
VOLUME 80, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 1 JUNE 1998

031-
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The exact solution by means of Bethe’sAnsatzof a variant of the two-impurity Kondo problem
is presented. The occupation of the singlet and triplet states, the expectation valuek $S1 ? Ŝ2l, the
homogeneous and staggered magnetic field susceptibilities, and the specific heatg coefficient are studied
for the ground state as a function of the Ruderman-Kittel-Kasuya-Yosida–coupling strength. [S0
9007(98)06269-3]

PACS numbers: 75.20.Hr, 71.27.+a, 72.15.Qm
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At least two competing energy scales, e.g., the sing
site Kondo temperature and the Ruderman-Kittel-Kasuy
Yosida (RKKY) intersite interaction, are frequently in-
voked to explain the nonuniversal behavior of heav
fermion compounds. While the single-impurity Kondo
problem is by now well understood [1–3], the Kondo lat
tice model still remains unsolved. The simplest mode
showing the competition of these two energy scales
the two-impurity Kondo problem, which has been stud
ied by numerous methods [4], in particular by the numer
cal renormalization group [5] and conformal field theory
[6]. For strong ferromagnetic RKKY coupling between
the impurities, their spins lock into a triplet state, which is
spin compensated in analogy to theS  1 two-channel
Kondo problem. For strong antiferromagnetic RKKY
coupling, on the other hand, the spins of the two impu
rities compensate each other. These two fixed points a
in general joined by a line of fixed points [5,6] that yields
nonuniversal behavior, except for a special electron-ho
symmetry where the basins of attraction of these tw
stable fixed points are separated by an unstable fixed po
with non-Fermi-liquid properties.

The analytic solution of a many-body problem is al
ways of interest. In this Letter we present the exact solu
tion of a model for two interacting Anderson impurities in
the U ! ` limit. In this limit the ground state for each
impurity is a linear superposition of two ionic configura-
tions with zero and one localized (f) electrons, respec-
tively. This excludes the particle-hole symmetry require
for the unstable non-Fermi-liquid fixed point.

Some model assumptions and approximations are ne
essary to ensure the integrability. (i) Electrons are co
sidered in pairs, such that the impurities have either on
localized electron each or they are both in the empty co
figuration. States with one impurity in thef1 and the
other in thef0 configurations are not allowed. Since we
are interested in the magnetic integer-valent limit (bot
impurities in thef1 configuration), this assumption is not
expected to have dramatic consequences. (ii) In the A
derson model the impurity interacts with conduction elec
trons via a contact potential hybridization, i.e., only with
states havings-wave symmetry about the impurity site.
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It is then necessary to introduce two channels for th
conduction electrons, one for each impurity. These tw
channels are chosen to be even and odd parity states w
respect to the midpoint between the impurity sites [5
(iii) The two channels are sufficient to distinguish the im
purities, so that now both impurities can be considered
the same site. The RKKY interaction, which is the in
teraction between the spins mediated by the conducti
electrons, is introduceda priori as a parameter. This ap-
proximation is standard for numerical renormalizatio
group approaches [5]. (iv) The hybridization matrix ele
ment is assumed to be independent of the spin and
channel. (v) It is further assumed that pairs of propaga
ing electrons act like hard-core bosons (see below).

Without loss of generality we consider only forward
moving particles along a ring with periodic boundary
conditions and linearize the dispersion of the conductio
states about the Fermi level. The Hamiltonian of th
model with assumptions (i)–(iv) isH  H0 1 H1,

H0  yF

X
kms

kc
y
mkscmks 1 2e

X
ss0

j1s, 2s0l k1s, 2s0j

1
2V
N

X
k1k2ss0

sj1s, 2s0l k0jc2k2s0 c1k1s 1 H.c.d , (1)

H1  D
X

s1s2s
0
1s

0
2

j1s0
1, 2s0

2l $Ss0
1s1 ? $Ss0

2s2 k1s1, 2s2j , (2)

wherem  1, 2 labels the two impurities (channels),yF is
the Fermi velocity (to be equated to one) and the bra a
kets denote the impurity states,j0l being the state without
localized electrons andj1s, 2s0l the states in which each
site has a localized electron. The parametere is the
energy difference between the two ionic configuration
relative to the Fermi energy,D is the RKKY coupling
strength, and$S is the vector of spin-1y2 matrices.

