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Integrable Two-Impurity Kondo Model
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The exact solution by means of Bethedmsatzof a variant of the two-impurity Kondo problem
is presented. The occupation of the singlet and triplet states, the expectation(salus,), the
homogeneous and staggered magnetic field susceptibilities, and the specificcoefficient are studied
for the ground state as a function of the Ruderman-Kittel-Kasuya-Yosida—coupling strength. [S0031-
9007(98)06269-3]

PACS numbers: 75.20.Hr, 71.27.+a, 72.15.Qm

At least two competing energy scales, e.g., the singlét is then necessary to introduce two channels for the
site Kondo temperature and the Ruderman-Kittel-Kasuyaeonduction electrons, one for each impurity. These two
Yosida (RKKY) intersite interaction, are frequently in- channels are chosen to be even and odd parity states with
voked to explain the nonuniversal behavior of heavyrespect to the midpoint between the impurity sites [5].
fermion compounds. While the single-impurity Kondo (iii) The two channels are sufficient to distinguish the im-
problem is by now well understood [1—-3], the Kondo lat- purities, so that now both impurities can be considered at
tice model still remains unsolved. The simplest modelthe same site. The RKKY interaction, which is the in-
showing the competition of these two energy scales iseraction between the spins mediated by the conduction
the two-impurity Kondo problem, which has been stud-electrons, is introduced priori as a parameter. This ap-
ied by numerous methods [4], in particular by the numeriproximation is standard for numerical renormalization
cal renormalization group [5] and conformal field theory group approaches [5]. (iv) The hybridization matrix ele-
[6]. For strong ferromagnetic RKKY coupling between ment is assumed to be independent of the spin and the
the impurities, their spins lock into a triplet state, which ischannel. (v) It is further assumed that pairs of propagat-
spin compensated in analogy to t§e= 1 two-channel ing electrons act like hard-core bosons (see below).
Kondo problem. For strong antiferromagnetic RKKY  Without loss of generality we consider only forward
coupling, on the other hand, the spins of the two impu-moving particles along a ring with periodic boundary
rities compensate each other. These two fixed points amonditions and linearize the dispersion of the conduction
in general joined by a line of fixed points [5,6] that yields states about the Fermi level. The Hamiltonian of the
nonuniversal behavior, except for a special electron-holenodel with assumptions (i)—(iv) IH# = Hy, + Hj,
symmetry where the basins of attraction of these two " , ,
stable fixed points are separated by an unstable fixed poifto = Vr D kemiocmis + 2€ O |10,20") (10, 20|

with non-Fermi-liquid properties. kmer oo!
The analytic solution of a many-body problem is al- + v Z (I1o, 26"y Oleag,orciro + H.C), (1)
ways of interest. In this Letter we present the exact solu- koo : '

tion of a model for two interacting Anderson impurities in . .
the U — = limit. In this limit the ground state for each Hi = A Z 01,2058 516, * Sote{lo1,202], (2)
impurity is a linear superposition of two ionic configura- o020,
tions with zero and one localizedf) electrons, respec- wherem = 1,2 labels the two impurities (channels)y is
tively. This excludes the particle-hole symmetry requiredthe Fermi velocity (to be equated to one) and the bra and
for the unstable non-Fermi-liquid fixed point. kets denote the impurity statg8) being the state without
Some model assumptions and approximations are netecalized electrons and o, 20°') the states in which each
essary to ensure the integrability. (i) Electrons are consite has a localized electron. The parameteis the
sidered in pairs, such that the impurities have either onenergy difference between the two ionic configurations
localized electron each or they are both in the empty conrelative to the Fermi energyA is the RKKY coupling
figuration. States with one impurity in thg! and the strength, and is the vector of spin-12 matrices.
other in thef° configurations are not allowed. Since we To investigate under which conditions the Hamiltonian
are interested in the magnetic integer-valent limit (bothH, can be diagonalized exactly we consider first a pair of
impurities in thef!' configuration), this assumption is not electrons (one in each channel) interacting with the impu-
expected to have dramatic consequences. (ii) In the Arrties placed at the origin. The wave function is a linear
derson model the impurity interacts with conduction elec-superposition of a propagating plane wave and a localized
trons via a contact potential hybridization, i.e., only with state containing the two electrons. Hence, when the con-
states havings-wave symmetry about the impurity site. duction electrons pass the impurities their wave function
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acquires a phase shift ap; = 2arctafi—(V?/2)/(k —  those of the fourfold degenerate Anderson impurity in the

€)], where2k is the momentum of their center of mass. U — « limit. The difference between the two models

