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Internal Modes of Solitary Waves
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We develop an analytical approach for describing a birth of internal modes of solitary waves in
nonintegrable nonlinear models. We show that a small perturbation of a proper sign to an integrable
model can create a soliton internal mode bifurcating from the continuous wave spectrum. The theory
is applied to the double sine-Gordon and discrete nonlinear Schrödinger equations, and an excellen
agreement with numerical data is demonstrated. [S0031-9007(98)06329-7]
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As is well known, different nonlinear models can pos
sess spatially localized solutions for solitary waves [1].
many cases, the solitary waves are analyzed in the fram
work of integrable models which, however, describe r
alistic physical systems only with certain approximatio
[2]. Therefore, the fundamental question is the followin
What kind of novel physical effects can be expected
solitary waves in nonintegrable models?It is commonly
believed that solitary waves of nonintegrable models d
fer from solitons of integrable models only in the charact
of the soliton interactions: unlike proper solitons, intera
tion of solitary waves is accompanied by radiation [2]. I
this Letter we demonstrate the existence of nontrivial e
fects of different nature, generic for nearly integrable a
nonintegrable models. We show that a small perturbat
to an integrable model may createan internal modeof a
solitary wave. This effect is beyond a regular perturb
tion theory, because solitons of integrable models do n
possess internal modes. But in nonintegrable models s
modes introducequalitatively new featuresinto the sys-
tem dynamics being responsible for long-lived oscillatio
of the solitary wave shape and resonant soliton interacti

Until now, internal modes have been analyzed only f
the so-calledkink solitons,topological solitary waves of
the Klein-Gordon type models (see, e.g., Refs. [3,4]). T
internal modes of kinks, usually called “shape modes
are known to modify drastically the kink dynamics be
cause they can temporarily store energy taken away fr
the kink’s translational motion and later restore the ener
back. This mechanism gives rise to resonant structure
the kink-antikink collisions [3] and kink-impurity interac-
tions [5]. In spite of many (basically numerical) result
obtained for the kink’s internal modes, the important pro
lem still remains unsolved:What is the analytical crite-
rion for creating the kink’s internal mode?

As a matter of fact, this problem is much more gener
and it can be formulated for many soliton bearing physic
models. For example, nonlinear propagation of modula
wave packets is often described with the help ofenvelope
solitons of the integrable cubic nonlinear Schrödinge
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(NLS) equation. However, the analysis of self-focusin
and propagation of self-guided spatially localized beam
(spatial solitons) in plasmas and optical non-Kerr materia
requires one to employ the (usually nonintegrable) mod
more general than the cubic NLS equation [6]. One
the important common features of these solitary wav
observed in numerical simulations is that they display lon
lived persistent oscillations of their amplitude [7–9]. Th
similar phenomenon has been found for nonlinear localiz
modes in discrete lattices [10], where the basic equatio
can be approximated by the discrete NLS equation a
localized modes resemble the envelope solitons involvi
only a few lattice cites (the so-calleddiscrete breathers).
Many of the features observed numerically for differen
types of envelope solitons can be naturally explained
the framework of the concept of the soliton internal mod
generically similar to the kink’s shape mode.

In this Letter we suggesta general analytical approach
allowing one to predict when a perturbation to an inte
grable model leads to a birth of the soliton internal mod
We derive the results for two customary models, the pe
turbed sine-Gordon (SG) and NLS equations, explaini
many of the features of the soliton dynamics earlier o
served only numerically. The analytical method we su
gest is generic, and it should work for all soliton mode
possessing the following properties: a soliton genera
a reflectionless potential in an associated linear proble
and the continuous wave spectrum of the linear problem
separated from the discrete spectrum. We conclude the
fore that the internal mode is afundamental conceptfor
many nonintegrable soliton models.

Kinks.—First, we consider kinks of the perturbed SG
equation,

≠2u
≠t2 2

≠2u
≠x2 1 sinu 1 eĝsud ­ 0 , (1)

whereĝsud is an operator standing for perturbation (whic
describes, e.g., a deformation of the sinusoidal poten
or the effect of a higher-order dispersion). Assuminge

small, we look for the kink solutionuksxd of Eq. (1) in
© 1998 The American Physical Society
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the form of a Taylor series,uksxd ­ us0d
k sxd 1 eus1d

k sxd 1

Ose2d, where us0d
k sxd ­ 4 tan21 ex is the kink solution

of the SG equation. The spatially localized correctio
us1d

k sxd to the kink’s shape can then be found in an explic
form,

u
s1d
k sxd ­

1
coshx

Z x

0
dx0 cosh2 x0

Z x0

0

ĝsus0d
k d

coshx00
dx00.

