
VOLUME 80, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 19 JANUARY 1998

492
Oscillation and Generation of Nonclassical States in Three-Photon Down-Conversion

Timo Felbinger, Stephan Schiller,* and Jürgen Mlynek
Fakultät für Physik, Universität Konstanz, D-78457 Konstanz, Germany
(Received 3 January 1997; revised manuscript received 14 July 1997)

The process of three-photon down-conversion 3v ! v 1 v 1 v in an optical cavity is analyzed
theoretically. A classical feature of this system is a first-order transition of the fundamental mode above
a threshold3v pump power. We calculate the properties of the intra- and extracavity states using
analytical calculations and quantum trajectory simulations. A positive, non-Gaussian Wigner function
exhibiting a threefold symmetry is found. Above threshold the Wigner function displays separate peaks
among which tunneling occurs. [S0031-9007(97)04876-X]

PACS numbers: 42.50.Dv, 42.50.Lc, 42.65.St
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The interaction between electromagnetic waves in no
linear optical media plays a key role in quantum optic
as it provides a means of generating nontrivial quantu
states of light. Preeminent among these are the squee
states whose quantum uncertainty in one quadrature is
than that of a coherent state. Strongly squeezed sta
have been produced using second-ordersxs2dd nonlin-
ear optical media, e.g., by two-photon down-conversi
2v ! v 1 v [1], as well as by self-phase modulatio
of high-power coherent light in third-ordersx s3dd media
[2]. Except for the single-photon state, it has so far n
been possible to generate experimentally other noncla
cal states of light with the novel feature of non-Gaussi
statistics.

This Letter reports the analysis of degenerate thre
photon down–conversion (TD)3v ! v 1 v 1 v in a
x s3d medium as a possible source of a new class of qu
tum states of light. This process has been studied for r
ning waves [3–5], but the smallx s3d nonlinearities and
limited laser powers available today rule out this co
figuration for generating continuous-wave optical field
With this motivation, we discuss the resonant TD fre
quency conversion process shown in Fig. 1. The TD o
cillator (TDO) is composed of an optical cavity resona
for the v1 andv3 ­ 3v1 waves, pumped by an injected
coherent state of amplitudéand frequencyv3. Outcou-
pling of the two cavity modes occurs through the mirro
with loss ratesg1 and g3. The modes interact via the
Hamiltonian

Ĥs3d ­ ih̄ks3dsây3

1 â3 2 â3
1â

y
1 d . (1)

Both the interaction constantks3d ~ x s3d and the ampli-
tude ´ of the incoupled field may be assumed to be re
and positive. Three additional Kerr-like nonlinear inte
actions, which may be of the same order of magnitude
Ĥs3d, have also to be taken into account:

Ĥs11d ­ 2h̄ks11dâ
y2

1 â2
1, Ĥs33d ­ 2h̄ks33dâ

y2

3 â2
3 ,

Ĥs13d ­ 2h̄ks13dâ
y
1 â1â

y
3 â3 . (2)

Under the influence of these terms, the cavity eigenf
quenciesv1,3 become intensity dependent; to compensa
for this, we introduce detuningsD1,3 relative to the eigen-
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frequenciesv
s0d
1,3 at zero intensity:v1,3 ­ v

s0d
1,3 1 D1,3.

To obtain the behavior of the TDO, we first derive the
classical equations of motion and discuss their steady st
solutions. The quantum properties are calculated usi
quantum trajectory simulations, including simulated ho
modyne detection and quantum state reconstruction. W
finally give an analytical approximation derived from a
perturbation expansion in the limit of a weak pump field.