This resonance occurs only if the two electrons arrive tois that the pairs act like hard-core bosons rather than

gether as a pair with one electron in each channel. Individfermions. With two orbital channels and the spin we

ual electrons play then no role and pairs act like hard-corbave four bosonic degrees of freedom and four impurity

bosons, i.e., their double occupancy is forbidden. states, which can be redefined as a singlet and three
Consider now four electrons, arranged as two pairs withriplet states,m = §,T+,7T0, and T—. The effective

one electron in each channel. The wave function for thisdamiltonian [including assumption (v)] is

case is the linear superposition of two propagating pairs . .

with one propagating pair and a localized pair. Assuming _ . d

that the pairs do not interchange individual electrons in{Tert = —21 m;f dxb,, (x) ab’”(x) +2e le ) (m|

the scattering process (i.e., pairs are not broken up and

4
recombined in a different way), the scattering matrix +2v Z f dx8(x) (Im)(Olbn(x) + H.C), (4)
between pairs is = " ’

(k= k)l — iV2P i (3)  which differs fromH, only by the condition that electrons
(ki = ko) — iV? appear and remain always in pairs. Equation (4) con-

wherek; — k; is the momentum transfer, adcand? are ~ Serves the number of particles with given coier N, =

the identity and permutation operators. The set of incombm) (m| + [ dxb,(x)b,,(x). Now the RKKY interaction,

ing and outgoing pairs is identical and these operators yielfd- (2), (and the magnetic fields) are incorporagepos-

the amplitudes for the pairs remaining unchanged and irteriori by adding A[N7+ + Nro + Nr— — 3Ns]/4 to

terchanged, respectively [assumption (v)]. Eq. (4).

Using the same assumptions as for the four electron The model is diagonalized in terms of four nested
problem this solution is easily extended 2 pairs of Bethe Ansétze(one for the charges and three for the
electrons. Since all pairs move forward with the saménternal degrees of freedom), each giving rise to one
velocity, the relative distanceér; — x;) are constants Set of rapidities. All rapidities within a given set have
that do not change with time. Whenever a pair passe® be different (Fermi statistics of the rapidities). The
the origin it acquires a phase shifh,. There are discrete BetheAnsatzequations and the classification of
N! space arrangements of the coordinates of the paigfates (solutions in the thermodynamic limit according
{x;}. The wave functions in th&/! sectors are matched to the string hypothesis) are the same as for the SU(4)
at adjacent boundaries by the scattering matrix (3)Anderson impurity in theU — < limit [3,7] and will
Nonadjacent sectors are related by a sequence of matchegt be repeated here. In the ground state there are free
adjacent regions. The result is independent of the patRropagating charges and bound states of charges of up to
through which two points in tha/-dimensional space are four hard-core bosons (four internal degrees of freedom).
joined (single-valued wave function) since (3) satisfies thelhese states correspond to charge rapidity strings of
triangu|ar Yang_Baxter relation. |engthl, [1=0,...,3. The distribution functions for the

The above variant of the two-impurity Kondo problem String states present in the ground staté)(¢), and their
is then integrable via nested BetAmsatz The one and respective holesr,(f)(g), satisfy the coupled Wiener-Hopf
two particle scattering matrices are actually identical tointegral equations

X(ky — ko) =

Pig

3 B,
@)+ @) + 33 [ ar e - €)=

9=0p=0" - 2m

s Lane - o, ©)

where a, (&) = (qV?/2m)/[€* + (¢qV?/2)*], L is the | The two driving terms of Egs. (5) correspond to the
length of the box, andp;,, = min(l,q) — 6;,. The host and the impurities, respectively. Since the integral
integration limits B, correspond to the Fermi points of equations are linear, the densities can be separated into a
each class of states and are determined by the number lbbst and an impurity part.

particles of each “colorN, through Assuming that the bandwidth is much larger than the
B Kondo temperature and the RKKY splitting, the valence

[ "dEaD(g) = Ngs1 — Ngva. of the impurities is completely determined by (&).
—o Although the valence is not of great physical interest

where the levels are arranged such tiat> N, > N3 > [because of the construction of model (1)], it is important
N, with N5 = 0. The energy of the system is given by  to study this quantity to understand how the integer valent

3 s limit is reached. Settingg; = —« for [ = 0,1,2 but
E = I+ 1 d D(g) . 7 keepingB; finite, Egs. (5) reduce to a single Wiener-Hopf
IZO( )ffoo £607(¢) 0 integral equation. Its solution yields;, the number of
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localized electrons per impurity,
1 L d_x (—ix + O)Bix/Z
27 )% X

ng = )

X exdix&é — 27T|x|]rl:‘((ll_;;i/xz)),

e = %(E — By) + 4In2 + %In(4D/eV2), (8)

where0 is a positive infinitesimal an®d is a cutoff for
the electronic excitations introducedposterioriinto the
Bethe ansatz [3,7]. It is easy to verify tha} varies
smoothly between O foe > 0 to 1 for € < 0. The

The occupation of the singlet and triplet states as a
function of the RKKY-coupling strength is displayed in
Fig. 1(a). ns varies between 0 and 1, whilg- decreases
from 1/3 to 0. Both are analytic functions af. For
|A| > Tx they approach their asymptotic values on a
logarithmic scale. The logarithmic dependence arises from
the factor(—ir + 0)~*/2 in Eq. (9), and can be obtained
by closing the contour through the lower complex half-
plane. Another quantity of interest is the ground state
expectation valuéS, - 5,) = 3 (ny — ns), shown as the
dashed line in Fig. 1(a).

