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Cage Effect, Local Anisotropies, and Dynamic Heterogeneities at the Glass Transition:
A Computer Study of Hard Spheres
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Computer simulations of a hard sphere system close to the glass transition are presented. From three-
time correlations, we obtain information about the single-particle dynamics on all relevant time scales,
including the presence of dynamic heterogeneities. A detailed picture of the cage effecBimegene
is obtained, yielding information about shape, size, and relaxation properties of the effective cage.
Pronounced anisotropic dynamics is mainly observed ingtregime. [S0031-9007(98)06118-3]

PACS numbers: 64.70.Pf, 61.20.Ja, 61.20.Lc, 61.43.Fs

The dynamics of glass forming systems close to thalynamics as expected for the dynamics in a cage. Experi-
glass transition is very complicated due to its collectivementally, the rotational dynamics in theregime turns out
nature and results in different relaxation mechanismso be heterogeneous [7—9,11-15].

[1,2]. During the last few years, many experiments have The goal of this Letter is to obtain a detailed micro-
been performed close to the critical temperatlirewhere  scopic understanding of the different time regimes at the
the fastg relaxation as well as the relaxation can be glass transition. We mainly concentrate on the nature
observed. The qualitative picture is as follows: For shoriof the cage effect as expressed by the questions raised
times (B regime) a particle is surrounded by an effectiveabove. The information is mainly extracted from cor-
cage which keeps the particle close to its original positionrelating the position of a tagged particle at three subse-
Only after a sufficiently long timed regime) the particle quent timesf(0), ¥(¢), and f(2¢) for different values of
succeeds in leaving the cage. t. The simulation is performed for a hard sphere system

A formal description of both scenarios can be formu-close to the glass transition densffy = 0.58) with N =
lated in the framework of the mode-coupling theory for 1000 particles. Because of its simplicity, it is an attrac-
translational as well as rotational degrees of freedom; sedéiye system for computer simulations (see, e.g., [16—19])
e.g., [3—6]. Specific predictions are made for the properand may yield generic features of the glass transition.
ties of the intermediate scattering function, correlating theTo some approximation an experimental realization of
density attwo times. However, due to the complexity of this system are colloidal suspensions [20]. Because of
the projection and factorization schemes, additional statehe polydispersity ofo = 10%, crystallization is effec-
ments are difficult to obtain. Here we specifically refer totively avoided in the present simulations [21,22]. A
properties of the cage effect as probed by a tagged paMonte Carlo algorithm with a maximum step size of 0.03
ticle. What is the shape of a typical cage? Up to which(lengths are always given in units of the average radius)
time scale can the concept of a cage be used? Is it possiileemployed, corresponding to an acceptance rate of 50%;
to formulate a simple physical picture of the cage effectzee Ref. [18] for more details. We simulatéof Monte
Furthermore, one may ask whether or not the complex recarlo steps (MCS), i.eN X 10® moves. In reality, this
laxation pattern can be interpreted as a superposition aforresponds to the time scale of seconds. Data were taken
different relaxation rates. after a sufficiently long equilibration period.

