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We study the real-time dynamics of quantum models with long-range interactions coupled to a
heat bath within the closed-time path-integral formalism. We show that quantum fluctuations depress
the transition temperature. In the subcritical region there are two asymptotic time regimes with
(i) stationary and (ii) slow aging dynamics. We extend the quantum fluctuation-dissipation theorem to
the nonequilibrium case in a consistent way with the notion of an effective temperature that drives the
system in the aging regime. The classical results are recoverdd-$e0. [S0031-9007(98)06264-4]

PACS numbers: 75.50.Lk, 75.10.Jm, 75.40.Gb

The dynamics of nonequilibrium systems is being intentional (CTP-GF) [13]. We choose a set of noninteracting
sively studied now. Notably, glassy systems below theiharmonic oscillators with an adequate distribution of fre-
critical temperature have a very slow evolution with non-quencies as a bath, and a linear interaction between bath
stationary dynamics [1]. Several theoretical ideas [2] ar@nd system [14]. The bath variables are next integrated
used to describe it, namely, scaling arguments, phase spagat, and the effect of the bath manifests in the effective
models, analytical solutions to mean-field models, and nuaction through two nonlocal kernels associated with dis-
merical simulations. The analysis of simple mean-fieldsipation ¢;) and noise £). If the model is disordered,
models (with long-range interactions) has provided a genene needs to compute averaged expectation values. How-
eral scenario [3,4] that is now being verified numericallyever, the CTP-GF without sources is independent of the
for more realistic models [5,6]. All these studies concerrrealization of disorder and one can hence avoid, as in the
classical systems. classical case [15], the introduction of replicas. In addi-

Recent experiments [7] have motivated a renewedion, wheni — 0, the CTP-GF yields the classical Martin-
interest on the effect of quantum fluctuations (QF) onSiggia-Rose one.
glassy systems. Up to the present, theoretical studies haveFor the sake of concreteness, we study a generalization
focused on how QF affect therquilibrium properties of the p spin glass (or the model of a quantum particle in
[8-12]. an N-dimensional random potential):

Since glasses belo®, are not expected to reach equi- N
librium in experimentally accessible times, it is important 1
to devise a method to understand the influence of QF on Hil¢] = om Z I + Z Jir iy @i di, (1)
the truly nonequilibriumreal-time dynamics of this type = ot

of systems. Intuitively, one expects QF to affect only theyith I1, the canonical momentlT;, $;1= —ihé;;. The
short-time dynamics; however, they are also expected teuyltispin interactions/;, ; are taken from a Gaussian
act as thermal fluctuations. It is then not clear whethegjistribution with zero mean and variand@@p!/(2N? 1),

QF would destroy glassiness or modify it drastically. and we impos§N71[<¢,-2(t)>]J — N,V 1. Square brackets
Our aims are (i) to present a formalism suited to studyjenete an averallée over disorder dmiithe average over
the real-time dynamics of a nonlinear, possibly disorderedemporal histories. The quantum mean-field equations fol-
model in contact with a bath; (ii) to propose a framework|qy from a saddle-point approximation and involve the

to study its dynamics that could also be applicable tosymmetrized autocorrelatioNC(z, 1,,) = [(b(1)eb (1) +

more realistic, finite dimensional, models; (iii) to showthatd,(t )é(1))]; and the response to an infinitesimal per-
below a critical line QF do not destroy the nonequilibriumturbgtion h applied at timer,, NR(,1,) = 8[{d(1))/

effects of the glassy phase and that QF have the side eﬁeﬁh(tw)],lh=o. We define the vertex and self-energy as
of adding up to an effective temperatufggg; and (iv) to

prove thatTggr is nonzero even at zero bath temperature, D(t.t.) = D(t. 1) + 2hiv(t — tu
that it drives the dynamics at late epochs, and that it makes (8 1) ~( ) ( w)s
the dynamics appear classical in that time regime. A (e, 1) = Z(t, 1) — 4n(t — ty).

longer account of our results will appear elsewhere. ~ 3
The real-time dynamics of a quantum system is de= andD do not depend on the system-bath interactions.
scribed with a closed-time path-integral generating funcTheir explicit form for thep-spin model and = ¢, after
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averaging over disorder and a saddle-point evaluation is

D(t,1,) + %i(r, tw)

pJ

=3 <C(l,tw) + %R(r,t@)p—l.

The terms associated with the bath are

vt — t,) = j:o do I(w)coth Bhw/2)codw(t — t,)],

nit —t,) =60(t — tw)]0 do l(w)sinNw(t — t,)].

