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We construct a probabilistic quantum cloning machine by a general unitary-reduction operation
With a postselection of the measurement results, the machine yields faithful copies of the inpu
states. It is shown that the states secretly chosen from a certain setS ­ hjC1l, jC2l, . . . , jCnlj can
be probabilistically cloned if and only ifjC1l, jC2l, . . . , and jCnl are linearly independent. We
derive the best possible cloning efficiencies. Probabilistic cloning has a close connection with th
problem of identification of a set of states, which is a type ofn 1 1 outcome measurement on
n linearly independent states. The optimal efficiencies for this type of measurement are obtaine
[S0031-9007(98)06263-2]
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In quantum mechanics, a combination of unitary ev
lution together with measurements often yields interesti
results, such as the quantum programming [1], the pur
cation of entanglements [2], and the teleportation [3] a
preparation [4] of quantum states. Here, we discuss su
a combination in the field of quantum cloning. With th
development of a quantum information theory, quantu
cloning has become a field of growing interest [5–19
We should discriminate two kinds of quantum cloning
If a cloning machine performs merely unitary operation
it is called deterministic cloning, since unitary evolutio
is deterministic. On the other hand, if a cloning ma
chine performs measurements as well as unitary ope
tions, with a postselection of the measurement results
is called probabilistic cloning, since the desired copies a
produced only with certain probabilities. There are tw
different types of statements for the quantum no-clonin
theorem. The first [5] asserts that an arbitrary unknow
state cannot be cloned, whether deterministically or prob
bilistically, since the linearity of quantum operations for
bids such a replication; and the second [7–9] states t
deterministic cloning of nonorthogonal states is impo
sible because of the unitarity of the evolution. The qua
tum no-cloning theorem does not rule out the possibili
of probabilistic cloning of nonorthogonal states. In fac
two nonorthogonal states can indeed be probabilistica
cloned [18]. Then, what property characterizes the set
states able to be probabilistically cloned? In this pap
we show that the states secretly chosen from a cert
set can be probabilistically cloned if and only if they ar
linearly independent. We also derive the best possib
cloning efficiencies.

It is appropriate to emphasize differences betwe
the probabilistic cloning and the inaccurate quantu
copying more extensively discussed in recent literatu
[10–17]. The inaccurate copying process is unitary a
thus deterministic. For nonorthogonal states, the st
fidelity can never attain 1. Arbitrary unknown states a
able to be inaccurately copied. In contrast, only linear
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independent states can be probabilistically cloned. T
probabilistic cloning machine yields faithful copies of th
input states with certain nonzero probabilities of succe
For this machine, the inaccurate copies are discarded.

The1 ! 2 cloning machine produces two copies of th
input state. Similarly, we may consider1 ! m, and even
1 ! `, cloning machines. We will show that the proba
bilistic cloning is closely related to the problem of identi
fication of a set of states. The identification measureme
differs from Helstrom’s minimal error probability deci-
sion [20]. It is in fact ann 1 1 outcome measuremen
on n possible input statesjC1l, jC2l, . . . , and jCnl. The
outcomei si ­ 1, 2, . . . , or nd indicates that the state is
definitely jCil, whereas then 1 1 outcome is “failure,”
indicating the case that we cannot identify what the sta
really is from the measurement result. The Helstrom me
surement does not determine what the state really is. I
succeeded by a guess, and the minimal error probability
required in the guess.

We start by showing that only linearly independen
states can be probabilistically cloned. This is the follow
ing theorem.

Theorem 1.—The states secretly chosen from the s
S ­ hjC1l, jC2l, . . . , jCnlj can be probabilistically cloned
by a general unitary-reduction operation if and only
jC1l, jC2l, . . . , and jCnl are linearly independent.

Proof.—Any operation in quantum mechanics can b
represented by a unitary evolution together with a measu
ment [21]. To get faithful copies of the pure input state
jCil, the output states of the cloning machine are also pu
This requires that the measurement in the cloning mach
should be performed with a postselection of the measu
ment results. A measurement with a postselection of t
measurement results is described by a projection operat
and, like the unitary evolution, it is linear in the state vec
tor. Hence, similar to the original proof of the no-clonin
theorem [5], this linearity forbids faithful cloning of lin-
early dependent quantum states, whether in a determini
or in a probabilistic fashion. Our task remains to prove th
© 1998 The American Physical Society 4999
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be
converse; that is, to show that ifjC1l, jC2l, . . . , and jCnl
aren linearly independent states of a systemA, there exist
a unitary operationU and a measurementM, which to-
gether yield the following evolution:

jCil jSl U1M
! jCil jCil, si ­ 1, 2, . . . , nd , (1)

where jSl is the input state of an ancillary systemB.
a
o
h
r
g
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SystemsA and B each have anN-dimensional Hilbert
space withN $ n.

