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Searching for Higher Dimensional Integrable Models from Lower Ones via Painlevé Analysis
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Extending the Painlevé approach to a more general form, one can get infinitely many new integrable
models under the meanings that theyssess conformal invariance and the Painlevé propiertgny
space dimensions from a given lower dimensional integrable model. Using the Kadomtsev-Petviashvili,
nonlinear Schrédinger, and Schwarz Korteweg—de Vries equations as simple examples, some explicit
(3 + 1)-dimensional integrable models are given. [S0031-9007(98)06288-7]

PACS numbers: 03.40.Kf, 02.30.Jr, 42.65.Tg, 52.35.Mw

Modern soliton theory is widely applied in almost some ODEs with Painlevé property. For instance, some
all of the physics fields such as the field theory [1],(1 + 1)- and(2 + 1)-dimensional integrable sine-Gordon
condensed matter physics [2], fluid mechanics [3], plasmaquations and Mikhailov-Dodd-Bullough equations can
physics [4], optics [5], particle and nuclear physics [6],be considered as the deformations of a simple Riccati
universe [7], geophysics [8], planetary and space sciencequation [19]. So we believe that higher dimensional, say,
[9], and in other scientific and technological fields such(3 + 1)-dimensional integrable models (if they exist), can
as communications [10], chemistry [11], biology [12], also be obtained from lower dimensional ones.
etc. However, almost all of the known integrable models In this Letter we try to propose a possible method
are only in(1 + 1) and (2 + 1) dimensions. Because to get higher dimensional integrable models from lower
the real physical space 8 + 1) dimensional, various ones by means of the Painlevé analysis developed by
physicists and mathematicians have been trying to finé#Veiss, Tabor, and Carnevale (WTC) [20] in an extended
some nontrivial (3 + 1)-dimensional integrable models form. Usually, the Painlevé analysis is used to study
[13,14], but there is little progress in this field. There isthe singularity property, Backlund transformation (BT),
no one known real significank(+ 1)-dimensional £ =  symmetries, bilinearization, and other integrable properties
3) integrable model except the(2'+ 2)"-dimensional and some types of exact solutions [20—22]. However, to
self-dual Yang-Mills field equation [13]. my knowledge, no one uses the Painlevé analysis method

To reduce a nonlinear partial differential equationto get new integrable models.

(PDE) to some ordinary differential equations (ODEs) General idea and assumptier-For a given n-

by using the classical and nonclassical Lie approachedimensionalv order PDE,

[15-17] is one of the most effective methods for solving

a nonlinear PDE. From the studies of tli¢ + 1)- F(X1, X250y X by Uy Uy Uy U, ) = 050 (1)
and (2 + 1)-dimensional integrable models, one knows ‘

that there are several ODE reductions, such as ththe model is called possessing the Painlevé property
Riccati equation and the Painlevé |-VI equations [18] for(PP) if all of the movable singularities of its solution
all known integrable(1 + 1)- and (2 + 1)-dimensional with respect to an arbitrary singular manifol¢ =
PDEs. This fact shows that all of the known integrable¢ (x,xs,...,x,,t) = 0 are poles. That is to say, by
models can be considered as different deformations aéxpanding the solution of (1) near the singular manifold
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¢, we should have the form with arbitrary &, u’,, u’,,...,u}, , and the same integers
o0 A J1s J2,---»jn—1 @nda as in (2). From Eg. (6) one can
u= Z ujp’ e, (2)  easily prove the following identities:
=0

1 2
, , . , =P, - P; + 3(P;S + P
with N — 1 further arbitrary functions:; and negative Ex = Pi = Pix & & 3(PiS & Pixy1,. )67,
integera. Substituting (2) into (1), all of the expansion i=0,1,2,...n, xo =t, (8)

coefficientsy; can be solved as _
where the functions

Uj = fi(Xis s Prypysv e o Wjis Ujs oo s Uy, ) é
( # Jieeeeedve), ©) Pi=g
whereu; ,...,u;, , are arbitrary functions. If we take _ Punnnn 3 (Prnn ) _
w=0, (j>-a, @ ., 3< b ) = 105w )

then we get a BT of (1), i.e., ifi—, is a solution of (1),
then the truncated expansiengiven by (2) with (4) is  are all invariant under the Mébious transformation
also a solution of (1). Furthermore,if= 0 is a solution
of (1), the single soliton solution can be obtained from the a+bg