Classical steady state solutions.—The classical equa-
tions of motion for the field amplitudes are

Ùa1 ­ 3ks3dap2

1 a3 1 2iks11dap
1a2

1

1 iks13da1ap
3a3 2 iD1a1 2 g1a1 , (3)

Ùa3 ­ 2ks3da3
1 1 2iks33dap

3a2
3

1 iks13dap
1a1a3 2 iD3a3 2 g3a3 1 ´ . (4)

Here we are interested only in the stationary solution
and we focus on the special caseks11d ­ ks13d ­ ks33d ­
D1 ­ D3 ­ 0 of no Kerr interactions and zero detun-
ings. With nonvanishing Kerr interactions, the sam
stationary pointssa1, a3d can then be realized by choosing
D1 ­ 2ks11dja1j

2 1 ks13dja3j
2 and D3 ­ ks13dja1j

2 1

2ks33dja3j
2. This choice is optimal in the sense that it will

produce highest intracavity amplitudes for a given pum
field.

The trivial solutiona1 ; 0, a3 ­ ´yg3 is classically
stable for all choices of the free parameters. This is
significant difference compared to the case of two-photo
down-conversion, where the trivial solution is unstabl
above threshold. The stationary solutions with finite fiel
a1 lie on three curves; we give them in normalized form:

FIG. 1. Doubly resonant three-photon down-conversion in a
optical cavity and balanced homodyne detectors for quantu
state reconstruction.
© 1998 The American Physical Society
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1 ­ jarel
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2pi

3
n, n [ h0, 1, 2j ,

arel
3 ­ 1yjarel

1 j, ´rel ­ jarel
1 j3y4 1 3jarel

1 jy4 ,
(5)

where a
rel
1,3 :­ a1,3ya

th
1,3, ´rel :­ ´y´th, ja

th
1 j ­

sg1g3d
1

4 y
p

3ks3d, a
th
3 ­ g

3

4
1 ys

p
3ks3d g

1

4
3 d, and

´th ­
4

3
p

3

sg1g3d
3

4

p
ks3d

. (6)

The set of stationary states of the fundamental mo
has threefold symmetry in phase space; it is shown
Fig. 2. It can be seen that for any pump field amplitud
´ above the threshold valuéth, there exist six stationary
solutions with finite fielda1. Stability analysis reveals
that the dashed branches represent unstable solutions;
solutions on the solid branches are stable, iffg1 , g3.
The power conversion efficiency from the pump wav
3v1 to v1 reaches 100% at a pump power 3 times abo
threshold and decreases thereafter.

Quantum trajectory simulations.—We have performed
quantum trajectory simulations using an algorithm simila
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FIG. 2. Classical stationary solutions of the TDO as a func
tion of pump field. The dashed branches represent unstab
solutions.

to the one described in [6]. The evolution of the system
is determined by a continuous Hamiltonian proces
containing an anti-Hermitian term in addition to the
nonlinear interaction, and one stochastic jump proce
per mode. We have generalized the stochastic proce
in [6] by simulating balanced homodyne detection instea
of photon counting. For every modej, this requires a
stochastic process with three branches per time stept,
jCl °

8>>>>><>>>>>:
sâj 1 hjd jCl, pj,1 ­ gjt

kCj sây
j 1 h

p
j d sâj 1 hjd jCl

kC j Cl
,

sâj 2 hjd jCl, pj,2 ­ gjt
kCj sây

j 2 h
p
j d sâj 2 hjd jCl

kC j Cl
,

jCl, pj,3 ­ 1 2 pj,1 2 pj,2 ,

(7)
r

r

t

t,
wherehj is the complex local oscillator amplitude. The
first and second branch correspond to a click of the fi
and second detector, respectively, and the third bran
describes the absence of a click during the time intervalt.
Thepj,i are the probabilities attributed to the branches.

In the simulations the two-mode state vectorjCl is
expressed using a shifted Fock basis [7,8]. The classi
solutions calculated above are a good choice, in m
cases, for the originsa1, a3d of the shifted basis. During
the simulations, a new origin is chosen whenever t
mean amplitudes differ from the current origin. Thi
allows efficient representation of states containing mo
than 10 000 photons, as long as the state is sufficien
well localized in phase space, using typically only 32 o
64 basis vectors per mode [8].

