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Searching for Higher Dimensional Integrable Models from Lower Ones via Painlevé Analysis
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Extending the Painlevé approach to a more general form, one can get infinitely many new integrable
models under the meanings that theypossess conformal invariance and the Painlevé propertyin any
space dimensions from a given lower dimensional integrable model. Using the Kadomtsev-Petviashvili,
nonlinear Schrödinger, and Schwarz Korteweg–de Vries equations as simple examples, some explicit
s3 1 1d-dimensional integrable models are given. [S0031-9007(98)06288-7]
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Modern soliton theory is widely applied in almost
all of the physics fields such as the field theory [1]
condensed matter physics [2], fluid mechanics [3], plasm
physics [4], optics [5], particle and nuclear physics [6]
universe [7], geophysics [8], planetary and space scien
[9], and in other scientific and technological fields suc
as communications [10], chemistry [11], biology [12],
etc. However, almost all of the known integrable model
are only in s1 1 1d and s2 1 1d dimensions. Because
the real physical space iss3 1 1d dimensional, various
physicists and mathematicians have been trying to fin
some nontrivials3 1 1d-dimensional integrable models
[13,14], but there is little progress in this field. There is
no one known real significant (n 1 1)-dimensional (n $

3) integrable model except the “s2 1 2d”-dimensional
self-dual Yang-Mills field equation [13].

To reduce a nonlinear partial differential equation
(PDE) to some ordinary differential equations (ODEs
by using the classical and nonclassical Lie approach
[15–17] is one of the most effective methods for solving
a nonlinear PDE. From the studies of thes1 1 1d-
and s2 1 1d-dimensional integrable models, one knows
that there are several ODE reductions, such as t
Riccati equation and the Painlevé I–VI equations [18] fo
all known integrables1 1 1d- and s2 1 1d-dimensional
PDEs. This fact shows that all of the known integrabl
models can be considered as different deformations
0031-9007y98y80(23)y5027(5)$15.00
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some ODEs with Painlevé property. For instance, som
s1 1 1d- ands2 1 1d-dimensional integrable sine-Gordon
equations and Mikhailov-Dodd-Bullough equations ca
be considered as the deformations of a simple Ricc
equation [19]. So we believe that higher dimensional, sa
s3 1 1d-dimensional integrable models (if they exist), ca
also be obtained from lower dimensional ones.

In this Letter we try to propose a possible metho
to get higher dimensional integrable models from lowe
ones by means of the Painlevé analysis developed
Weiss, Tabor, and Carnevale (WTC) [20] in an extende
form. Usually, the Painlevé analysis is used to stud
the singularity property, Bäcklund transformation (BT)
symmetries, bilinearization, and other integrable properti
and some types of exact solutions [20–22]. However,
my knowledge, no one uses the Painlevé analysis meth
to get new integrable models.

General idea and assumption.—For a given n-
dimensionalN order PDE,

Fsx1, x2, . . . , xn, t, u, uxi
, uxixj

, . . . , uxi1 xi2 ...xiN
d ­ 0 , (1)

the model is called possessing the Painlevé prope
(PP) if all of the movable singularities of its solution
with respect to an arbitrary singular manifoldf ;
fsx1, x2, . . . , xn, td ­ 0 are poles. That is to say, by
expanding the solution of (1) near the singular manifol
© 1998 The American Physical Society 5027
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f, we should have the form

u ­
X̀
j­0

ujfj1a, (2)

with N 2 1 further arbitrary functionsuj and negative
integera. Substituting (2) into (1), all of the expansion
coefficientsuj can be solved as

uj ­ fjsxi, fxi , fxi1 xi2
, . . . , uj1 , uj2 , . . . , ujN21 d

s j fi j1, . . . , jN21d , (3)

whereuj1 , . . . , ujN21 are arbitrary functions. If we take

uj ­ 0, s j . 2ad , (4)

then we get a BT of (1), i.e., ifu2a is a solution of (1),
then the truncated expansionu given by (2) with (4) is
also a solution of (1). Furthermore, ifu ­ 0 is a solution
of (1), the single soliton solution can be obtained from th
BT andu2a ­ 0. Usually, when one uses the truncated
expansions to discuss the Bäcklund transformation
exact solutions, no one discusses any properties of t
equationsuj ­ 0, s j $ 2ad, i.e.,

fj ; fjsxi, fxi , fxi1xi2
, . . . , uj1 ­ 0,

uj2 ­ 0, . . . , ujN21 ­ 0d ­ 0 s j $ 2ad . (5)

Because equations of (5) for differentj must be consistent
when we use the truncation expansion to study th
integrable property of (1), we believe that many equation
of (5) or some combinations ofujs j $ 2ad may be
integrable.