The susceptibility is obtained as the linear response of
the impurities to a small homogeneous field. The magnetic

magnetic integer valent limit is then obtained suppressingield lifts the degeneracy of the triplet states, so that now

the charge fluctuations by taking the lingit— —co,

all integration limitsB, are finite. We assume that <«

The RKKY interaction changes the relative population|A| <« D, so that forA > 0 we haveB;,B; < By <
of the singlet and triplet states of the pair of impurities. B;, whereB; and B, parametrize the magnetic field. In
The same procedure as for the Anderson impurity with

crystalline fields [8] can now be followed. We have 10T T 025
to distinguish the caseA >0 and A < 0. For A > [ <§:§2; N -

0 the singlet has lower energy than the triplet and in 0.8~ s Tooo
the absence of magnetic fields the splitting is given [ \ ]
by the densityoc©®(¢) with B, = B, = —» and By £ 08 \ ]
parametrizing the splitting. Equations (5) consist then of ) . (@) 19025
two coupled equations far®(¢) ando®(£). Since the 04 \

band width is much larger thah, the feedback oé? (&) = \ Joso
onto ®(¢) can be neglected. This decouples the two 02 \\\\ ]
equations, leaving the Wiener-Hopf equation tef’(¢) L — | ~ T
with two driving terms, one arising from the Kondo 0,07t AR 078
effect an 3)the other one from the valence fluctuations 3'°:

througho;, . The latter tends to zero as the integer valent 25

limit is approached and can be neglected. Similarly, for
A < 0 the triplet has lower energy and the splitting is
given by o@(¢) with By = B, = —». Neglecting the
valence fluctuations (integer valent limit), in both cases
the splittingsp") is obtained by solving one Wiener-Hopf

-
(=]

Bbe)s x)l 1

equation [ = 0,2)

dt
—F Gy(2),
S0

o_ __1

27

exp{—i%(Bl — e)ti|

—it + 0772 T + 2ir)
X [ } Ta 32 710 O

where Fyo = 1, F,(t) = sinh(wt/2)/sinh(37t/2), and
¢ =27/256. For A >0 the level populations are
ns = % + %sp(o), nr = % - %sp(o), while for A <0
we haveng = % - %sp(z), nr = % + %sp(z). B, is
related toA through

exp{ m(B; — 6)}
(10)

2v?2
where Tx is the Kondo temperature for th& = 3/2
Coqgblin-Schrieffer model.
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FIG. 1. (a) Occupation of the singlets, a triplet statenr
(solid curves), and the expectation val(® - S,) (dashed),

(b) the homogeneous and staggered field susceptibilities, and
(c) the specific heay (solid), S to T fluctuations contribution

to vy (dashed) and the Wilson ratio (dash-dotted) as a function
of A/Tk for the ground state.
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linear response the feedback®f ando® on the other fluctuations. ForA > 0 the singlet has lower energy than
two distributions can be neglected, so that the ratio of thehe triplet, so that no Kondo term arises. On the other hand,
susceptibilities of the impurity and the host is given byfor A < 0 we haveBy, By < B, < B3, whereB, andB;
the ¢ — —o asymptotic of the driving terms far'") and ~ parametrize the magnetic field. The susceptibility is now
0@, In general there are three contributions, namely, ajiven by the¢ — —o asymptotics of the driving terms for
Kondo term, an RKKY-splitting contribution, and one due ¢ ando". In this case the triplet has the lower energy
to valence fluctuations. As before we consider the magso that there is a Kondo term and the RKKY-splitting con-
netic integer valence limit, i.e., we suppress the vaIerchibution. With @ = (3ec)'/?T'(4/3) we obtain

X/ X = [812e2™ B9V _ f diG,(1)/(t — 2i/3)]/(alAl/D), (11)

wherel = OreferstoA > 0and/ =2to A < 0. A dependence evidences the nonuniversal nature of the
The homogeneous field susceptibility for the impurity interplay between RKKY and Kondo interactions.

normalized tQyimp (A = 0) = 2/Tk is shown in Fig. 1(b). In summary, we mapped a variant of the two-impurity