The density matrix, and equivalently the Wigne
function, is calculated by time averaging over a quantu
trajectory jCstdl. Figure 3 shows Wigner functions
generated with parametersks3d ­ 0.15g1, ks11d ­
ks13d ­ ks33d ­ 0, g3 ­ 2g1, for different pump field
strengths ´ below and above the threshold valu
´th ­ 3.34g1. This threshold corresponds to a ver
low intracavity pump photon number ofN3 ­ 1.25.
The emergence of peaks corresponding to the clas
cally stable bright states (5) of the fundamental mod
is obvious. Below threshold, the state of the syste
retains an interesting structure with threefold sym
st
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metry (a “star state”): its Wigner function is clearly
non-Gaussian and not a minimum uncertainty state.
Similar states have been described in [3–5] for a
single-pass scheme, where negativities of the Wigner
functions appear. Because our calculations refer to
resonant modes and include losses, the resulting Wigne
functions are non-negative. We show below that the
emergence of this star state does not necessarily occu
already below the threshold́th of parametric oscillation.

With nonzero Kerr interactions, cavity phase matching
will no longer be fulfilled for all intensities; this causes
curving of the Wigner function spikes; see Fig. 3.

Perturbation theory.—The parametersg1, g3, ´, and
ks jd appearing in the equations of motion all have the
dimension of frequency and thus define independen
time scales. Unfortunately, for experimentally accessible
values, these time scales are expected to be very differen
typically ´ ¿ gj ¿ ks jd; quantum trajectory simulations
in this regime are difficult. Furthermore, a figure of merit
is desired to permit assessment of experimental feasibility
of star states. To this end, we derive an analytical
expression for the intracavity state by perturbation theory.

The approximation of the pump mode as a clas-
sical field, successful for the subthreshold states in
two-photon down-conversion, fails for three-photon
down-conversion [4,9–11]. This problem can be avoided
by treating the pump mode quantum mechanically, which
493
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FIG. 3. (a)–(c) Wigner function of modev1 inside the cavity as a function of pump field strength´ without Kerr interactions.
The central peak disappears when´ is sufficiently far above threshold. (d) Intracavity Wigner function for a system with stron
Kerr interactions:́ y´th ­ 1.21, s3 ­ 0.175, ks33d ­ ks11d ­ ks13d ­ ks3d ­ 0.05g1, g3 ­ 2g1.
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has been shown for a single-pass scheme in [5]. For the
tracavity problem, we find an analytical approximation fo
the steady state by perturbation expansion of the two-mo
density operator,̂r ­ r̂s0d 1 r̂s1d 1 r̂s2d 1 . . . . The full
Liouville equation for the two-mode system,

d
dt

r̂ ­ 2
i
h̄

fĤ, r̂g 1 Lr̂ ­: S r̂ 1 Lr̂, (8)

must be split into an unperturbed part and a perturbatio
Here S contains the nonlinear interactionŝHs3d, Ĥs11d,
Ĥs13d, andĤs33d, as well as the coupling to the pump field
andL is the loss operator. For the unperturbed part, w
choose the modified loss operatorU ,

U r̂ :­ g1s2â1r̂â
y
1 2 â

y
1 â1r̂ 2 r̂â

y
1 â1d

1 g3s2b̂3r̂b̂
y
3 2 b̂

y
3 b̂3r̂ 2 r̂b̂

y
3 b̂3d , (9)

where b̂3 :­ â3 2 s´yg3d. All remaining terms of the
Liouville operator are taken to be the perturbationP :
P :­ S 1 L 2 U . The zeroth order contribution tôr
is a product of coherent states with amplitudes equal to
classical subthreshold solution,r̂s0d ­ j0, ´yg3l k0, ´yg3j,
which is an exact stationary solution of the unperturbe
equation of motion, i.e.,U r̂s0d ­ 0. Perturbation correc-
tions to the stationary solution can then be computed it
atively as

r̂sn11d ­ 2U21P r̂snd. (11)