To investigate under which conditions the Hamiltonia
H0 can be diagonalized exactly we consider first a pair
electrons (one in each channel) interacting with the imp
rities placed at the origin. The wave function is a linea
superposition of a propagating plane wave and a localiz
state containing the two electrons. Hence, when the co
duction electrons pass the impurities their wave functio
© 1998 The American Physical Society 4975
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acquires a phase shift offk  2 arctanf2sV 2y2dysk 2

edg, where2k is the momentum of their center of mas
This resonance occurs only if the two electrons arrive
gether as a pair with one electron in each channel. Indiv
ual electrons play then no role and pairs act like hard-c
bosons, i.e., their double occupancy is forbidden.

Consider now four electrons, arranged as two pairs w
one electron in each channel. The wave function for t
case is the linear superposition of two propagating pa
with one propagating pair and a localized pair. Assum
that the pairs do not interchange individual electrons
the scattering process (i.e., pairs are not broken up
recombined in a different way), the scattering mat
between pairs is

X̂sk1 2 k2d 
sk1 2 k2dÎ 2 iV 2P̂

sk1 2 k2d 2 iV 2
, (3)

wherek1 2 k2 is the momentum transfer, andÎ andP̂ are
the identity and permutation operators. The set of inco
ing and outgoing pairs is identical and these operators y
the amplitudes for the pairs remaining unchanged and
terchanged, respectively [assumption (v)].

Using the same assumptions as for the four elect
problem this solution is easily extended toN pairs of
electrons. Since all pairs move forward with the sam
velocity, the relative distancessxi 2 xjd are constants
that do not change with time. Whenever a pair pas
the origin it acquires a phase shiftfk. There are
N! space arrangements of the coordinates of the p
hxij. The wave functions in theN! sectors are matched
at adjacent boundaries by the scattering matrix (
Nonadjacent sectors are related by a sequence of mat
adjacent regions. The result is independent of the p
through which two points in theN-dimensional space are
joined (single-valued wave function) since (3) satisfies
triangular Yang-Baxter relation.

The above variant of the two-impurity Kondo proble
is then integrable via nested BetheAnsatz. The one and
two particle scattering matrices are actually identical
4976
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those of the fourfold degenerate Anderson impurity in th
U ! ` limit. The difference between the two models
is that the pairs act like hard-core bosons rather th
fermions. With two orbital channels and the spin w
have four bosonic degrees of freedom and four impuri
states, which can be redefined as a singlet and thr
triplet states,m  S, T1, T0, and T2. The effective
Hamiltonian [including assumption (v)] is

Heff  22i
4X

m1

Z
dxby

msxd
≠

≠x
bmsxd 1 2e

4X
m1

jml kmj

1 2V
4X

m1

Z
dxdsxd sjml k0jbmsxd 1 H.c.d , (4)

which differs fromH0 only by the condition that electrons
appear and remain always in pairs. Equation (4) co
serves the number of particles with given colorm, Nm 
jml kmj 1

R
dxby

msxdbmsxd. Now the RKKY interaction,
Eq. (2), (and the magnetic fields) are incorporateda pos-
teriori by adding DfNT1 1 NT0 1 NT2 2 3NSgy4 to
Eq. (4).

The model is diagonalized in terms of four neste
Bethe Ansätze(one for the charges and three for the
internal degrees of freedom), each giving rise to on
set of rapidities. All rapidities within a given set have
to be different (Fermi statistics of the rapidities). The
discrete BetheAnsatzequations and the classification o
states (solutions in the thermodynamic limit accordin
to the string hypothesis) are the same as for the SU(
Anderson impurity in theU ! ` limit [3,7] and will
not be repeated here. In the ground state there are f
propagating charges and bound states of charges of up
four hard-core bosons (four internal degrees of freedom
These states correspond to charge rapidity strings
length l, l  0, . . . , 3. The distribution functions for the
string states present in the ground state,ssldsjd, and their
respective holes,s

sld
h sjd, satisfy the coupled Wiener-Hopf

integral equations
s
sld
h sjd 1 ssldsjd 1

3X
q0

plqX
p0

Z Bq

2`
dj0ssqdsj0dal1q22psj 2 j0d 

l 1 1
2p

1
1
L

al11sj 2 ed , (5)
l
a

t

t

where aqsjd  sqV 2y2pdyfj2 1 sqV 2y2d2g, L is the
length of the box, andplq  minsl, qd 2 dl,q. The
integration limitsBq correspond to the Fermi points of
each class of states and are determined by the numbe
particles of each “color”Nq throughZ Bq

2`
djssqdsjd  Nq11 2 Nq12 ,

where the levels are arranged such thatN1 . N2 . N3 .