The integrable models obtained from (5) possess th
same dimensions as the original model (1). In order t
get some higher dimensional integrable models from (1
we may take the following two steps. First, we should
embed the lower dimensional integrable model (1) i
higher dimensions. In other words, we should conside
that u is not dependent only on the explicit independen
variableshx1, . . . , xn, tj but also on some implicit ones,
say,hxn11, . . . , xn1mj. Second, the Painlevé expansion (2
should be extended to a different resummation form suc
that the implicit independent variableshxn11, . . . , xn1mj
appear explicitly in the new expansion coefficients and th
same number of arbitrary functions is still included in the
new expansion form. The first step is quite trivial becaus
infinitely many integral constants (inner parameters) can b
included in the solutions of an arbitrary given PDE, and w
can take these parameters as new independent variab
The second step can be realized because of the singu
manifoldf being arbitrary. For instance, we can take

j ;
µ

fxn11

f
2

fxn11xn11

2fxn11

∂21

(6)

as a new expansion variable, i.e., we change the expans
(2) as

u ­
X̀
j­0

u0
jjj1a , (7)
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with arbitraryj, u0
j1

, u0
j2

, . . . , u0
jN21

and the same integers
j1, j2, . . . , jN21 and a as in (2). From Eq. (6) one can
easily prove the following identities:

jxi
­ Pi 2 Pixn11j 1

1
2 sPiS 1 Pixn11xn11 dj

2,

i ­ 0, 1, 2, . . . n, x0 ; t , (8)

where the functions

Pi ;
fxi

fxn11

,

S ;
fxn11xn11xn11

fxn11

2
3
2

µ
fxn11xn11

fxn11

∂2

; hf; xn11j
(9)

are all invariant under the Möbious transformation

f !
a 1 bf

c 1 df
, ad fi bc . (10)

It is straightforward to see that all of the expansion coe
ficientsu0

j in (7) are all conformal invariant because the
are functions ofPi , S, and hu0

j1
, u0

j2
, . . . , u0

jN21
j. Now a

further independent variablexn11 has been included ex-
plicitly with the expansion coefficientsu0

j although the
original equation (1) is notxn11 dependent explicitly. On
the other hand, the conformal invariant plays very im
portant roles in integrable theory. For instance, startin
from the conformal invariance of the Korteweg–de Vrie
(KDV) and Kadomtsev-Petviashvili (KP) equations, on
can obtain infinitely many symmetries, Darboux transfo
mations, sine-Gordon extensions, etc. [23]. Starting fro
a quite general conformal invariant form, one can get in
finitely many integrable models with the PP [24,25]. Now
it is reasonable to assume thatif Eq. (1) is integrable, then
the equations obtained from vanishing the coefficients
the Painlevé expansion (7), foru0

j ­ 0, j $ 2a, are
integrable.

Although we have not yet proved this assumption and
or the assumption is not completely true, we can st
obtain various higher dimensional integrable models fro
lower ones by checking the assumption for some give
lower dimensional integrable models and smallj. It
is interesting that if the seed equation (1) iss2 1 1d
dimensional, then the integrable models obtained fro
the assumption ares3 1 1d dimensional. Furthermore,
the assumption can be used many times to get so
integrable models in arbitrary dimensions no matter wh
the dimension of the seed model is. More concretel
we realize how to get somes3 1 1d-dimensional models
from the KP, nonlinear Schrödinger (NLS), and Schwar
Korteweg–de Vries (SKDV) equations.

(3 1 1)-dimensional integrable models from the KP
NLS, and SKDV equations.—The KP equation (x0 ­
t, x1 ­ x, x2 ­ y, x3 ­ z)

sut 2 6uux 1 uxxxdx 1 3s2uyy ­ 0 (11)
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is one of the most important integrable physical mode
widely used in many physical fields and studied b
various mathematicians and physicists. The PP of the K
equation is first proven by WTC [20]. In order to obtain
some nontrivials3 1 1d-dimensional model from the KP
equation, we restudy the PP of the model by using th
new expansion (7) and consider thatu of (11) is not only
a function ofhx, y, tj but also a function ofz. As in the
usual case [20], by means of the leading order analys
we have

a ­ 22, u0
0 ­ 2P2

1 . (12)