We chose an Ohmic distribution of oscillator frequencie
I(w) = My,/m)wexp(—|w|/A) with A a cutoff and

M, a constant that plays the role of a friction coefficient

[16]. Their particular form depends on the choice of bath
The equations, for a random initial condition, are

R(tatw) = Go(tv tw)

+ ]tftdudv G,(t,u)2(u,v)R(v,t,),
0o Jo
. . (2)
C(t,t,) = j;) duﬂ) dv R(t,u)D(u,v)R(t,,,v),

with G, (¢,u) = 8(t — u)[md? + u(t)] the propaga-
tor. u(z) is a Lagrange multiplier enforcing a spherical
constraint. It is determined by the gap equatigriz) =

ff) du3(t,u)C(t,u) + D(t,u)R(t,u) — md 2 C(t, t,,)|;, -
Causality impliesk(¢, t,,) = 2(¢,t,) = 0if t,, > . The
inertia imposes continuity on the equal-times correla
tor lim, —.,- 9,C(z,t,) = lim, _,+ 9,C(t,t,) = 0, and
R(t,t) =0, lim, _,- 9,R(t,t,) = 1/m. In what follows
we setr = r,,. The coupling to the bath implies dissipa-
tion; if My, # 0 the energy densit{E of the system de-

creases. One can then envisage to switch off the couplin§

(setMy, = 0) whenE reaches a desired value and fol-
low the subsequent evolution at constdit This would

be useful to further understand the energy landscape.

Here, we keepM+y, # 0 for all times, reparametrize
time according toa — My,t, and transformi in a free
parameterh — My, . Consistently,C — C, R — R/
(Myo),m— (My,)’m,J —J, B — BA— A/(My,),
and the units ardC] = [R] =[] =1, [m] = [B] =
[1/7] = [1/A] = [t].

We focus onp > 2, since p = 2 needs a special
treatment [17]. Since Eqgs. (2) are causal, we can constru
the solution numerically, step by stepinspanning) =

t, = t. The numerical and analytical studies yield the R(z,s,) = =

following.

(i) Quantum mode-coupling equationsFor i andT
above a critical line, there is a finite equilibration time,
after which equilibrium dynamics sets in. The solution

satisfies invariance under time translations (TTI) and the ¢(; ) = 2Re
quantum fluctuation-dissipation theorem (QFDT). Itis a
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“paramagnetic/liquid” phase. A TTI-QFDT ansatz yields
1
_me + Moo — 2((1)) ’ (3)
C(w) = D(w) |R(o)I%, 4)
with the couplest andC, and> andD, verifying QFDT:

R(r) = %9(7)[ Z—:e—fmtanr(%ﬁ(w) (5)

(r =t — t,). Equations (3) and (4) are the quantum ver-
sion of the mode-coupling equations used to describe su-
percooled liquids [18]. Away from the critical lin€; and

R decay to zero very fast, with oscillations. Approach-
ing the critical lineT,(%,), the decay slows down. If
T,(hg) # 0, a plateau develops i@. At the critical line,

R(w) =

Sthe length of the plateau tends to infinity. We discuss the

guantum critical pointT; = 0, i; # 0) below.

(i) Dynamics in the glassy phaseFor z andT be-
low the critical line,7gq — < (as a function ofV): times
are always finite with respect tegg. The system does
not reach equilibrium. This is a “spin-glass/glass” phase.
There are two time regimes with different behaviors ac-
cording to the relative value of — ¢, and a characteristic
(model-dependent) tim@& (z,,).

If +—1t,=7T(t,) [C(tt,) =q] the dynamics is
stationary; TTl and QFDT hold. In other words,

g + Cstlt — 1) = lim C(z,1,)

(6)

andRsr(t — t,,) = lim, . R(¢,t,). The correlation ap-
proaches a plateay since lim—, —.. Csr(t — t,) = 0.
The response approaches zero, lim.. Rst(t — t,,) =
0. The equations fo€st andRsy are identical to Egs. (3)
and (4) apart from contributions ta.. coming from the

aging regime. Cst andRgr are linked through Eg. (5).

Ifr — ¢, > T (t,) [C(t,1,) < ¢] the dynamics ision-
stationary;TTl and FDT do not hold, and there is quantum
aging. The correlation decays frognto 0, and we call it
aG(t, 1,). The decay ofC becomesmonotonicin the
ging regime; the properties of monotonic two-time corre-
lation functions derived in Ref. [4] imply

Caolttn) = o (B0). (7)

h(t)

h(z) increases with and can be determined only by solving
the matching problem [2,3]. For the-spin model; ! is
the identity. The system has a weak long-term memory
(WLTM) meaning that the response tends to zdnat,its
integral over a growing time interval faite.

