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Oscillation and Generation of Nonclassical States in Three-Photon Down-Conversion
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The process of three-photon down-conversien 3 » + o + w in an optical cavity is analyzed
theoretically. A classical feature of this system is a first-order transition of the fundamental mode above
a threshold3w pump power. We calculate the properties of the intra- and extracavity states using
analytical calculations and quantum trajectory simulations. A positive, non-Gaussian Wigner function
exhibiting a threefold symmetry is found. Above threshold the Wigner function displays separate peaks
among which tunneling occurs. [S0031-9007(97)04876-X]

PACS numbers: 42.50.Dv, 42.50.Lc, 42.65.St
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The interaction between electromagnetic waves in nonfrequenmeSwgﬁ) at zero intensity:w,3; = wig + Ajs.

linear optical media plays a key role in quantum optics,To obtain the behavior of the TDO, we first derive the
as it provides a means of generating nontrivial quantuntlassical equations of motion and discuss their steady state
states of light. Preeminent among these are the squeezedlutions. The quantum properties are calculated using
states whose quantum uncertainty in one quadrature is legsiantum trajectory simulations, including simulated ho-
than that of a coherent state. Strongly squeezed statesodyne detection and quantum state reconstruction. We
have been produced using second-ordgf?’) nonlin-  finally give an analytical approximation derived from a
ear optical media, e.g., by two-photon down-conversiorperturbation expansion in the limit of a weak pump field.
20 — w + w [1], as well as by self-phase modulation Classical steady state solutiors.The classical equa-

of high-power coherent light in third-ordén/®) media  tions of motion for the field amplitudes are

[2]. Except for the single-photon state, it has so far not

. . . S— (3) + 2i 11 ,,* 2
been possible to generate experimentally other nonclassi- @1 = 3% @1 a3 + 2ik e a

cal states of light with the novel feature of non-Gaussian +ikPajafa; — ida; — yia, 3)
statistics. O ) P . (33) % 2
. ) a3 = —kVa;] + 2ikaza
This Letter reports the analysis of degenerate three- ’ ) (13; . 3 3

photon down—conversion (Tw — w + @ +  in a tik Vajaiay — idsaz — yzaz + 8. (4)

3 i i . . . .
x® medium as a possible source of a new class of quandere we are interested only in the stationary solutions,
tum states of light. This process has been studied for rungng we focus on the special cagé! = (13 = xG3) —

ning waves [3-5], but the smajf® nonlinearities and A, = A, = 0 of no Kerr interactions and zero detun-
I|_m|ted. laser powers .ava|labk_e today rule out_ thls_con-ings_ With nonvanishing Kerr interactions, the same
flg.urat|o_n for gengratmg co_ntlnuous-wave optical fIE|dS.Stationary point$a,, a;) can then be realized by choosing
With this motivation, we discuss the resonant TD fre—Al =2k 2 + kM|as)? and Az = k]ay 2 +

quency conversion process shown in Fig. 1. The TD 0S5,:33)|4,|2. This choice is optimal in the sense that it will

cillator (TDO) is composed of an optical cavity resonantproduce highest intracavity amplitudes for a given pump
for the w; and w3z = 3w waves, pumped by an injected fjg|q.

coherent state of amplitudeand frequencyws;. Outcou- The trivial solutiona; = 0, a3 = &/y; is classically

pling of the two cavity modes occurs through the mirrorssiapie for all choices of the free parameters. This is a
with loss ratesy, and y;. The modes interact via the sjgnificant difference compared to the case of two-photon
Hamiltonian . down-conversion, where the trivial solution is unstable
f as — afaf), (1) above threshold. The stationary solutions with finite field

A% = ink®(a \ : ; :
Both the interaction constant® « y® and the ampli- ! lie on three curves; we give them in normalized form:

tude ¢ of the incoupled field may be assumed to be real
and positive. Three additional Kerr-like nonlinear inter-
actions, which may be of the same order of magnitude as pump Isolator Local Oscillator @,

A®), have also to be taken into account: 2 A Hx@ n,

’ g R ) D q i o
A = — g ] a2, G = — kGl a3, e D == "
A = —pcal a0l a;. @)

Under the influence of these terms, the cavity eigenfreFlG. 1. Doubly resonant three-photon down-conversion in an

quenciesw; 3 become intensity dependent; to compensat@ptical cavity and balanced homodyne detectors for quantum
for this, we introduce detunings, 5 relative to the eigen- state reconstruction.
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2mi
all.el = |a1iell eT’I» n E {07 172}5 (5)
agel — l/laiell, 8rel — |a§e1|3/4 + 3|a{e1|/4,
where aﬂl = a1,3/ail’l3, gl = g/eth ol =
1 3 1
(7173)7/V3kD), af" = v /(v3xk® y3), and
3
4 3
Gt — r1ys)® ©)
33 Vk®