Substituting (7) with (8) and (12) into (11) we get the
recursion relation of the coefficientsu0

j,

s j 1 1d s j 2 4d s j 2 5d s j 2 6du0
j

­ f 0
jsS, Pi , Pixi , . . . , u0

0, . . . , u0
j21d ; f 0

j , (13)

wheref 0
j is a complicated function ofu0

0, . . . , u0
j21 and the

conformal invariantsPi , S, and their derivatives. After
solving (13) one by one,u0

j becomes only a function of
the conformal invariants. The first twou0

j ’s read

u0
1 ­ 22P1x 2 2P1P1z , (14)

u0
2 ­

1

6P2
1

s3s2P2
2 1 P1sP0 1 4P1xx 1 2P1xP1zd

1 P2
1 s4P1xz 1 P2

1zd 2 3P2
1x 1 4P4

1S 1 4P3
1P1zzd ,

(15)

Using the relations (9),u0
0, u0

1, u0
2, u0

3 and the computer
algebra, say, Maple or Mathematica, it is easy to prov
that the three resonant conditions (13) forj ­ 4, 5, 6
are satisfied identically. The PP of the KP equation
reobtained under the new configuration.

Now using the assumption, we may obtain a set o
integrable models

f 0
j ­ 0, j ­ 2, 3, 7, 8, . . . , (16)

where j ­ 4, 5, 6 disappear due to the resonance con
ditions at these values that are satisfied identically. It
difficult to prove the integrable property for the whole
set. We can only check the integrabilities for smallj of
(16). After substituting (9) into (16) forj ­ 3, one can
see that the integrability foru0

3 ­ 0 is trivial because it is
really the originals2 1 1d-dimensional KP equation in its
Schwarz form. Although we can prove the PP of (16) fo
j ­ 7, we do not write it down because (16) withj ­ 7
is too complicated after substituting (9) in (about two o
more printed pages). So we discuss onlyj ­ 2 here.

Substitutingj ­ 2 and (9) into (16) yields a nontrivial
s3 1 1d-dimensional model

f4
z s4fxfxxx 2 3f2

xx 1 fxft 1 3s2f2
yd 1

3f4
xf2

zz 2 6f2
xf2

z fxxfzz ­ 0 . (17)

In order to prove the integrability of (17), we change (17
into a variant form at first and then prove its PP in ou
ls
y
P

e

is,

e

is

f

-
is

r

r

)
r

new configuration. Equation (17) is in a hexalinear form
To prove the PP of a multilinear equation is much mor
difficult than to prove the PP in a nonhomogeneous form
By taking the exponential transformation

f ­ ef , (18)

we get a nonhomogeneous form of (17),

ft 1 4fxxx 2 2f3
x 2 3f2

xxf21
x 1 3s2f2

y f21
x 1

3f3
x f2

zzf24
z 2 6fxfxxfzzf22

z ­ 0 . (19)

When z ­ x ­ y or fy ­ fzz ­ 0, Eq. (19) reduces
to an equivalent potential form of the modified KDV
equation.

Multiplying (19) by f4
z fx and using the leading order

analysis, we find that there will be no algebraic pole
[a ­ 0 in (2)] in the Painlevé expansion. In order to
include the algebraic poles in the Painlevé expansion,

h fx ­ U, fy ­ V , fz ­ W , ft ­ Gj (20)

is the simplest suitable transformation. Using Eq. (20)
(19) we get an equivalent equation system of (17),

4UW 4Uxx 2 3W 4U2
x 2 2W4U4 1 3U4W 2

z 1

UGW4 2 6U2W 2UxWz 1 3s2V 2W 4 ­ 0 , (21)

Ut ­ Gx , Vt ­ Gy , Wt ­ Gz , (22)

where Eqs. (22) are the consistent conditions of th
transformation (20). To prove the PP of the equatio
system (21) and (22), we may use the traditional WT
approach [20] or its extended form proposed previousl
Using the extended WTC approach we can get som
more integrable models both in thes4 1 1d dimensions
and in the s3 1 1d dimensions at the same time. So
we take the extended approach here again. Expand
U, V , W , andG as

U ­
X̀
j­0

Ujjj1a1 , V ­
X̀
j­0

Vjjj1a2 ,

W ­
X̀
j­0

Wjjj1a3 , G ­
X̀
j­0

Gjjj1a4 ,

(23)

where j is given by (6) with n ­ 3, x0 ­ t, x1 ­
x, x2 ­ y, x3 ­ z, anda1 ­ a2 ­ a3 ­ a4 ­ 21,

U0 ­ 6P1, V0 ­ 6P2,

W0 ­ 6P3, G0 ­ 6P0 ,
(24)

which can be determined by means of the leading ord
analysis and the relation (8) forn ­ 3.