For A > 0 the singlet state dominates and the susceptibilmodel onto the SU(4) Anderson impurity with largé

ity rapidly falls off with A. There is no van Vleck contri- There are no particle-hole symmetries from the start, so

bution, since the field does not couple the singlet and triplethat the unstable fixed point with non-Fermi-liquid prop-

states. The dependence Ans more exciting forA < 0  erties is bypassed. Instead, nonuniversal behavior as a

(triplet has lower energy). For larda| the spin tripletis  function of A/Tk is obtained, as expected from a line of

spin compensated into a singlet via the Kondo effect. Thidixed points joining the two stable fixed end-points cor-

is analogous to the two-channel Kondo problem, whereesponding toA — *%. Our results reproduce all rele-

the channels form composites of spin one which compenvant limits correctly. The method can be extended to more

sate an impurity ofS = 1 into a singlet. In this limit complex systems, e.g., impurities witH'g ground state.

Xi(rlrzp(A) = (A/Tx)*3/Tk, i.e., the effective Kondo tem- ~ The support of the Depa_rtment of Energy under Grant

perature is renormalized A /Ty )*/3 (4/3 is the ratio of ~ NO. DE-FG05-91ER45443 is acknowledged.

the degeneracy of theandT states over that of the triplet).

This effect was found previously in the context of orbital

quenching by crystalline fields in the Cogblin-Schrieffer 55, 331 (1983)

model [8,9]. The dependence of Eq. (11)Mis analytic. 151 A M. Tsvelick and P.B. Wiegmann, Adv. Phy82, 453
The response to a staggered field is also of interest. A"~ (19g3).

staggered field couples tfi® andS states. The staggered [3] p. Schiottmann, Phys. Ref81 1 (1989).

susceptibility is given byyswee = (ns — nr)/(wA) and  [4] P. Schiottmann, Phys. Rev. B1, 1084 (1980); 34,

is shown in Fig. 1(b). The staggered susceptibility has a 2007 (1986); J.W. Rasul and A.C. Hewson, Solid State

[1] N. Andrei, K. Furuya, and J. Lowenstein, Rev. Mod. Phys.

large peak for a small positive RKKY splitting. Commun.52, 217 (1984); P. Coleman, Phys. Rev.35,
The low temperature specific heat is proportionall'to 5072 (1987); M. Lavagna, J. Magn. Magn. Matéi. &
with the y coefficient given by [10] 48, 360 (1985); O. Sakai and Y. Shimizu, J. Phys. Soc.
Jpn. 61, 2333 (1992);61, 2348 (1992); T. Saso, Phys.
7 & oy (B) Rev. B44, 450 (1991).
Yimp — 3 Z O (12) [5] C. Jayaprakash, H.R. Krishna-murthy, and J. W. Wilkins,
=0 Ohost(B1) Phys. Rev. Lett47, 737 (1981); B.A. Jones and C. M.

If th | f . d th f Varma, Phys. Rev. Letg8, 843 (1987); B. A. Jones, C. M.
the valence fluctuations are suppressed the term for Varma, and J. W. Wilkins, Phys. Rev. Leftl, 125 (1988);

[ = 3 does not contribute. In zero magnetic field the B.A. Jones, B.G. Kotliar, and A.J. Millis, Phys. Rev. B

remaining terms can be written as 39, 3415 (1989); B.A. Jones and C.M. Varma, Phys.
0 0 Rev. B40, 324 (1989).
O _ 7 Xmp | T Timp (B1) (13) [6] I. Affeck, A.W.W. Ludwig, and B.A. Jones, Phys.
Yimp 3 M 6 . ’ Rev. B52, 9528 (1995); A. Ludwig and I. Affleck, Phys.
Xhost O host (Bl)

Rev. Lett.67, 161 (1991).

wherel = 0forA > 0andl = 2for A < 0. Thesecond [7] P. Schlottmann, Z. Phys. B9, 109 (1982);51, 49 (1983),
term arises from the RKKY splittingS(to T fluctuations) Phys. Rev. Lett50, 1697 (1983).

and is given by the resonance (dashed curve) showr®! Eg,sfggl,o(ﬂlﬁgﬂ)r" Phys. Rev. ), 1454 (1984); Z. Phys. B
in Fig. 1(C).' They coefficien_t nqrmalized to its valge [9] K.,Yamada, K.. Hanzawa, and K. Yosida, Prog. Theor.
for A = 0 is given by the solid line; for large negative Phys.71, 450 (1984).

A, vy is determined by the susceptibility, while for [10] A.M. Tsvelick, J. Phys. C 17, 2299 (1984):

large positiveA the S to T fluctuations are dominating. P. Schlottmann, Z. Phys. B4, 207 (1984); N. Kawakami,
The dash-dotted curve in Fig. 1(c) is the Wilson ratio, S. Tokuono, and A. Okiji, J. Phys. Soc. JpB3, 51
WR = Ximp/7Vimp, NOrmalized to theA = 0 value. Its (1984).

4978