The set of stationary states of the fundamental mode
has threefold symmetry in phase space; it is shown iﬁﬂG. 2. Classi.cal stationary solutions of the TDO as a func-
Fig. 2. It can be seen that for any pump field amplitude“on of pump field. The dashed branches represent unstable
¢ above the threshold valug", there exist six stationary solutions.
solutions with finite fielde;. Stability analysis reveals to the one described in [6]. The evolution of the system
that the dashed branches represent unstable solutions; tise determined by a continuous Hamiltonian process,
solutions on the solid branches are stable,iff< y;.  containing an anti-Hermitian term in addition to the
The power conversion efficiency from the pump wavenonlinear interaction, and one stochastic jump process
3w; to w; reaches 100% at a pump power 3 times aboveer mode. We have generalized the stochastic process
threshold and decreases thereafter. in [6] by simulating balanced homodyne detection instead
Quantum trajectory simulations-We have performed of photon counting. For every modg this requires a
guantum trajectory simulations using an algorithm similarstochastic process with three branches per time step

Wl@ + n))@; + n) v

(&j + 77j) |‘If>, Pjl1 = VT Jr (¥ | v) ’
R P 1 ol 11l VI L v
Jj nj > Pj2 Yi (¥ | ) >
W), pPi3=1=pj1 = pj2,

wheren; is the complex local oscillator amplitude. The metry (a “star state”): its Wigner function is clearly
first and second branch correspond to a click of the firshon-Gaussian and not a minimum uncertainty state.
and second detector, respectively, and the third branc8imilar states have been described in [3-5] for a
describes the absence of a click during the time interval single-pass scheme, where negativities of the Wigner
The p;; are the probabilities attributed to the branches. functions appear. Because our calculations refer to
In the simulations the two-mode state vectdr) is  resonant modes and include losses, the resulting Wigner
expressed using a shifted Fock basis [7,8]. The classicélinctions are non-negative. We show below that the
solutions calculated above are a good choice, in mostmergence of this star state does not necessarily occur
cases, for the origifie;, a3) of the shifted basis. During already below the thresholkd" of parametric oscillation.
the simulations, a new origin is chosen whenever the With nonzero Kerr interactions, cavity phase matching
mean amplitudes differ from the current origin. This will no longer be fulfilled for all intensities; this causes
allows efficient representation of states containing moreurving of the Wigner function spikes; see Fig. 3.
than 10000 photons, as long as the state is sufficiently Perturbation theory—The parameters, ys, ¢, and
well localized in phase space, using typically only 32 or«/) appearing in the equations of motion all have the
64 basis vectors per mode [8]. dimension of frequency and thus define independent
The density matrix, and equivalently the Wignertime scales. Unfortunately, for experimentally accessible
function, is calculated by time averaging over a quantunvalues, these time scales are expected to be very different,
trajectory |W(z)). Figure 3 shows Wigner functions typically e > y; > «); quantum trajectory simulations
generated with parameters«® = 0.15y;, «Y = in this regime are difficult. Furthermore, a figure of merit
k¥ = kB3 =0, y; =2y, for different pump field is desired to permit assessment of experimental feasibility
strengths ¢ below and above the threshold value of star states. To this end, we derive an analytical
eh = 3.34y,. This threshold corresponds to a very expression for the intracavity state by perturbation theory.
low intracavity pump photon number oN; = 1.25. The approximation of the pump mode as a clas-
The emergence of peaks corresponding to the classsical field, successful for the subthreshold states in
cally stable bright states (5) of the fundamental modeéwo-photon down-conversion, fails for three-photon
is obvious. Below threshold, the state of the systendown-conversion [4,9—11]. This problem can be avoided
retains an interesting structure with threefold sym-by treating the pump mode quantum mechanically, which
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a) efet=0.9, s3 =0.23 b) e/eth =1.5, s3 = 0.38 c) gfeth =2.1, 53 =0.53 d)

FIG. 3. (a)—(c) Wigner function of mode, inside the cavity as a function of pump field strengthvithout Kerr interactions.
The central peak disappears wheris sufficiently far above threshold. (d) Intracavity Wigner function for a system with strong
Kerr interactionse/e™ = 1.21,53 = 0.175, k%Y = k() = 13 = O = 0.05y,, y3 = 2v,.

