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Lu-Ming Duan and Guang-Can Guo*

Department of Physics and Nonlinear Science Center, University of Science and Technology of China,
Hefei 230026, People’s Republic of China
(Received 19 February 1998

We construct a probabilistic quantum cloning machine by a general unitary-reduction operation.
With a postselection of the measurement results, the machine yields faithful copies of the input
states. It is shown that the states secretly chosen from a certai$i sef| V), |V,),...,|¥,)} can
be probabilistically cloned if and only if¥,), |¥,), ..., and|¥,) are linearly independent. We
derive the best possible cloning efficiencies. Probabilistic cloning has a close connection with the
problem of identification of a set of states, which is a typenofr 1 outcome measurement on
n linearly independent states. The optimal efficiencies for this type of measurement are obtained.
[S0031-9007(98)06263-2]

PACS numbers: 03.67.—a, 03.65.Bz, 89.70.+c

In quantum mechanics, a combination of unitary evoindependent states can be probabilistically cloned. The
lution together with measurements often yields interestingrobabilistic cloning machine yields faithful copies of the
results, such as the quantum programming [1], the purifilnput states with certain nonzero probabilities of success.
cation of entanglements [2], and the teleportation [3] and~or this machine, the inaccurate copies are discarded.
preparation [4] of quantum states. Here, we discuss such Thel — 2 cloning machine produces two copies of the
a combination in the field of quantum cloning. With the input state. Similarly, we may considér— m, and even
development of a quantum information theory, quantuml — oo, cloning machines. We will show that the proba-
cloning has become a field of growing interest [5—19].bilistic cloning is closely related to the problem of identi-
We should discriminate two kinds of quantum cloning.fication of a set of states. The identification measurement
If a cloning machine performs merely unitary operationsdiffers from Helstrom’s minimal error probability deci-
it is called deterministic cloning, since unitary evolution sion [20]. It is in fact ann + 1 outcome measurement
is deterministic. On the other hand, if a cloning ma-onn possible input statelsl,), |V,), ..., and|¥,). The
chine performs measurements as well as unitary operautcomei (i = 1, 2, ..., or n) indicates that the state is
tions, with a postselection of the measurement results, definitely |¥;), whereas the: + 1 outcome is “failure,”
is called probabilistic cloning, since the desired copies aréndicating the case that we cannot identify what the state
produced only with certain probabilities. There are tworeally is from the measurement result. The Helstrom mea-
different types of statements for the quantum no-cloningsurement does not determine what the state really is. Itis
theorem. The first [5] asserts that an arbitrary unknowrsucceeded by a guess, and the minimal error probability is
state cannot be cloned, whether deterministically or probarequired in the guess.
bilistically, since the linearity of quantum operations for- We start by showing that only linearly independent
bids such a replication; and the second [7-9] states thatates can be probabilistically cloned. This is the follow-
deterministic cloning of nonorthogonal states is impos-ing theorem.
sible because of the unitarity of the evolution. The quan- Theorem 1—The states secretly chosen from the set
tum no-cloning theorem does not rule out the possibilityS = {|¥), |¥,),...,|¥,)} can be probabilistically cloned
of probabilistic cloning of nonorthogonal states. In fact,by a general unitary-reduction operation if and only if
two nonorthogonal states can indeed be probabilistically¥,), |¥,), ..., and|¥,) are linearly independent.
cloned [18]. Then, what property characterizes the set of Proof—Any operation in quantum mechanics can be
states able to be probabilistically cloned? In this papertepresented by a unitary evolution together with a measure-
we show that the states secretly chosen from a certaiment [21]. To get faithful copies of the pure input states
set can be probabilistically cloned if and only if they are|¥;), the output states of the cloning machine are also pure.
linearly independent. We also derive the best possibl&@his requires that the measurement in the cloning machine
cloning efficiencies. should be performed with a postselection of the measure-

It is appropriate to emphasize differences betweemnent results. A measurement with a postselection of the
the probabilistic cloning and the inaccurate quantunmeasurementresults is described by a projection operation,
copying more extensively discussed in recent literaturend, like the unitary evolution, it is linear in the state vec-
[10-17]. The inaccurate copying process is unitary andor. Hence, similar to the original proof of the no-cloning
thus deterministic. For nonorthogonal states, the stattheorem [5], this linearity forbids faithful cloning of lin-
fidelity can never attain 1. Arbitrary unknown states areearly dependent quantum states, whether in a deterministic
able to be inaccurately copied. In contrast, only linearlyor in a probabilistic fashion. Our task remains to prove the
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converse; that is, to show thati¥,), |¥,), ..., and|¥,)

aren linearly independent states of a systamnthere exist
a unitary operatiorl/ and a measureme, which to-
gether yield the following evolution:

W) 13) = Wy W), (=12..,m), (@)
where |3) is the input state of an ancillary system |

U(W) 12 [Po)) = 7 [W) [W:) |Po) + D Cijlq)ileblpl/’% (i
j=1

SystemsA and B each have anv-dimensional Hilbert
space withV = n.