N4 with N5  0. The energy of the system is given by

E 
3X

l0

sl 1 1d
Z Bl

2`
djjssldsjd . (7)
r of

The two driving terms of Eqs. (5) correspond to the
host and the impurities, respectively. Since the integra
equations are linear, the densities can be separated into
host and an impurity part.

Assuming that the bandwidth is much larger than the
Kondo temperature and the RKKY splitting, the valence
of the impurities is completely determined byss3dsjd.
Although the valence is not of great physical interes
[because of the construction of model (1)], it is important
to study this quantity to understand how the integer valen
limit is reached. SettingBl  2` for l  0, 1, 2 but
keepingB3 finite, Eqs. (5) reduce to a single Wiener-Hopf
integral equation. Its solution yieldsnf , the number of
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localized electrons per impurity,

nf 
1
2

1
i

2p

Z `

2`

dx
x

s2ix 1 0d3ixy2

3 expfixẽ 2 2pjxjg
Gs1 2 2ixd

Gs1 2 ixy2d
,

ẽ 
p

V 2
se 2 B3d 1 4 ln 2 1

3
2

lns4DyeV 2d , (8)

where0 is a positive infinitesimal andD is a cutoff for
the electronic excitations introduceda posteriori into the
Bethe ansatz [3,7]. It is easy to verify thatnf varies
smoothly between 0 for̃e ¿ 0 to 1 for ẽ ø 0. The
magnetic integer valent limit is then obtained suppressi
the charge fluctuations by taking the limitẽ ! 2`.

The RKKY interaction changes the relative populatio
of the singlet and triplet states of the pair of impurities
The same procedure as for the Anderson impurity wi
crystalline fields [8] can now be followed. We hav
to distinguish the casesD . 0 and D , 0. For D .

0 the singlet has lower energy than the triplet and
the absence of magnetic fields the splitting is give
by the density ss0dsjd with B1  B2  2` and B0
parametrizing the splitting. Equations (5) consist then
two coupled equations forss0dsjd andss3dsjd. Since the
band width is much larger thanD, the feedback ofss0dsjd
onto ss3dsjd can be neglected. This decouples the tw
equations, leaving the Wiener-Hopf equation forss0dsjd
with two driving terms, one arising from the Kondo
effect and the other one from the valence fluctuatio
throughs

s3d
h . The latter tends to zero as the integer vale

limit is approached and can be neglected. Similarly, f
D , 0 the triplet has lower energy and the splitting i
given by ss2dsjd with B0  B1  2`. Neglecting the
valence fluctuations (integer valent limit), in both case
the splittingspsld is obtained by solving one Wiener-Hop
equation (l  0, 2)

spsld  2
1

2pi

Z dt
t 1 i0

Glstd ,

Glstd  exp

∑
2i

p

V 2 sBl 2 edt
∏

3

∑
2it 1 0

2ec

∏
2ity2 Gs1 1 2itd

Gs1 1 3ity2d
Flstd , (9)

where F0  1, F2std  sinhspty2dy sinhs3pty2d, and
c  27y256. For D . 0 the level populations are
nS 

1
4 1

3
4 sps0d, nT 

1
4 2

1
4 sps0d, while for D , 0

we have nS 
1
4 2

3
4 sps2d, nT 

1
4 1

1
4 sps2d. Bl is

related toD through

exp

∑
psBl 2 ed

2V 2

∏


jDj

TK
Gs1y4d s4ecd1y4, l  0, 2 ,

(10)

where TK is the Kondo temperature for theS  3y2
Coqblin-Schrieffer model.
ng

n
.

th
e

in
n

of

o

ns
nt
or
s

s
f

The occupation of the singlet and triplet states as
function of the RKKY-coupling strength is displayed in
Fig. 1(a). nS varies between 0 and 1, whilenT decreases
from 1y3 to 0. Both are analytic functions ofD. For
jDj ¿ TK they approach their asymptotic values on
logarithmic scale. The logarithmic dependence arises fro
the factors2it 1 0d2ity2 in Eq. (9), and can be obtained
by closing the contour through the lower complex half
plane. Another quantity of interest is the ground stat
expectation valuek $S1 ? $S2l 