To prove the above statement, we introduce a pro
P with an np-dimensional Hilbert space, wherenp $

n 1 1. SupposejP0l, jP1l, . . . , and jPnl are n 1 1 or-
thonormal states of the probeP. If there exists a unitary
operatorU to make
UsjCil jSl jP0ld ­
p

gi jCil jCil jP0l 1

nX
j­1

cijjF
s jd
ABl jPjl, si ­ 1, 2, . . . , nd , (2)
y
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where jF
s1d
ABl, jF

s2d
ABl, . . . , and jF

snd
ABl and n normalized

states of the composite systemAB (not generally orthog-
onal), we measure the probeP after the evolution. The
cloning attempt has succeeded, and the output state of
systemAB is kept if and only if the measurement outcom
of the probe isP0. With probability gi of success, this
measurement projects the composite systemAB into the
replicated statejCil jCil, wherei ­ 0, 1,. . . , or n. The
parametersgi are called the cloning efficiencies. For an
input statejCil, the probabilistic cloning machine should
succeed with a nonzero probability. This requires that
of the gi be positive real numbers. Therefore, the ev
lution (1) can be realized in physics if Eq. (2) holds wit
positive efficiencies. To prove existence of the unita
evolution described by Eq. (2), we notice the followin
fact.

Lemma 1.—If two sets of statesjf1l, jf2l, . . . , jfnl,
andjf̃1l, jf̃2l, . . . , jf̃nl satisfy the condition

kfi j fjl ­ kf̃i j f̃jl,

si ­ 1, 2, . . . , n; j ­ 1, 2, . . . , nd , (3)

there exists a unitary operatorU to makeUjfil ­ jf̃il,
si ­ 1, 2, . . . , nd.

The n 3 n inter-inner-products of Eq. (2) yield the
matrix equation

Xs1d ­
p

G Xs2d
p

G1 1 CC1, (4)

where then 3 n matricesC ­ fcijg, Xs1d ­ fkCi j Cjlg,
and Xs2d ­ fkCi j Cjl2g. The diagonal efficiency matrix
G is defined byG ­ diagsg1, g2, . . . , gnd; hence,

p
G ­p

G1 ­ diagspg1,
p

g2, . . . ,
p

gnd. Lemma 1 shows that
if Eq. (4) is satisfied with a diagonal positive-definite
matrix G, the unitary evolution (2) can be realized in
physics.

To prove that there is a diagonal positive-definit
matrix G to satisfy Eq. (4), first we show that the matrix
Xs1d is positive definite. This is the following lemma.

Lemma 2.—If n statesjC1l, jC2l, . . . , and jCnl are
linearly independent, the matrixXs1d ­ fkCi j Cjlg is
positive definite.

Proof of Lemma 2.—For an arbitraryn-vector B ­
sb1, b2, . . . , bndT , the quadratic formB1Xs1dB can be
expressed as

B1Xs1dB ­ kCT j CT l ­ jj jCT ljj2, (5)

where
the
e

y
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-

y

e

jCT l ­ b1jC1l 1 b2jC2l 1 · · · 1 bnjCnl . (6)
Since the statesjC1l, jC2l, . . . , and jCnl are linearly
independent, the summation statejCT l does not reduce
to zero for anyn-vector B, and its norm is thus always
positive. By definition, the matrixXs1d is positive definite.

SinceXs1d is positive definite, from continuity, for small
enough but positivegi, the matrixXs1d 2

p
G Xs2d

p
G1 is

also positive definite. So the Hermitian matrixXs1d 2p
G Xs2d

p
G1 is able to be diagonalized by a unitar

matrix V as follows:
V 1sXs1d 2

p
G Xs2d

p
G1dV ­ diagsm1, m2, . . . , mnd ,

(7)
where all of the eigenvaluesm1, m2, . . . , and mn are
positive real numbers. In Eq. (4), the matrixC can be
chosen as

C ­ V diags
p

m1,
p

m2, . . . ,
p

mn dV 1. (8)
Equation (4) is thus satisfied with a diagonal positiv
definite efficiency matrixG. This completes the proof of
Theorem 1.

In the above proof, the condition of linear indepen
dence of then states jC1l, jC2l, . . . , and jCnl plays
an essential role. IfjC1l, jC2l, . . . , and jCnl are lin-
early dependent, there exists ann-vector B to make
B1Xs1dB ­ 0, and the matrixXs1d is therefore only posi-
tive semidefinite. With a diagonal positive-definite ma
trix G, in general,Xs1d 2

p
G Xs2d

p
G1 is no longer a

positive-semidefinite matrix. But the matrixCC1 is
positive semidefinite. So Eq. (4) cannot be satisfied. T
shows in an alternative way thatn linearly dependent
states jC1l, jC2l, . . . , and jCnl cannot be probabilisti-
cally cloned by any unitary-reduction operation.