has been shown for a single-pass scheme in [5]. For the ifirst nonvanishing corrections on the main diagonal of the
tracavity problem, we find an analytical approximation forreduced density matrig’ of modew,; in Fock basis, i.e.,
the steady state by perturbation expansion of the two-mode first prediction of a finite population of Fock states

density operatopp = p©@ + pM + p@ + .. Thefull higher than zero, occur in second order; in this order, the
Liouville equation for the two-mode system, nonzero elements are
d , /N N N N 11
P = RN Lo =SpH Lhe B ph =1 - s ph =25 pn =
must be split into an unperturbed part and a perturbation. 2 5 )
Here S contains the nonlinear interactiodg®, AV, phy = gsg, Pho = 3 s3(1 + 2isyy) = pls.
H") andA®Y, as well as the coupling to the pump field,

and L is the loss operator. For the unperturbed part, we 2 5 ,
choose the modified loss operattt, Peo = 5 553 = Pos > (12)
A A oAt AT A A PN N
Up = YI(zalpAal A_Jr al‘flﬁ o palaAlJr)A with s1; := /v, ands; := k®&/(y:y3). s3 can be
+ y3(2b3pbs — b3bsp — pb3bz), (9) interpreted as a figure of merit: In order to observe
where b3 := a3 — (¢/y3). All remaining terms of the @ state of the fundamental mode significantly different
Liouville operator are taken to be the perturbatigh ~ from vacuum,s; must be comparable to 1. Carrying the
P :=S + L — U. The zeroth order contribution tp  Perturbation expansion up to eighth order, we found very
is a product of coherent states with amplitudes equal to th§00d agreement of the Wigner functions below threshold
classical subthreshold solutioh® = [0,&/y3)(0,&/ys|, ~ With the numerical results. _
which is an exact stationary solution of the unperturbed EXtracavity field—The quantum state emitted by the
equation of motion, i.e/lLp® = 0. Perturbation correc- cavity is of central interest. It can be reconstructed from
tions to the stationary solution can then be computed itethe probability distributions of a full set of generalized
atively as quadra]Euque cpmrlJon%nf]Sg,HdE [0,(717] [12,13]; the click y
a(ntl A (n rates of the simulated homodyne detection system provide
prl = —uT'Pp. (1) us with this information.
The inverse maplU ™' exists for trace-free operators We concentrate first on the two orthogonal quadrature
like Pp™); it becomes unique by demanding that allcomponentsX = X, and ¥ = X, .. The phased; of
correctionsp™, n = 1, must also be trace free. The each n; in the stochastic process (7) is switched by
7/2 each time step, resulting in a quasisimultaneous
measurement oKX and Y on modej. This procedure
keeps the state vector well localized in phase space
as can be seen in Fig. 4. The system spends most of
its time close to one of the classical solutions, with
“tunneling” events [14] occurring at random intervals.
This is qualitatively similar to the conventiong}®
parametric oscillator [8].
“Bright” states corresponding to finite amplitude solu-
3 700 200 860 860 1000 tions on the solid branches in Fig. 2 with photon num-

. - . . Pers of the order o10* can also be simulated; although
FIG. 4. Typical quasisimultaneous quantum trajectories o h f | icallv stabl ints. t i bet
fundamental mode extracavity quadratures, derived from th&N€re are four classically stable points, tunneling between

homodyne detection rates. Dashed lines represent classicBfaks corresponding to different classical solutions is ex-
steady state solutions. tremely unlikely at high amplitude, so single peaks can
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the cavity lossed; = 17 and T; = 3 of the modesw;

and w3 per roundtrip:P'™" =~ (10° W)+/T;'T5. For realis-

tic losses P! can be of the order ofd0 W. On the other
hand, generation of a distinct star state of the fundamental
mode requires a figure of merst = 1. For the corre-
sponding pump poweP,., we find the relation

Py/P" = P /hwsy,, (13)

which is typically much greater than 1. This situation is
in contrast to the case of two-photon down-conversion,
where substantial squeezing of the fundamental mode oc-
curs already below the theshold of parametric oscillation
[16]. We conclude that an experimental realization of
FIG. 5. Subthreshold extracavity Wigner function recon-TDO appears to be achievable in the near future, while
structed from the simulated homodyne detection ratesgeneration of nonclassical states via three-photon down
corresponding to the intracavity state shown in Fig. 3(a). conversion requires novel nonlinear media.
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