3
4 snT 2 nSd, shown as the

dashed line in Fig. 1(a).
The susceptibility is obtained as the linear response

the impurities to a small homogeneous field. The magnet
field lifts the degeneracy of the triplet states, so that no
all integration limitsBl are finite. We assume thatH ø

jDj ø D, so that forD . 0 we haveB1, B2 ø B0 ø

B3, whereB1 and B2 parametrize the magnetic field. In

FIG. 1. (a) Occupation of the singletnS, a triplet statenT

(solid curves), and the expectation valuek $S1 ? $S2l (dashed),
(b) the homogeneous and staggered field susceptibilities, a
(c) the specific heatg (solid), S to T fluctuations contribution
to g (dashed) and the Wilson ratio (dash-dotted) as a functio
of DyTK for the ground state.
4977
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linear response the feedback ofss1d andss2d on the other
two distributions can be neglected, so that the ratio of t
susceptibilities of the impurity and the host is given b
the j ! 2` asymptotic of the driving terms forss1d and
ss2d. In general there are three contributions, namely,
Kondo term, an RKKY-splitting contribution, and one du
to valence fluctuations. As before we consider the ma
netic integer valence limit, i.e., we suppress the valen
4978
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fluctuations. ForD . 0 the singlet has lower energy than
the triplet, so that no Kondo term arises. On the other ha
for D , 0 we haveB0, B1 ø B2 ø B3, whereB0 andB1

parametrize the magnetic field. The susceptibility is no
given by thej ! 2` asymptotics of the driving terms for
ss0d andss1d. In this case the triplet has the lower energ
so that there is a Kondo term and the RKKY-splitting con
tribution. With a  s3ecd1y3Gs4y3d we obtain
x
sld
impyx

sld
host  fdl,2e2psBl2edy3V 2

2 a
Z

dtGlstdyst 2 2iy3dgys3ajDjyDd , (11)
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wherel  0 refers toD . 0 andl  2 to D , 0.
The homogeneous field susceptibility for the impurit

normalized toximpsD  0d  2yTK is shown in Fig. 1(b).
For D . 0 the singlet state dominates and the susceptib
ity rapidly falls off with D. There is no van Vleck contri-
bution, since the field does not couple the singlet and trip
states. The dependence onD is more exciting forD , 0
(triplet has lower energy). For largejDj the spin triplet is
spin compensated into a singlet via the Kondo effect. Th
is analogous to the two-channel Kondo problem, whe
the channels form composites of spin one which compe
sate an impurity ofS  1 into a singlet. In this limit
x

sld
impsDd  sDyTK d4y3yTK , i.e., the effective Kondo tem-

perature is renormalized bysDyTK d4y3 (4y3 is the ratio of
the degeneracy of theS andT states over that of the triplet).
This effect was found previously in the context of orbita
quenching by crystalline fields in the Coqblin-Schrieffe
model [8,9]. The dependence of Eq. (11) onD is analytic.

The response to a staggered field is also of interest.
staggered field couples theT0 andS states. The staggered
susceptibility is given byxstagg  snS 2 nT dyspDd and
is shown in Fig. 1(b). The staggered susceptibility has
large peak for a small positive RKKY splittingD.

The low temperature specific heat is proportional toT
with theg coefficient given by [10]

gimp 
p

6

3X
l0

s
sld
impsBld

s
sld
hostsBld

. (12)

If the valence fluctuations are suppressed the term
l  3 does not contribute. In zero magnetic field th
remaining terms can be written as

g
sld
imp 

p

3

x
sld
imp

x
sld
host

1
p

6

s
sld
impsBld

s
sld
hostsBld

, (13)

wherel  0 for D . 0 andl  2 for D , 0. The second
term arises from the RKKY splitting (S to T fluctuations)
and is given by the resonance (dashed curve) sho
in Fig. 1(c). Theg coefficient normalized to its value
for D  0 is given by the solid line; for large negative
D, g is determined by the susceptibility, while for
large positiveD the S to T fluctuations are dominating.
The dash-dotted curve in Fig. 1(c) is the Wilson ratio
WR  ximpygimp, normalized to theD  0 value. Its
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D dependence evidences the nonuniversal nature of t
interplay between RKKY and Kondo interactions.

In summary, we mapped a variant of the two-impurity
model onto the SU(4) Anderson impurity with largeU.
There are no particle-hole symmetries from the start, s
that the unstable fixed point with non-Fermi-liquid prop-
erties is bypassed. Instead, nonuniversal behavior as
function of DyTK is obtained, as expected from a line of
fixed points joining the two stable fixed end-points cor
responding toD ! 6`. Our results reproduce all rele-
vant limits correctly. The method can be extended to mor
complex systems, e.g., impurities with aG8 ground state.
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