Computer simulations are suitable to obtain specific mi- For correlating the dynamics of two subsequent time
croscopic information. As has been shown in recent workintervals, we introduce the conditional probability func-
from analysis othreetime correlations qualitatively new tions ps j(Fi2fo1lro1; 1), and ps 1 (Fi2001|ro1; 1) with 7, =
information can be gained, yielding additional insight intot(nt) — ¥(mt), rp, = |Fu.|. Herely; is an arbitrary vector
the underlying nature of complex dynamic processes [10Jorthogonal tdy;. The hat denotes a unit vector. For later
Such correlation functions are also accessible from experpurposes, we abbreviate,, = ¥y, and y;» = T,00;.
ments [7-9]. Among other things, it is possible to de-p;/(x12|ro1; £) denotes the probability that a particle moves
termine therelaxation type10]. It distinguishes whether by x;, in the second time interval, projected along the di-
nonexponential relaxation is due to a superposition of exrection of the motion in the first time intervainder the
ponential processes with different relaxation rates (heteonditionthat it moved a distance af; in the first time
erogeneous scenario)—a simple example is an ensemblgerval. In analogyps | (y12lror; ) contains information
of diffusing particles with different diffusion constants— about the motion perpendicular to the motion in the preced-
or due to intrinisic nonexponentiality (homogeneous sceing time interval. Only in the case of dynamical processes
nario). As extensively discussed in [10], the homogeneouwithout memory, i.e., Markovian dynamics, the dynamics
scenario can be traced back to correlated back-and-forih both time intervals would be totally uncorrelated.
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In analogy to the discussion in [10], the relaxation type different diffusion constants, rendering the concept of a
as introduced above, can be formally defined on the barate distribution useful.
sis of p3(x12lro1; 1) @and p3 1 (yi2lror; 7) [23]. Note that Although this analysis is convenient to obtain a first
only for purely exponential relaxatiod,; and fj, are qualitative picture (and experimentally it is the only ac-
uncorrelated. In the purely heterogeneous scenario, oreessible way), it is more informative to directly analyze
has ps3 | (x12lro1; 1) = p3j(—x12lro1; ) so that back-and- the conditional probability functions. In Fig. 2, we show
forth jumps have the same probability (directionde-  ps) andps, for + = 4096. First we discusgs ). Sev-
pendence). In contrast, the purely homogeneous scenar@al dominant features are present. (i) For all values of
is characterized by the lack of amljstancedependence, ry the average valuéri,) is negative. Hence, on aver-
hence, excluding the presence of different mobilities. Forage a tagged particle moves opposite to the direction it has
mally, this implies thatps and ps;; do not depend on moved before. This is a direct signature of the cage effect.
ror- In analogy to Ref. [10], we definB,(2¢) = (cosq - (i) The distribution ofx;, for given ro, is to a very good
foo) (the conventional incoherent intermediate scatteringapproximation symmetric around;;). Hence, the cage
function), andFs(z,r) = (cosq - 1, cosq - To1). After a  effect can be separated into a deterministic part, driving
straightforward calculation (see Ref. [10]), one obtaingthe particle back with respect to its previous motion, and
F»(t)?> = Fs(t,t) for the purely homogeneous case anda stochastic part, allowing for stochastic processes around
F3(t,t) = F,(2t) for the purely heterogeneous case. this new equilibrium position. (jii) Forg; < rcage = 0.8,

In Fig. 1, F.2(¢)?, Fs(t,t), and F»(2t), as well as one has to a good approximation,) = —cro; with ¢ =
the average mean-square displacemgiir2(r)), are 0.43. Hence, for excursions smaller than its own radius,
displayed. The value af = 3.1 is close to the maximum the particle on average is dragged back by a constant frac-
of the structure factor. For the mean-square displacementipn of its previous motion. (iv) Fory; > rc,ge, the back-
one clearly observes three time regimes. The short-timdragging effect slowly decreases. Heneg,. can be
dynamics (r < 100) is diffusive; i.e., (Ar?) «¢. On identified with the radius of the cage. Interestingly, the
intermediate time scales, corresponding to theegime  value of r.,,. is close to the distance for which the dy-
(t < 10°), subdiffusive dynamics is observed. In the namics starts to be fully diffusive in Fig. 1(b). (v) The
regime at long times, the dynamics is again diffusive.second moment of the distribution of, as a function of
Because of the close agreement of(r)*> and Fs(z,1), o1, denotedzr”(rm) increases with increasing;. Par-
the B8 regime is mainly homogeneous as expected if thdicles which move farther than the average particle during
dynamics is strongly influenced by the presence of &ome time interval also move farther during the subsequent
cage. In contrast, the regime is mainly heterogeneous. time interval (apart form the systematic backdragging ef-
This shows that the nonexponentiality in theregime is  fect). Hence, it is possible to call such particlast. This
mainly due to a superposition of diffusion processes withis not possible for diffusive dynamics with a single diffu-
sion coefficient where the presence of far-moving particles
during some time interval is only a statistical effect.
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FIG. 1. (a) The two-time and three-time correlation functions 0.0 0.5 1.0 0.0 0.5 1.0

F»(2t) and Fs(t,1) as well as[F,(t)]* for ¢ close to the

maximum of the structure factor. From the relative positions ofFIG. 2. The conditional probability functions (ap;; X
the three functions, one can dlrectly deduce that the relaxatiofx,|ro1; 1) and (b) ps; . (yi2lro;t) for ¢ = 4096, where
type is mainly homogeneous in the regime and mainly x, = F;ofp; andyj, = Fi200. The darker areas correspond to
heterogeneous in the regime. (b) The square root of the high probabilities. The average valugs;(ro1)) and{y»(ro1))
mean square displacement. are indicated.
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From the very definiton of ps,, one expects 0.5In((rd)/(rd))/In2. InFig. 4, we plot0.5 — ¢(¢) and
pa.(yielrors ) = psi(=yialrorst) for all ry; and  «(r). On a qualitative level, both quantities display a
pal(yizlrors 1) = p3. 1 (xi2lror; ) for small ro; (in this  similar time dependence. In the region of anomalous
limit there is no difference between parallel and perpendiffusion (a = 0.1), the cage is very efficient in push-
dicular motion). Surprisingly, the width of;,, denoted ing back particles to their original positiotr = 0.4).