¢ — , ad # bc. (20)
BT andu_, = 0. Usually, when one uses the truncated c+do
expansions to discuss the Backlund transformation or . )

equations;; = 0, (j = —a), i.e., ficientSu}_ in (7) are all confor/mallinvaria/nt because they
_ B are functions ofP;, S, and{uj,uj,,...,uj, ;. Now a
[i = Fixis b by ouj, = 0, further independent variable,.; has been included ex-

=0,...,uj;, , =0 =0(j=—-a). (5 plicitly with the expansion coefficients} although the
original equation (1) is nat, +; dependent explicitly. On
the other hand, the conformal invariant plays very im-
ortant roles in integrable theory. For instance, starting
rom the conformal invariance of the Korteweg—de Vries
(KDV) and Kadomtsev-Petviashvili (KP) equations, one

integrable. can obtain infinitely many symmetries, Darboux transfor-

The integrable models obtained from (5) possess th?nations, sine-Gordon extensions, etc. [23]. Starting from

same dimensions as the original model (1). In order 9, quite general conformal invariant form, one can get in-

get some higher dimens_ional integrable mOdeIS from (1)ﬁnitely many integrable models with the PP [24,25]. Now
we may take the following two steps. First, we Shou'.dit is reasonable to assume tlildEq. (1) is integrable, then

e_mbed t_he onver dimensional integrable model (1). Nhe equations obtained from vanishing the coefficients of
higher dimensions. In other words, we should considef, - poifiove expansion (7), far, = 0, j = —a, are
1 J 9 - 1

that u is not dependent only on the explicit indEpendenﬁntegrable

\S/:n?bles{x L "x”i ! }St;izr?:jsc;hznP:ioanT;/ érgghg'rtls?gr?s’z Although we have not yet proved this assumption and/
YiiXnt 1, oo Xt ’ P (2) r the assumption is not completely true, we can still

should be extended to a different resummation form suc btain various higher dimensional integrable models from

that the |mpI|_C|t llndependent vana_tble{s,zﬂ,_. '."x”*'"} lower ones by checking the assumption for some given
appear explicitly in the new expansion coefficients and th ower dimensional integrable models and small It

same numbgr of arbitrary fgnctlons is stl]l mc_lqded in theiS interesting that if the seed equation (1) @ + 1)
New expansion form. The first step is quite trivial beCaus‘%iimensional then the integrable models obtained from
infinitely many integral constants (inner parameters) can b e assump:[ion aré3 + 1) dimensional. Furthermore

included in the solutions of an arbitrary given PDE, and Wey o assumption can be used many times to get some
can take these parameters as new independent variabI%r

; ) egrable models in arbitrary dimensions no matter what
The second step can be realized because of the smgulﬁ{ g y

manifold ¢ being arbitrary. For instance, we can take e dimension of the seed model is. More concretely,
¢ 9 y: ' we realize how to get som@ + 1)-dimensional models

¢ = <¢xm P >_1 (©) from the KP, nonlinear Schrédinger (NLS), and Schwarz
T\ ¢ 2., Korteweg—de Vries (SKDV) equations.
. able. i h h . (3 + 1)-dimensional integrable models from the KP,
azsanew expansion variable, i.e., we change the expansig]'s * anq SKDV equations-The KP equation X, —
(2) as L, X1 =X, X =Yy, X3 = 2)