Deterministic cloning can be regarded as a spec
case of the probabilistic cloning, with all of the clonin
efficienciesgi ­ 1. For nonorthogonal states, at lea
some of thegi are less than 1. If all of thegi ­ 1,
i.e., G ­ In, Eq. (4) reduces toXs1d ­ Xs2d. This is
possible if and only if the statesjC1l, jC2l, . . . , and jCnl
are orthogonal to each other. Hence, nonorthogo
states can not be deterministically cloned by the sa
machine. This is a well-known result, and it has importa
implications in quantum cryptography [22–25].

In the following, we derive the best possible efficien
ciesgi able to be attained by a probabilistic cloning ma
chine. A general unitary evolution of the systemABP can
be decomposed as
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UsjCil jSl jP0ld ­
p

gi jCil jCil jPsidl 1
p

1 2 gi jF
sid
ABPl, si ­ 1, 2, . . . , nd , (9)
f
e-
t
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m

where jP0l and jPsidl are normalized states of the probe
P (not generally orthogonal) andjF

s1d
ABPl, jF

s2d
ABPl, . . . ,

and jF
snd
ABPl are n normalized states of the composite

system ABP (not generally orthogonal). Without loss
of generality, in Eq. (9) the coefficients before the state
jCil jCil jPsidl and jF

sid
ABPl are assumed to be positive

real numbers. Obviously, Eq. (2) is a special case
Eq. (9) with jP0l and all jPsidl being the same state and
jF

sid
ABPl having a special decomposition. We denote th

subspace spanned by the statesjPs1dl, jPs2dl, . . . , jPsndl
by the symbolS0. During the cloning process, after
the unitary evolution a measurement of the probe wi
a postselection of the measurement results projects
state into the subspaceS0. After this projection, the
state of the systemAB should bejCil jCil, so all of
the statesjF

sid
ABPl ought to lie in a space orthogona

to S0. This requires thatjF
sjd
ABPl be annihilated by

the projection operatorjPsidl kPsidj for any i and j;
i.e.,

jPsidl kPsidj jF
s jd
ABPl ­ 0,

si ­ 1, 2, . . . , n; j ­ 1, 2, . . . , nd . (10)

Under the condition (10), inter-inner-products of Eq. (9
yield the following matrix equation:
s

of

e
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its

l

)

Xs1d ­
p

G X
s2d
P

p
G1 1

p
In 2 G Y

p
In 2 G1 , (11)

where the n 3 n matrices Y ­ fkFsid
ABP j F

s jd
ABPlg and

X
s2d
P ­ fkCi j Cjl2kPsid j Psjdlg, and In is the n 3 n

unit matrix. Following the proof of Lemma 2,Y , and
thus

p
In 2 G Y

p
In 2 G1, are positive-semidefinite

matrixes, soXs1d 2
p

G X
s2d
P

p
G1 should also be positive

semidefinite. On the other hand, ifXs1d 2
p

G X
s2d
P

p
G1

is a positive-semidefinite matrix, following the proo
of Theorem 1, Eq. (11) can be satisfied with a sp
cial choice of jF

sid
ABPl, and then Lemma 1 shows tha

the statesjC1l, jC2l, . . . , and jCnl are able to be
probabilistically cloned. We thus get the following
theorem.

Theorem 2.—The statesjC1l, jC2l, . . . , and jCnl can
be probabilistically cloned with a diagonal efficienc
matrix G if and only if the matrixXs1d 2

p
G X

s2d
P

p
G1

is positive semidefinite.
The semipositivity of the matrixXs1d 2

p
G X

s2d
P

p
G1

gives a series of inequalities about the efficienciesgi .
The best possible cloning efficienciesgi are obtained by
solving these inequalities and then taking the maximu
over all possible choices of the normalized statesjPsidl.
For example, if there are only two statesjC1l and jC2l,
Theorem 2 shows that the cloning efficienciesg1 andg2
satisfy
g1 1 g2

2
# max

jPsidl

1 2 jkC1 j C2lj
1 2 jkC1 j C2lj2jkPs1d j Ps2dlj

­
1

1 1 jkC1 j C2lj
, (12)
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where we assumedjkC1 j C2lj fi 1. The equal-
ity in Eq. (12) holds if and only if g1 ­ g2 and
kPs1d j Ps2dl kC1 j C2l ­ jkC1 j C2lj. The best possible
efficiencies obtained from Theorem 2 depend on inne
products of the input states. This is a natural result sinc
probabilistic cloning is possible only for a known set o
states. Theorem 2 is a basic result in determining th
best possible cloning efficiencies.