o (ro1), hardly depends omrg; so that for largerg Indeed, it is possible to conneet and a« even on a
the value oy (ro;) is significantly larger thano, (ro).  quantitative level. We assume that @) (xi2lro1, 7) =
Hence, the dynamics is strongly anisotropic due to (i) theexp{—k»(¢) [x12 + c(t)ro1]?} and (i) ps.(yi2lror,t)
systematic backdragging effect and (i) the much largeexd —k.(¢)y,]. This choice approximately describes the
second moment along the selected direction. This obsenumerical results forr < rq,,c as expressed in Fig. 2
vation may be related to recent results by Dorstial., if the dependence of (¢, r) on r is neglected. This
observing stringlike motional patterns in simulations ofchoice implies that the probability, to move byr,; dur-
Lennard-Jones systems [24,25]. Indeed, these collectiag time ¢ is Gaussian; i.e.p»(for, 1) = exd—ki(£)rd]
features would give rise to quasi-1D dynamics if ana-with k,(r) = k;(t)[1 — c(¢)?]. After some straightfor-
lyzed in terms of single-particle properties. A preciseward calculation, one obtaidss,) = 2/k;(¢) and(r3,) =
correlation, however, is beyond the scope of this Letter. 4[1 — c(¢)]/ki(z). From these values the logarithmic

In analogy to Fig. 2, we have calculated the conditionaklope of the mean-square displacement turns out to be
probabilities for all timest < 10°. It turns out that the
general shape of the probability distributions is similar aest(r) = 0.5 + In[1 — ¢(1)]/In(4.0). 1)

to those shown in Fig. 2. The value of,,. turns out As shown in Fig. 4, we calculate.(r) from the simu-
to be constant within 10% indicating that the cage is dated values of:(r). For: < 10%, the agreement is very
static concept, independent of time scale. In analogy tgood. This shows that the cage effect fully accounts for
the above, we introduce time-dependef), o (#,7), and  the observed anomalous diffusion. Foe> 10%, more
oo (t, V.)- _ particles leave the cage > r..q.) leading to a stronger

In Fig. 3, we showoy(7,r) and o, (1,r) for different  jncrease of/(Ar2) than expected from the slops(),
value_s o_ft_ andr. In analogy to the discussion of Fig. 2, i.e., a(t) > aey(t). Interestingly, the simple model of
the significant- dependence oé (¢, r) for all 7 reveals  prownjan dynamics in an isotropic harmonic potential
the presence of fast and slow segments. This effecictly fulfills assumptions (i) and (i) [26]. Hence, one
is more pronounced at longer time scales in agreememfas a simple model characterizing the cage. This obser-
with the interpretation of Fig. 1. We checked that theyation may come as a surprise since for hard spheres the
distribution of mobilities is not related to the size of the concept of harmonic potential wells around some local
particle; i.e., small particles on average possess nearlé(nergy minima does not exist (compare, however,

the same mobility as large pa_rticles. If we definé) so  Ref. [27]). We checked that describing the case by
that on average 5% of all particles move farther them) 5 poxiike effective potential does not account for the
during ¢ (in Fig. 3 indicated by arrows), them(r.(¢).1)  features seen in Fig. 2.

and o, (r.(r),t) are a measure of the mobility of the
fast particles. The local anisotropies of the fast particles
disappear in the microscopic and theregime.

We define the exponet(r) as the logarithmic slope of 05 ® a()y .= 3
(Ar2(1)) (@ = 0.5 in the diffusive regime); i.e.q(r) = 04_ o U“est(t) !" _
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0.1 1'0 FIG. 4. The dependence of the initial slopé€r) [extracted
’ r . from ps(xi2lroi; ¢) for rop < reage], the exponentx(r) charac-

terizing the local slope of the mean-square displacement with
FIG. 3. The dependence of the standard deviatignando time [extracted from Fig. 1(b)], and the estimatiog,, from
andry,; for different times. c¢(r) on the basis of Eq. (1).
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