To prove the above statement, we introduce a probe
P with an n,-dimensional Hilbert space, whene, =
n + 1. SupposdPy), |P), ..., and|P,) aren + 1 or-
thonormal states of the prolie If there exists a unitary
operatorU to make

1,2,.. )

., n),

where IQDS; , |d>f; ,..., and |(I>X2> and n normalized |

states of the composite systed® (not generally orthog-
onal), we measure the prole after the evolution. The

|\I,T> = blqul> + b2|\P2> + -t bnlq'rn>~ (6)
Since the state$¥;), |¥,),..., and |¥,) are linearly
independent, the summation stat¥;) does not reduce

cloning attempt has succeeded, and the output state of the zero for anyn-vector B, and its norm is thus always
systemAB is kept if and only if the measurement outcome positive. By definition, the matrix!) is positive definite.

of the probe isPy,. With probability y; of success, this
measurement projects the composite systninto the
replicated stat¢¥;) |¥;), wherei = 0, 1,..., orn. The

SincexV is positive definite, from continuity, for small
enough but positive;, the matrixx) — VT X@T+ is
also positive definite. So the Hermitian mati! —

parameters; are called the cloning efficiencies. For any T x@./T* is able to be diagonalized by a unitary
input state|V;), the probabilistic cloning machine should matrix vV as follows:

succeed with a nonzero probability. This requires that all VXD — JTXOVTHY = diagim,, ms,

of the v; be positive real numbers. Therefore, the evo-

lution (1) can be realized in physics if Eq. (2) holds with
positive efficiencies. To prove existence of the unitarywhere all of the eigenvalues:, my,...
evolution described by Eq. (2), we notice the following positive real numbers.

fact.
Lemma 1—If two sets of state$e i), |$2),..., |da),
and|1), |d2),. .., |¢,) satisfy the condition

<¢i | ¢j> = <§?’i | <Z’j>,
i=12,...,n;j=1,2,...,n), 3
there exists a unitary operatdf to makeU|,) = | ),
(i=12,...,n).

The n X n inter-inner-products of Eq. (2) yield the
matrix equation

xW =JTxOVT+ + cc*, (4)

where then X n matricesC = [¢;;], XV = [(¥; | V)],
andX® = [(¥; | ¥;)*]. The diagonal efficiency matrix
I is defined byl' = diagy1, y2,..., v,); hence VT =
VTF = diag /71, /73, - - /¥s). Lemma 1 shows that

Lmy),
(7)
, and m, are
In Eq. (4), the matiix can be
chosen as
C = vdiag/mi,ma,...,\Jm,)V"'. (8)

Equation (4) is thus satisfied with a diagonal positive-
definite efficiency matrid’. This completes the proof of
Theorem 1.

In the above proof, the condition of linear indepen-
dence of then states|V¥y), |¥,), ..., and|¥,) plays
an essential role. H{¥,), |¥,), ..., and|¥,) are lin-
early dependent, there exists amvector B to make
BTXWB = 0, and the matrixx(! is therefore only posi-
tive semidefinite. With a diagonal positive-definite ma-
trix T, in general, X — VT X@{T* is no longer a
positive-semidefinite matrix. But the matriKC™" is
positive semidefinite. So Eq. (4) cannot be satisfied. This
shows in an alternative way that linearly dependent
states|¥), |¥»), ..., and|¥,) cannot be probabilisti-

if Eq. (4) is satisfied with a diagonal positive-definite cally cloned by any unitary-reduction operation.

matrix I', the unitary evolution (2) can be realized in

physics.

Deterministic cloning can be regarded as a special
case of the probabilistic cloning, with all of the cloning

To prove that there is a diagonal positive-definiteefficienciesy; = 1. For nonorthogonal states, at least
matrix I to satisfy Eq. (4), first we show that the matrix Some of they; are less than 1. If all of they; =1,

X" is positive definite. This is the following lemma.
Lemma 2—If n states|V¥,), |¥,), ..., and|V,) are
linearly independent, the matrix) = [(¥;|¥;)] is
positive definite.
Proof of Lemma 2—For an arbitraryn-vector B =
(b1, bs,...,b,)T, the quadratic formB*XB can be

expressed as
B*XDB = (W, | W) = || [¥p)]%, ()

where
5000

ie., I' =1,, Eq.(4) reduces tax) = X®. This is
possible if and only if the staté¥,), |P»), ..., and|¥,)

are orthogonal to each other. Hence, nonorthogonal
states can not be deterministically cloned by the same
machine. This is a well-known result, and it has important
implications in quantum cryptography [22—-25].

