2eifvkst12t4d1vqst22t3d1vast12t3d1vbst22t4dgg . (13)
nt

n

.

.

nd

.

v.

,

g,
a-

t/
The first term is familiar from double photodetection
with the usual exchange contributions from thedetected
field. The second term is an additional exchange term d
to the fact that the detector field is a single Schröding
field. Its origin is the interference of thedetectorfield
at points r1 and r2. The last term results from the
fact that electrons do not know from which atom the
originate. The second and third terms in Eq. (12) a
absent in conventional photodetection theory, a result
the distinguishability of two detectors used. A simila
comment can be made about the position measurem
scheme discussed in Refs. [10,11]. In that case, t
absence of the detector exchange contribution can
traced back to the fact that the set of states excited at e
location are distinguishable. Alternatively, the last tw
terms can be eliminated by using, e.g., a gated detect
scheme [12] that removes the contribution of the exchan
terms in the detected field. In practice, such gating can
achieved by using nonoverlapping short laser pulses.

In summary, we find that in contrast to off-resonan
imaging, the ionization scheme is closely related to th
detectors familiar from quantum optics. However,
presents new features, and is, in particular, sensiti
to exchange terms in the detector. These results sh
the need to introduce different classes of coheren
for matter waves, associated with different classes
measurements. This topic will be addressed in detail
a future publication [13].
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