Guided by the classical limit and the notion of effective
fmperatures we generalize the QFDT [Eq. (5)] to

2i

> ot — tW)]foo (21—: exd—iw(t — t,)]

X tanl‘(ix(l’tg)’ghw>C(t,w), (8)
fo dsexdio(t — 5)]C(t,s), (9)
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with X(z,1,) a function ofr and r,. If the evolution 1
is TTl and X (z,1,) = 1 for all times, Eq. (8) reduces to
Eq. (5). Interestingly enouglgrr = T/X(z,1,,) acts as

an effective temperature in the system [19]. For a model
with two two-time sectors like this one we propose

[ X¢r=1, if t—1t,=T(,), C(7 + tus tw)
X(t.1y) = {XAG(E,T), it 1> T(r),

Whenr andz,, are widely separated, the integration ower
in Eq. (8) is dominated by ~ 0 and tanhXg(z, #,,) X
Bhw/2] can be substituted b¥ (A, T)Bhw/2. This
holdseven atl' = 0 sinceXag (%, T) = x(A)T whenT ~
0 as we show below. Hence,

RaG(t,1,) ~ 0(t = 1,)XaGB3:,Cac(t,1y),  (10) 0.1 b n 100
and one recovers, in the aging regime, ¢theessicalmodi-  FIG. 1. The correlation_functio(r + t,,1,) vs 7 for the

fied FDT [3,12]. Numerically (and experimentally), itis » = 3 SGmodelA =5,/ =1,m = 1,7 = 0, and/ = 0.1.

i TR ; The waiting times are, from bottom to top, = 2.5, 5, 10, 20,
simpler to check it using the integrated respopeg 1) = and40. ¢ g~ 0.97. In the inset, the sampe” curves fgr = 40

[i, di" R(z,1") over a large time window [4,6]: and, from top to bottoms = 0.1, 0.5, 1, and?2.
(o) = | Jo " dT Rsa(7),
AR D [o d7' Rsr(7!) + X%G[q — Cag(t,t,)], vs the subsequent timeobtained from the numerical so-

lution to Egs. (2). These plots demonstrate the existence
of the stationary and aging regimes. For 1, < T (t,,)
[e.g., T (40) ~ 5] TTl and FDT are established, while be-
yond 7T (z,,) they break down. Fok = 0.1 the plateau in
Cisatg ~ 0.97. C oscillates aroung but is monotonic
when it goes below it. In the inset we present the depen-
denceofyonsiforT = 0. QF generate a < 1 such that

) . he largeri the smallerg. The addition of thermal fluctu-
An ansatz like Egs. (7)—(10) and the assumption 0ations?ms a similar ef?ect, the largEr the smallerg. In

- — "’2 _
WLTI\/J)EQat allows us to apg)roxmpa:[iEAG Jp(p order to check FDT in the stationary regime, in the inset
1)/2Cxc Rac and Dag ~ J°p/2Cxc solve the equa-  of Fig. 2 we comparer(1,1,) from the numerical algo-

the first line holds folC(z, ¢,,) > ¢, while the second holds
for C(t,t,) < q. Remarkably, the correlatioand the
violation of QFDT are given by similar expressions to the
classical one—though the values @fand X, depend
on /. In this sense, we say thdt (z,,) acts as avaiting-
time dependentdecoherence time,” beyond which the
nonequilibrium regime is “classical.”

tions in the aging regime. One has rithm for + = 40 fixed ands,, € [0,40] with R(z, #,,) from
1= Rst(w = 0)27p(p — Dg"2/2, (A1)
XaG/T = Rst(w = 0)(p — 2)/q (12) ' ' '
~ 0.4 [ 1

that become J?p(p — 1)/2¢?*(1 — ¢)*> = T?> and 04
Xac = (p —2)(1 — q)/qg whenhi — 0[3]. 0.3}

QF depress the critical temperature. The tran- 0.3 R 0.2 14
sition line T,(h,;) ends at a quantum critical point R(r + o, t) '
(T; = 0,h,; # 0). Equations (11) and (12) indicate that w 0.1 1
when the transition occurs df;(fy) # 0, Xag — 1, 02 H 0 (e
g — qa # 0, and there is a finite linear stationary 0 2 4 6 8
susceptibility Rsr(w = 0) < +o (as in the classi- T
cal limit). On this line, g4 = T2'” and g4 — 0 for 01r I

T, — 0. At the quantum critical pointg,; tends to *&
zero, and ifqd ~ (ﬁd - ﬁ)aﬂ/z then XA(;/T ~ (ﬁd - 0

h)~* and Rsr(w = 0) ~ (hg — h)*1=7/2  diverges 0 10 20 30 140 50
whenp > 2 (« is positive). T

Let us now discuss some numerical checks. In all figFIG. 2. The response function for the same model as above.
uresp =3, A=5,J=1,andm = 1. We useT =0 The waiting times increase from top to bottom. In the inset,
and/i = 0.1 to illustrate the dynamics in the glassy phase check of FDT in the stationary regime. The full line is

. ‘R(t,t,) for t = 40 fixed andz, € [0,40]. The thin line is
We also discuss the dependence upoand/:. obtained from Eq. (8) witlk = 1, using the numerical data for

In Figs. 1 and 2 we show the correlatictt + ¢,,,1,)  Cs(t — 1,) = C(t,1,) — ¢ (¢ ~ 0.97, see Fig. 1). In both
(log-log plot) and the respong&r + t,,t,) (linear plot)  cases the response is plotted against ¢ — ¢,,.
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