In the following, we derive the best possible efficien-
ciesvy; able to be attained by a probabilistic cloning ma-
chine. A general unitary evolution of the systdlP can
be decomposed as
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U(W) 3)1Po) = 77 W) W) IPD) + VT — 5 [®4pp), (= 1L,2,....n), )
. |
where|P,) and |P")) are normalized states of the probe XV = T Xfoz)\/l“+ + 41, —TYJI, - T+, (11)
1) (2)
P (not generally orthogonal) ant®,zp), |Pszp),..., where the n X n matrices ¥ — [<(I)XI)3P|(D,E§jI3)P>] and

and IQDX’B),J> are n normalized states of the composite

systemABP (not generally orthogonal). Without loss
of generality, in Eq. (9) the coefficients before the state

[T, |w;) [PD) and |®\},) are assumed to be positive
real numbers. Obviously, Eq. (2) is a special case o o )
Eq. (9) with |Po) and all|P®)) being the same state and SeMidefinite. On the other hand, X" — VT Xp VT

' is a positive-semidefinite matrix, following the proof

d, having a special decomposition. We denote the . .
lsugg[;);ce Spgnneg by the stalgé”) p@),..., |pwy  Of Theorem 1, Eq. (11) can be satisfied with a spe-

) ) ;
by the symbolS,. During the cloning process, after cial choice of |#4}p), and then Lemma 1 shows that
the unitary evolution a measurement of the probe witihe states|Wi), [¥),..., and |¥,) are able to be

a postselection of the measurement results projects if¥obabilistically cloned.  We thus get the following
state into the subspac. After this projection, the theorem.

state of the systertB should be|¥;)|¥;), so all of Theorem 2—The stateg V), [V2),..., and|¥,) can
the statesl(l)ff};,:) ought to lie in a space orthogonal be probabilistically cloned with a diagonal efficiency

. . . . n _ 2 =5
to So. This requires thatld)f,ﬁ,:} be annihilated by matrix I" if and only if the matrixX VI X5 VT

L : : i itive semidefinite.
the projection operatolPV)y(PW| for any i and j; ' POS
Prol P 1P (P 4 J The semipositivity of the matrix ) — T X,(az)\/l”r

Xy = [(@; [@)PD|PDY], and I, is the n X n
unit matrix. Following the proof of Lemma 2, and
fhus JI, = TY\I, —T*, are positive-semidefinite
atrixes, sact) — VT X2V/T* should also be positive

€ , gives a series of inequalities about the efficiencies
IPOY (PO D) = o, The best possible cloning efficiencigs are obtained by
solving these inequalities and then taking the maximum
(i=12,...,n5j =1,2,...,n). (10)  over all possible choices of the normalized stg®$)).

)For example, if there are only two statek;) and | ¥;),

Under the condition (10), inter-inner-products of Eq. (9 ! Ut YA
Theorem 2 shows that the cloning efficiencigsand vy,

yield the following matrix equation:

| satisfy
yit oy _ 1 — [(Wy | Wyl 1
——= = max = , 12
2 T T L (WP [ PO T T+ [ W) 12)

where we assumed|[(¥,|¥,)| # 1. The equal- faithful copies of the input state, the state can be defi-
ity in Eq. (12) holds if and only ify; = v, and nitely determined. On the other hand, if the input state
(P | P@Y (W, | W,) = (W, |W,)|. The best possible is definitely determined, we can generate infinitely many
efficiencies obtained from Theorem 2 depend on innefaithful copies. The best possible efficiencies for the
products of the input states. This is a natural result sincé — < probabilistic cloning are determined by the semi-
probabilistic cloning is possible only for a known set of positivity of the matrix XV — \/TX[(?)\/F =xM —
states. Theorem 2 is a basic result in determining thg where we assumef{W; | W)l <1 for i # j. Are
best possible cloning efficiencies. these the optimal efficiencies for the identification mea-
The analysis of thel — 2 probabilistic cloning can surement on the statd®¥,), |¥,),..., and |¥,)? We

be directly extended to include the— m probabilistic  show that it is indeed the case by directly proving the
cloning. The extension is straightforward, and we omitresylt.

its proof. The result is the following. Theorem 4—The states|V¥,), |¥,),..., and |¥,)
Theorem 3—The stategVy), [¥2),..., and|¥,) can  can be identified, respectively, with the efficiencies

be probabilistically replicated inte: faithful copies with . " and y, if and only if the matrixx) — I is

a diagonal efficiency matrit™ if and only if the matrix  positive semidefinite.

XM — YT xy"JT~ is positive semidefinite. Proof—By definition, the identification is am + 1
The matrix Xy in Theorem 3 is defined byxy" —  Outcome measurement on the staés), |W), ..., and

[(W; | ¥, y"(P@ | PU)Y]. Thel — % probabilistic cloning |¥,). From the general representation theorem for quan-

is of special interest. It is closely related to the prob-tum operations [21], a general measurement on system

lem of identification of the stateg¥,), |¥,),..., and A can be represented by a unitary operatignon the
|¥,). On the one hand, if we have infinitely many composite systemBP, succeeded by a Von Neumann’s
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state should be definiteljl’;); whereas with the: + 1 | as

@ i) i .
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