The inverse mapU21 exists for trace-free operators
like P r̂snd; it becomes unique by demanding that a
correctionsr̂snd, n $ 1, must also be trace free. The

FIG. 4. Typical quasisimultaneous quantum trajectories
fundamental mode extracavity quadratures, derived from t
homodyne detection rates. Dashed lines represent class
steady state solutions.
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first nonvanishing corrections on the main diagonal of th
reduced density matrix̂r0 of modev1 in Fock basis, i.e.,
the first prediction of a finite population of Fock states
higher than zero, occur in second order; in this order, th
nonzero elements are

r0
00 ­ 1 2

11
3

s2
3, r0

11 ­ 2s2
3, r0

22 ­ s2
3 ,

r0
33 ­

2
3

s2
3 , r0

30 ­

s
2
3

s3s1 1 2is11d ­ r0p

03 ,

r0
60 ­

2
3

p
5 s2

3 ­ r0
06 , (12)

with s11 :­ ks11dyg1 ands3 :­ ks3d´ysg1g3d. s3 can be
interpreted as a figure of merit: In order to observ
a state of the fundamental mode significantly differen
from vacuum,s3 must be comparable to 1. Carrying the
perturbation expansion up to eighth order, we found ve
good agreement of the Wigner functions below thresho
with the numerical results.

Extracavity field.—The quantum state emitted by the
cavity is of central interest. It can be reconstructed from
the probability distributions of a full set of generalized
quadrature componentsXu , u [ f0, pg [12,13]; the click
rates of the simulated homodyne detection system provi
us with this information.

We concentrate first on the two orthogonal quadratu
componentsX ; X0 and Y ; Xpy2. The phaseuj of
each hj in the stochastic process (7) is switched b
py2 each time step, resulting in a quasisimultaneou
measurement ofX and Y on modej. This procedure
keeps the state vector well localized in phase spa
as can be seen in Fig. 4. The system spends most
its time close to one of the classical solutions, with
“tunneling” events [14] occurring at random intervals
This is qualitatively similar to the conventionalx s2d

parametric oscillator [8].
“Bright” states corresponding to finite amplitude solu

tions on the solid branches in Fig. 2 with photon num
bers of the order of104 can also be simulated; although
there are four classically stable points, tunneling betwee
peaks corresponding to different classical solutions is e
tremely unlikely at high amplitude, so single peaks ca
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FIG. 5. Subthreshold extracavity Wigner function recon
structed from the simulated homodyne detection rate
corresponding to the intracavity state shown in Fig. 3(a).

be realized. In this regime, the states of both fund
mental mode and pump mode are approximately Gauss
squeezed states, with the mean amplitudes in good agr
ment with the classical solution. The degree of squeezi
can be derived in the usual way from the linearized cla
sical equations of motion [8,15].

Figure 5 shows the Wigner function of a subthresho
state, reconstructed by inverse Radon transformation fro
150 samples ofXu for each of 36 differentu values
distributed evenly over the intervalf0; pg. Every sample
was obtained by summing detector clicks for five cavit
lifetimes, thus simulating a detector bandwidth narrow
relative to the cavity linewidth, as is done experimentall
[13]. We have assumed absence of intracavity losses.

The steady state of the emitted field can be given
analytical form, in the limit of smalls3,

jCl ø j0l 1
is3g1

c

√
L

2p

! 3

2 Z p

L

2 p

L

dka dkb dkc

3

√
1

ka 1 kb 1 kc
2 ipdska 1 kb 1 kcd

!

3
Q

j[ha,b,cj

t1b
y
K11kj

1 2 r1eikjL j0l ,

where b̂
y
k is the creation operator for a free photon with

wave vectork, L is the cavity roundtrip length,K1 is the
wave vector of the intracavity modêa1, t1 ­

p
2Lg1yc

is the transmittivity, andr1 ­
p

1 2 t2
1 is the reflectivity

of the cavity mirror. The state contains a superpositio
of photon triplets with frequenciesvj ­ csK1 1 kjd
lying mostly within one cavity bandwidthg1 around the
cavity eigenfrequencyv1. It is not normalizable but the
predicted intensity of the emitted field agrees with (12).