Uj,
Because equations of (5) for differehmust be consistent

when we use the truncation expansion to study th
integrable property of (1), we believe that many equation

of (5) or some combinations of;(j = —a) may be

u= > u ¢t 7)
j=0

(ut — buu, + uxxx)x + 30’2’4“ =0 11
vy
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is one of the most important integrable physical modelsiew configuration. Equation (17) is in a hexalinear form.
widely used in many physical fields and studied byTo prove the PP of a multilinear equation is much more
various mathematicians and physicists. The PP of the K@ifficult than to prove the PP in a nonhomogeneous form.
equation is first proven by WTC [20]. In order to obtain By taking the exponential transformation

some nontrivial(3 + 1)-dimensional model from the KP 7

equation, we restudy the PP of the model by using the ¢ =e, (18)
new expansion (7) and consider thaof (11) is not only e get a nonhomogeneous form of (17),

a function of{x, y, r} but also a function ot. As in the

usual case [20], by means of the leading order analysisls + 4fux = 2fs = 3ffs ' + 30 f0f +

we have 3ff St = 6fcfuff? = 0. (19)

- _ I _ Ap2
“« 2, uy = 2P7. (12) When z =x =y or f, = f,; =0, Eq. (19) reduces
Substituting (7) with (8) and (12) into (11) we get the to an equivalent potential form of the modified KDV
recursion relation of the coefficienlé, equation. \
. . . . Multiplying (19) by f7f. and using the leading order
G+DG =40 =50 — Ou; analysis, we find that there will be no algebraic poles
= fi(S. Pi, Pixo.utgs .. ui_) = fi, (18)  [a =0 in (2)] in the Painlevé expansion. In order to

Wherefj'- is a complicated function af), . . ., u},l and the include the algebraic poles in the Painlevé expansion,

conformal invariantsP;, S, and their derivatives. After {fr=U, f, =V, f. =W, f, =G} (20)
solving (13) one by oneu} becomes only a function of ) o ] ) )
the conformal invariants. The first twé’s read is the simplest sungble transforr_natlon. Using Eq. (20) in
, (19) we get an equivalent equation system of (17),
up = _2P1x - 2P1P1z’ (14)
| 4UWHU,, — 3WHU2 — 2WHU* + 3U*W? +
uh = @(.%ZP% + Pi(Py + 4Py, + 2P\ Py.) UGW* — 6UW2U, W, + 302V2W* =0, (21)
1
2 2 2 4 3
+ Pi(4P1 +P1z)_3P1x+4P15+4P1P1(zz)’) U =G, Vi=G,, W, =G, (22
15

where Eqs. (22) are the consistent conditions of the
Using the relations (9)ug, uy, us,u3 and the computer transformation (20). To prove the PP of the equation
algebra, say, Maple or Mathematica, it is easy to provesystem (21) and (22), we may use the traditional WTC
that the three resonant conditions (13) for=4, 5, 6  approach [20] or its extended form proposed previously.
are satisfied identically. The PP of the KP equation isUsing the extended WTC approach we can get some

reobtained under the new configuration. more integrable models both in thé + 1) dimensions
Now using the assumption, we may obtain a set ofand in the(3 + 1) dimensions at the same time. So
integrable models we take the extended approach here again. Expanding
fi=0,  j=2378.., (1e) U, V. W, andGas
where j = 4, 5, 6 disappear due to the resonance con- U = i U gt v, gite
ditions at these values that are satisfied identically. It is = I ’ / ’

difficult to prove the integrable property for the whole o (23)
set. We can only check the integrabilities for smyalbf W = Z Wigites,

(16). After substituting (9) into (16) foj = 3, one can =0

see that the integrability far; = 0 is trivial because it is

really the original(2 + 1)-dimensional KP equation in its

Gj §;j+a4’

v-3
j=0
G=2
j=0

where ¢ is given by (6) withn =3, xg =1¢, x| =

Schwarz form. Although we can prove the PP of (16) for*> *2 = V- ©3 = % anda; = ay = a3 = ay = —1,
Jj = 7, we do not write it down because (16) wijh= 7 Uy = *=Py, Vo = *P,,
is too complicated after substituting (9) in (about two or (24)
more printed pages). So we discuss opl 2 here. Wo = £P;3, Go = %P,

Substitutingj = 2 and (9) into (16) yields a nontrivial \yhich can be determined by means of the leading order
(3 + 1)-dimensional model analysis and the relation (8) far = 3.