To analyze the small-amplitude modes around the kin
uksxd, we linearize Eq. (1) substitutingusx, td ­ uksxd 1

wsxdeiVt 1 wpsxde2iVt , whereV is an eigenvalue and
wsxd satisfies the linear equation,

d2w
dx2 1

µ
2

cosh2 x
2 1

∂
w 1 V2w 1 ef̂sxdw ­ 0 , (2)

wherêfsxd ; u
s1d
k sinu

s0d
k 2 ĝ0sus0d

k d.
In the leading order (e ­ 0), the eigenvalue problem

(2) is described by a standard equation with a solvab
potential, so that its general solution is presented throu
a set of eigenfunctions,

wsxd ­ a21W21sxd 1
Z `

2`
askdW sx, kd dk , (3)

where the functionW21sxd ­ sechx is the eigenmode
of the discrete spectrum corresponding to the eigenva
V2 ­ 0 (the so-called neutral mode), whereas the eige
function Wsx, kd ­ eikxsk 1 i tanhxdysk 1 id describes
the continuous wave spectrum with the infinite band o
eigenvalues,V2 ­ V2skd ­ s1 1 k2d. We note that
(i) the continuous wave spectrum bands are separa
from the eigenvalues of the discrete spectrum and (ii) t
eigenfunctionsW sx, kd include only one exponential fac-
tor in both the limitsx ! 6` meaning that the effective
potential in Eq. (2) is reflectionless ate ­ 0. Under the
latter condition, the end point of the continuum spectru
band (k ­ 0) belongs to the spectrum and the limiting
(nonoscillating) functionWsx, 0d ­ tanhx is not secularly
growing.

Now we analyze the perturbed spectral problem (2)
the first-order approximation ine expanding the function
wsxd through the set of eigenfunctions; see Eq. (3). Firs
a perturbation of the effective potential in Eq. (2) shoul
lead toa deformationof the eigenfunctions as well as toa
shift of the eigenvalues of the discrete spectrum. Secon
under the conditions (i) and (ii) the perturbation can lead
a birth ofan additional eigenvalueof the discrete spectrum
which bifurcates from the continuum spectrum band.

To find this new eigenvalue, we notice that in the firs
order in e, a perturbation may shift the cutoff frequency
Vmin of the phonon band,V2

min ­ 1 1 eĝ0s0d. Therefore,
to describe a birth of a novel discrete state, we suppose t
its eigenvalue detaches from the cutoff frequency,V2 ­
V

2
min 2 e2k2, wherek is the parameter which determines

the location of an additional discrete-spectrum eigenvalu
k0 ­ iek. Then, we convert Eq. (2) by means of Eq. (3
n
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k

le
gh

lue
n-

f

ted
he

m

in

t,
d

d,
to

t

hat

e,
)

into the following integral equation:

askd ­
e

2p

Z 1`

2`

Ksk, k0dask0d dk0

k02 1 e2k2
, (4)

where askd ­ askd sk2 1 e2k2d and the integral kernel
Ksk, k0d is defined as

Ksk, k0d ­
Z `

2`

Wpsx, kd f f̂sxd 1 ĝ0s0dgW sx, k0d dk0,

wheref̂sxd andĝsxd are, in general, operators. To obta
Eq. (4), we have neglected a nonsingular contributi
of the discrete spectrum and also used the orthogona
condition,Z `

2`
Wpsx, k0dWsx, kd dx ­ 2pdsk0 2 kd .

Because the novel eigenvalue bifurcates from the c
tinuum spectrum bandV ­ Vmin at k ­ 0, we can con-
struct an asymptotic solution to Eq. (4) for smallk by
evaluating a singular contribution of the integral,askd ­
sgnsed s2jkjd21Ksk, 0das0d. As a result, we define the pa
rameterk from the self-consistency condition,

jkj ­
1
2

sgnsed
Z `

2`
tanhxf f̂sxd 1 ĝ0s0dg tanhx dx .

(5)

Therefore, the new eigenvaluek0 ­ iek of the discrete
spectrum appears when the right-hand side of Eq. (5
positive. It follows from Eq. (3) that the correspond
ing eigenfunction is exponentially localized,wsxd !

6spyekdas0d exps7kxd as x ! 6`. This result con-
firms the observation that a thresholdless birth of the s
ton internal mode from the continuum spectrum becom
possible only in those models where solitary waves g
erate reflectionless potentials in the associated eigenv
problem. This property is common for many soliton bea
ing nonlinear models.