In conclusion, our calculations show that the TDO
has two quite independent thresholds. Parametric osc
lation can occur above the threshold pump powerPth ­
j´thj2h̄v3ys2g3d. Assuming a Gaussian-mode cavity an
a typical valuex s3d ­ 6 3 10223 m2 V 22 for the third-
order susceptibility, we find thatPth depends only on
-
s,
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the cavity lossesT1 ­ t2
1 and T3 ­ t2

3 of the modesv1

andv3 per roundtrip:Pth ø s106 W d
p

T3
1 T3. For realis-

tic losses,Pth can be of the order of100 W . On the other
hand, generation of a distinct star state of the fundamen
mode requires a figure of merits3 ø 1. For the corre-
sponding pump powerP?, we find the relation

P?yPth ø Pthyh̄v3g1 , (13)

which is typically much greater than 1. This situation is
in contrast to the case of two-photon down-conversion
where substantial squeezing of the fundamental mode o
curs already below the theshold of parametric oscillatio
[16]. We conclude that an experimental realization o
TDO appears to be achievable in the near future, whi
generation of nonclassical states via three-photon dow
conversion requires novel nonlinear media.

We thank G. Breitenbach, H. Hansen, and Ch. Hettic
for clarifying discussions on experimental feasibility and
the reconstruction of the extracavity Wigner function, a
well as C. Savage, A. Bandilla, and G. Drobný for helpfu
suggestions.

Note added.—After review of the manuscript we
became aware of Bajer’s work [17] in which the classica
properties of the TDO are analyzed.

*Electronic address:
http://quantum-optics.physik.uni-konstanz.de

[1] E. S. Polzik et al., Phys. Rev. Lett.68, 3020 (1992);
C. Kim and P. Kumar, Phys. Rev. Lett.73, 1605 (1994);
G. Breitenbachet al., J. Opt. Soc. Am. B12, 2304 (1995).

[2] K. Bergmanet al., Opt. Lett.19, 290 (1994).
[3] S. L. Braunstein and R. I. McLachlan, Phys. Rev. A35,

1659 (1987).
[4] P. V. Elyutin and D. N. Klyshko, Phys. Lett. A149, 241

(1990).
[5] K. Banaszek and P. L. Knight, Phys. Rev. A55, 2368

(1997).
[6] K. Mølmer et al., J. Opt. Soc. Am.10, 524 (1992).
[7] R. Schacket al., J. Phys. A28, 5401 (1995).
[8] T. Felbinger, Diploma thesis, Universität Konstanz, 1996
[9] R. A. Fisheret al., Phys. Rev. D29, 1107 (1984).

[10] M. Hillery, Phys. Rev. A42, 498 (1990).
[11] G. Drobný and I. Jex, Phys. Rev. A45, 1816 (1992).
[12] K. Vogel and H. Risken, Phys. Rev. A40, 2847 (1989);

D. T. Smitheyet al., Phys. Rev. Lett.70, 1244 (1993).
[13] G. Breitenbachet al., Nature (London)387, 471 (1997).
[14] This is not quantum tunneling in the strict sense: ther

is no energetically forbidden potential barrier separatin
the peaks.

[15] H. J. Carmichael, inCoherence and Quantum Optics VII,
edited by J. Eberlyet al. (Plenum, New York, 1996),
p. 177; An Open Systems Approach to Quantum Optic
(Springer, New York, 1993).

[16] For thex s2d-OPO, the expansion parameter equivalent to
s3 is s2 ­ ks2d ´yg1 g2, wheres2 ­ 1 is the threshold for
parametric oscillation.

[17] J. Bajer, J. Mod. Opt.38, 1085 (1991).
495