¢?(4¢x¢xxx — 3¢ + o + 3g2¢y2) + Substituting (23) witha; = —1, (24) and (8) into (21)

36402 — 662¢2bd. —0. (A7) and (22), one can see that all of the needed five resonances
Pz y P PxxPzz = V. are located atj = —1, 1, 1, 1, 1. The resonance at

In order to prove the integrability of (17), we change (17)j = —1 is related to¢ being arbitrary. The resonance
into a variant form at first and then prove its PP in ourconditions atj = 1 read
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3Uo(P1Wo — UoP3) [WiP1y, — Up(WoPay, + Wo)l + 2W3UoP1e + W5(WoPy — 3UogP3)Up,—
DWo[RUEWE — 3USP3 + 3UgWoP 1Py — 2WEPHU, — Uo(5SPIWy — 2WoUZ — 3P P3Ug)Wi] =0, (25)

Uor — Gox + UoPox, — GoPiy, =0, (26) | order PDEs, the required number of arbitrary coefficients

Vo — Goy + VoPoy, — GoPay. = 0, 27 in the Painlevé expansion (23) is just five. So the equation
o o 0% O 0% 2 (@7) systems (21) and (22) possess the PP and then Eq. (17) is

Wor — Go; + WoPoy, — GoP3y, = 0. (28)  a (3 + 1)-dimensional integrable model, meaning that it

It is straightforward to see that all of the resonancepossesses conformal invariance and can be changed to a
conditions (25)—(28) are satisfied identically because oform with the PP.

the relations (24) and (9) witlh = 3. That is to say, Applying the assumption further to the systems (21)
five arbitrary coefficientst, U;, Vi, Wi, and G; have and (22), somé&t + 1)-dimensional models with the&®
been included in the expansion (23). Because Eq. (21) ise obtained. For instance, froth = V, = W, = G, =

a second order PDE and three equations in (22) are [irﬁwe get

(30°P; + PoPy — 2P{S + PiP{, + 2PP,Py,, — 3P})P§ — 6P{P;P3, (PP, + P1\) +
3(P3P3,, + P3, + 2P3P3.Py,,)P{ — 6P{P3P,P3. — 6PiP{P3,P,, =0,  (29)

where P; and S are given by (9). The PP of (29) cah Although the assumption is based on the fact that the
be proved in the same way. Using the classical andriginal model is integrable and the resulting equations
nonclassical Lie approach, some kinds®f+ 1)-dimen-  come from vanishing the consistent Painlevé expansion co-
sional integrable reductions can be obtained from (29). efficients with the conformal invariance, we still have to
The same idea can be used to get many higher dimercheck the integrability of the resulting models one by one
sional integrable systems from other lower dimensionabecause we have not yet proved the assumption strictly.
ones. For instance, the Painlevé integrable models Although the assumption has not yet been proved strictly,
Gulb(boer + 2¢.) — 2¢.by — 321 + we have obtained many higher dimensional Painleve inte-
' grable models from the assumption and there is no negative
2¢xy¢zz = Gy, + 2¢xz(¢t¢zz - qbyqbz) =0 example found.
(30) To reduce a higher dimensional model to some lower
ones, one can use the classical and nonclassical Lie ap-

and 2 .2 proaches or the direct method [15-17]. Now we know that
¢ + {d: x} + 9 bbb 3 er it is also possible to get some higher dimensional models
b ’ 2 ; 4 ¢ from lower ones.
3 P22 $2hye. 3 brayy The Painlevé integrable models obtained here should
3 ¢ +3 b2, 2 2 + be studied further because real physical spadé is 1)

dimensional and there is no knowledge of tt3e+ 1)-
2
3m _ 0 Pau 6¢’X¢’>‘Z¢’ZZ — 0 (31) dimensional soliton solutions.
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