As an example of the application of a general res
(5), we considerthe double SG equationfollowing from
Eq. (1) atĝsud ­ sins2ud. The kink’s internal mode exists
for e . 0, and it was analyzed numerically by Campbe
et al. [4]. However, it was noticed that the (basicall
incorrect) analytical method suggested in Ref. [4] do
not provide a good agreement with numerical data (s
Fig. 16 in Ref. [4]). Applying the asymptotic metho
presented above, we find the first-order correction to
kink’s profile,

u
s1d
k sxd ­ 2

µ
x

coshx
2

sinhx
cosh2 x

∂
,

and then, using Eq. (5), calculate the discrete eigenva
k0 ­ is8y3de. Therefore, the kink’s internal mode is
possible only fore . 0, and its frequency is defined by
the expansion

V2 ­ 1 1 2e 2
64
9

e2 1 Ose3d . (6)
5033
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Figure 1 presents the kink’s internal mode of the doub
SG equation as a function ofe, calculated numerically
similar to Ref. [4] (dashed curve) and compared with ou
asymptotic analytical result (solid curve).

Envelope solitons and breathers.—Similar to the kink
of the perturbed SG equation, the criterion for the solito
internal mode can also be derived for many other solito
bearing models. As an important example, we consider t
case of envelope solitons of the perturbed NLS equation

i
≠c

≠t
1

≠2c

≠x2
1 2jcj2c 1 eĝsjcj2dc ­ 0 , (7)

where, in general,̂gs.d is an operator. Localized solution
of Eq. (7) for solitary waves can be found in the form
csx, td ­ Fsxdeit. The real functionFsxd is expressed
asymptotically as Fsxd ­ F0sxd 1 eF1sxd 1 Ose2d,
where F0 ­ sechx is the soliton of the cubic NLS
equation, andF1 is a localized correction defined from
Eq. (7). The linearized problem for the perturbed NLS
equation arises upon the substitutioncsx, td ­ hFsxd 1

fusxd 2 wsxdgeiVt 1 fupsxd 1 wpsxdge2iVtjeit, and it
has the form,

d2u
dx2

1

µ
6

cosh2 x
2 1

∂
u 1 Vw 1 ef̂1sxdu ­ 0 , (8a)

d2w
dx2

1

µ
2

cosh2 x
2 1

∂
w 1 Vu 1 ef̂2sxdw ­ 0 , (8b)

where f̂1sxd ­ ĝsF2
0d 1 2F

2
0 ĝ0sF2

0 d 1 12F0F1 and
f̂2sxd ­ ĝsF2

0 d 1 4F0F1.
The linear eigenvalue problem (8) can be solved exac

at e ­ 0 (see, e.g., Ref. [11]). Its spectrum consists o
two (symmetric) branches of the continuous modes wi
the eigenvaluesV ­ 6Vskd ­ 6s1 1 k2d, and discrete
spectrum modes corresponding to the degenerated eig
valueV ­ 0. Thus, the linear problem (8) meets the re
quirements of our analytical method for the bifurcatio
of the internal mode to occur from the continuum spec
trum band. For definiteness, we consider the upper bran
of the spectrum and suppose that the cutoff frequenc

FIG. 1. FrequencyV2 of the kink’s internal mode in the
double SG model. Solid curve: analytical result (6); dashe
curve: numerical data.Vmin is the cutoff frequency of the
continuum spectrum bandVmin ­ 1 1 2e.
5034
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Vmin ­ 61 are not affected by the perturbation. Then
the internal mode frequency can be presented in the for
V0 ­ 1 2 e2k2. Applying the analysis similar to that in
the case of the perturbed SG kink, we finally obtain th
expression for the parameterjkj,

jkj ­
1
4

sgnsed
Z `

2`

hUsx, 0df̂1sxdUsx, 0d

1 W sx, 0df̂2sxdW sx, 0dj dx , (9)

where the nonoscillatory eigenfunctions are defined in th
limit k ! 0, i.e.,Usx, 0d ­ 1 2 2 sech2x andW sx, 0d ­ 1.

As an important example, we consider the case of th
discrete NLS equation usually used as a simple model f
discrete breathers [10],

i
dcn

dt
1

1
h2 scn11 1 cn21 2 2cnd 1 2jcnj2cn ­ 0 ,

(10)

where h is the lattice spacing. In the continuum limit
when the functioncn varies slow on the site numbern, we
derive the perturbed NLS equation (7) withe ­ h2y12
and ĝsjcj2dc ­ ≠4cy≠x4. The correctionF1sxd has the
form,

F1sxd ­
1
2

µ
x sinhx
cosh2 x

2
7

coshx
1

8
cosh3 x

∂
.