Substituting (23) withai ­ 21, (24) and (8) into (21)
and (22), one can see that all of the needed five resonan
are located atj ­ 21, 1, 1, 1, 1. The resonance at
j ­ 21 is related toj being arbitrary. The resonance
conditions atj ­ 1 read
5029
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3U0sP1W0 2 U0P3d fW2
0 P1x4 2 U0sW0P3x4 1 W0zdg 1 2W 3

0 U0P1x 1 W2
0 sW0P1 2 3U0P3dU0x2

2W0fs2U2
0 W2

0 2 3U2
0 P2

3 1 3U0W0P1P3 2 2W 2
0 P2

1 dU1 2 U0s5P2
1W0 2 2W0U2

0 2 3P1P3U0dW1g ­ 0 , (25)
c

)

ts
n
) is
t
o a

)

U0t 2 G0x 1 U0P0x4 2 G0P1x4 ­ 0 , (26)

V0t 2 G0y 1 V0P0x4 2 G0P2x4 ­ 0 , (27)

W0t 2 G0z 1 W0P0x4 2 G0P3x4 ­ 0 . (28)

It is straightforward to see that all of the resonan
conditions (25)–(28) are satisfied identically because
the relations (24) and (9) withn ­ 3. That is to say,
five arbitrary coefficientsj, U1, V1, W1, and G1 have
been included in the expansion (23). Because Eq. (21
a second order PDE and three equations in (22) are fi
0

e
of

is
rst

order PDEs, the required number of arbitrary coefficien
in the Painlevé expansion (23) is just five. So the equatio
systems (21) and (22) possess the PP and then Eq. (17
a s3 1 1d-dimensional integrable model, meaning that i
possesses conformal invariance and can be changed t
form with the PP.

Applying the assumption further to the systems (21
and (22), somes4 1 1d-dimensional models with the PPcan
be obtained. For instance, fromU2 ­ V2 ­ W2 ­ G2 ­
0 we get
s3s2P2
2 1 P0P1 2 2P4

1S 1 P2
1P2

1x4
1 2P1P1xP1x4 2 3P2

1xdP4
3 2 6P2

1P3
3P3x4 sP1P1x4 1 P1xd 1

3sP2
3P2

3x4
1 P2

3z 1 2P3P3zP1x4dP
4
1 2 6P2

1P2
3P1xP3z 2 6P2

3P3
1P3xP1x4 ­ 0 , (29)
n

v
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where Pi and S are given by (9). The PP of (29) can
be proved in the same way. Using the classical a
nonclassical Lie approach, some kinds ofs3 1 1d-dimen-
sional integrable reductions can be obtained from (29).

The same idea can be used to get many higher dime
sional integrable systems from other lower dimension
ones. For instance, the Painlevé integrable models

fxffzsfzzt 1 2fzzzd 2 2fzzfzt 2 3f2
zzg 1

2fxyf2
z 2 ftfxzzfz 1 2fxzsftfzz 2 fyfzd ­ 0

(30)

and
ft

fx
1 hf; xj 1

9
2

fxfzzfxz

f3
z

2
3
4

f2
xf2

yy

f4
y

1

3
8

f2
xf2

zz

f4
z

1 3
f2

xfyzz

f2
z fy

2
3
2

fxfxyy

f2
y

1

3
fxfxyfyy

f3
y

2
9
4

fxfxzz

f2
z

2 6
f2

xfyzfzz

f3
z fy

­ 0 (31)

are obtained from the NLS equationhiut 1 uxx 2

4u2y ­ 0, 2iyt 1 yxx 2 4y2u ­ 0j and the SKDV
equationftyfx 1 hf; xj ­ 0, respectively. Because of
the simplicity and similarity, we omit the details on the
derivation of (30) and (31) and the proof of their PP.

Summary and discussion.—In this Letter, after embed-
ding the lower dimensional integrable models in highe
dimensions and extending the standard WTC Painle
expansion to a more general form such that the ne
expansion coefficients are conformal invariant, we ha
proposed an assumption to get more integrable mod
in higher dimensions from a known lower dimensiona
one. Starting from the KP, NLS, and SKDV equations
somes4 1 1d-dimensional ands3 1 1d-dimensional mod-
els with the PP and the conformal invariance are give
explicitly.
d
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n

Although the assumption is based on the fact that th
original model is integrable and the resulting equation
come from vanishing the consistent Painlevé expansion c
efficients with the conformal invariance, we still have to
check the integrability of the resulting models one by on
because we have not yet proved the assumption strict
Although the assumption has not yet been proved strictl
we have obtained many higher dimensional Painlevé int
grable models from the assumption and there is no negati
example found.

To reduce a higher dimensional model to some lowe
ones, one can use the classical and nonclassical Lie a
proaches or the direct method [15–17]. Now we know tha
it is also possible to get some higher dimensional mode
from lower ones.

The Painlevé integrable models obtained here shou
be studied further because real physical space iss3 1 1d
dimensional and there is no knowledge of thes3 1 1d-
dimensional soliton solutions.
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