The analysis of the1 ! 2 probabilistic cloning can
be directly extended to include the1 ! m probabilistic
cloning. The extension is straightforward, and we om
its proof. The result is the following.

Theorem 3.—The statesjC1l, jC2l, . . . , and jCnl can
be probabilistically replicated intom faithful copies with
a diagonal efficiency matrixG if and only if the matrix
Xs1d 2

p
G X

smd
P

p
G1 is positive semidefinite.

The matrix X
smd
P in Theorem 3 is defined byX

smd
P ­

fkCi j CjlmkPsid j Ps jdlg. The1 ! ` probabilistic cloning
is of special interest. It is closely related to the prob
lem of identification of the statesjC1l, jC2l, . . . , and
jCnl. On the one hand, if we have infinitely many
r
e

f
e
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-

faithful copies of the input state, the state can be de
nitely determined. On the other hand, if the input sta
is definitely determined, we can generate infinitely ma
faithful copies. The best possible efficiencies for th
1 ! ` probabilistic cloning are determined by the sem
positivity of the matrix Xs1d 2

p
G X

s`d
P

p
G1 ­ Xs1d 2

G, where we assumedjkCi j Cjlj , 1 for i fi j. Are
these the optimal efficiencies for the identification me
surement on the statesjC1l, jC2l, . . . , and jCnl? We
show that it is indeed the case by directly proving t
result.

Theorem 4.—The statesjC1l, jC2l, . . . , and jCnl
can be identified, respectively, with the efficienciesg1,
g2, . . . , and gn if and only if the matrix Xs1d 2 G is
positive semidefinite.

Proof.—By definition, the identification is ann 1 1
outcome measurement on the statesjC1l, jC2l, . . . , and
jCnl. From the general representation theorem for qu
tum operations [21], a general measurement on sys
A can be represented by a unitary operationU on the
composite systemABP, succeeded by a Von Neumann
5001
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type of measurement on the probeP, whereB indicates
an ancillary system. In the identification measureme
with the measurement outcomePi si ­ 1, 2, . . . , nd, the
state should be definitelyjCil; whereas with then 1 1
5002
nt,
outcomePn11, the state is not definitely determined, and
the measurement fails. Hence, the unitary operationU
on the composite systemABP can be generally expressed
as
UsjCil jC
s0d
BPld ­

p
gi jC

sid
ABl jPil 1

p
1 2 gi jF

sid
ABl jPn11l, si ­ 1, 2, . . . , nd , (13)
f

n

f

e

.

.

.

.

where gi is the measurement efficiency with the inpu
state jCil, and jP1l, jP2l, . . . , and jPn11l are n 1 1
orthonormal states of the probeP. jF

sid
ABl, jC

s0d
BPl, and

jC
sid
ABl are normalized states of the composite syste

AB, BP, andAB, respectively (not generally orthogonal)
Obviously, after the evolution (13), a Von Neumann’
type of measurement described by the projection operat
jPil kPij si ­ 1, 2, . . . , n 1 1d definitely determines the
input state with probabilitygi of success. Inter-inner-
products of Eq. (13) yield the matrix equation

Xs1d ­ G 1
p

In 2 G fkFsid
AB j F

s jd
ABlg

p
In 2 G1. (14)

Similar to the proof of Theorem 2, semipositivity o
the matrix Xs1d 2 G thus becomes the necessary an
sufficient condition for identification of the statesjC1l,
jC2l, . . . , andjCnl. This is the content of Theorem 4.

Theorem 4 determines the optimal measurement e
ciencies. For example, if there are three statesjC1l,
jC2l, and jC3l, and if jC1l is orthogonal tojC2l and
jC3l, but jC2l is not orthogonal tojC3l, then the opti-
mal efficiencies are given byg1 ­ 1, andsg2 1 g3dy2 #

1 2 jkC2 j C3lj. The equality holds if and only ifg2 ­
g3. This is essentially the result gained in Refs. [26
28], where the identification of two nonorthogonal state
is considered. Forn linearly independent and generally
nonorthogonal states, the optimal efficienciesg1, g2, . . . ,
and gn are obtainable by solving a series of inequalitie
from the semipositivity of the matrixXs1d 2 G.

In summary, we have shown that only linearly indepe
dent states can be probabilistically cloned with nonze
probabilities of success. The best possible cloning e
ciencies are derived. We establish connection betwe
the probabilistic cloning and the identification measur
ment, and obtain the optimal measurement efficiencies
n linearly independent states.
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