Calculating the parameterk from Eq. (9), we find the
resultk ­ 4y3. Becausee ­ h2y12 . 0, this means that
due to discreteness effect an additional eigenvalue alwa
bifurcates from the continuum spectrum. The asymptot
result for the mode’s frequency isV ­ 1 2 h4y81.

To verify this result, we have found numerically, the
localized mode of the discrete NLS equation (10) an
its internal mode. The symmetry has been imposed, a
lattices up to 250 particles as well as quadruple precisio
have been considered. The numerical determination
the internal mode frequency required a certain strateg
to avoid the finite size effects. The localized mode i
supposed to decrease likeekj , where coshk ­ 1 1 s1 2

Vdh2y2. Then, we look for a self-consistent value ofV

that is an eigenvalue of the matrix defined by discretize
Eqs. (8) with the boundary conditionuN11 ­ une2ksVd

to interpolate between free and fixed boundary condition
Numerical data are presented in Fig. 2, together with th
analytical asymptotic result.

Therefore, taking into account even a weak discretene
in the NLS modelalways leads to a birth of a soliton
internal mode. That is why in discrete lattices solitary
waves (the discrete breathers) are observed in many n
merical simulations with long-lived almost periodic varia-
tions of their amplitude which correspond to the excitatio
of “breathing” oscillations due to the internal mode [10].

It is interesting to note that the criterion for the existenc
of a soliton internal mode has an analogy with the famou
Peierls problem in quantum mechanics [12] stating that
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FIG. 2. FrequencyV of the internal mode for the localized
breather of the discrete NLS equation (10) shown as a functi
of the lattice spacingh. Filled circles: numerical data; solid
curve: analytical result.

one-dimensional attractive potential well always possess
at least one discrete eigenvalue. For the case of the soli
internal mode, an additional eigenvalue appears with
threshold providedek . 0, due to a deformation of the
reflectionless soliton potential.

From the viewpoint of the scattering problem, a reflec
tionless potential corresponds to the transmission coe
cient Tskd ­ 1yaskd equal to 1 for allk, while in the
general case, it tends to zero in the limitk ! 0. This spe-
cial feature is due to the fact that the zero wave numb
corresponds to what is calleda half-bound stateand the
phase shift of that state is 0. This property is generica
not robust against perturbations, and one can expect t
a weak perturbation will bring it to a “normal” situation,
with a fully reflected zero wave number (with the phas
shift p) and, depending on the sign of the perturbatio
a bound state under the continuum. This corresponds
fact, to the problem of the soliton internal mode we hav
solved above.

Additionally, we would like to mention that the ap-
proach suggested above can be readily used to calcu
the bifurcations of higher-order soliton modes. As an im
portant physical example, we take into account the d
creteness effects in thef4 model, deriving the perturbed
equation of the form,utt 2 uxx 2 2u 1 2u3 1 euxxxx ­
0, wheree ­ h2y12. Applying our technique, we find
that, additionally to the kink shape mode with the fre
quencyV3 ­ 3, discreteness leads to the emergence
the second localized mode, with the frequencyV2 ­ 4 2

s4y15d2h4, that bifurcates from the continuous spectrum
band. We have found that this result is in excellent agre
ment with numerical simulations of the kink spectrum i
the discretef4 model. The similar result, but in the next
order, has been found for the discrete SG model allowi
one to explain the mysterious oscillations of the kink shap
reported earlier [13].

A birth of the internal mode looks impossible in the
cases where the continuum spectrum is not separated fr
the eigenvalues of the discrete (neutral) modes, as, e
in the case of the perturbed Korteweg–de Vries soliton
on
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We expect that in this type of systems the solitary wav
dynamics is determined by strong radiation but not b
internal modes, unlike the models discussed here.

At last, we would like to mention that the eigenvalues
embedded into a continuous spectrum were considered
Refs. [14,15] by means of the Evans function technique
These eigenvalues were shown to lead to real [14] or com
plex [15] eigenvalues associated with the soliton instabil
ties. The Evans function technique can also be applied
analyze the problem considered in this Letter.

In conclusion, using two important nonlinear models a
characteristic examples, we have shown that there existsno
thresholdfor creating an internal mode of a solitary wave
The particular examples display how the internal mode ca
appear due to either a small deformation of nonlinearit
or weak discreteness. We believe the analytical metho
suggested here is generic, and it can be applied to oth
problems of this type.
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