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Cage Effect, Local Anisotropies, and Dynamic Heterogeneities at the Glass Transition
A Computer Study of Hard Spheres
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Computer simulations of a hard sphere system close to the glass transition are presented. From three
time correlations, we obtain information about the single-particle dynamics on all relevant time scales,
including the presence of dynamic heterogeneities. A detailed picture of the cage effect in theb regime
is obtained, yielding information about shape, size, and relaxation properties of the effective cage.
Pronounced anisotropic dynamics is mainly observed in theb regime. [S0031-9007(98)06118-3]

PACS numbers: 64.70.Pf, 61.20.Ja, 61.20.Lc, 61.43.Fs
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The dynamics of glass forming systems close to th
glass transition is very complicated due to its collectiv
nature and results in different relaxation mechanism
[1,2]. During the last few years, many experiments hav
been performed close to the critical temperatureTc, where
the fastb relaxation as well as thea relaxation can be
observed. The qualitative picture is as follows: For sho
times (b regime) a particle is surrounded by an effectiv
cage which keeps the particle close to its original positio
Only after a sufficiently long time (a regime) the particle
succeeds in leaving the cage.

A formal description of both scenarios can be formu
lated in the framework of the mode-coupling theory fo
translational as well as rotational degrees of freedom; s
e.g., [3–6]. Specific predictions are made for the prope
ties of the intermediate scattering function, correlating th
density attwo times. However, due to the complexity of
the projection and factorization schemes, additional sta
ments are difficult to obtain. Here we specifically refer t
properties of the cage effect as probed by a tagged p
ticle. What is the shape of a typical cage? Up to whic
time scale can the concept of a cage be used? Is it poss
to formulate a simple physical picture of the cage effec
Furthermore, one may ask whether or not the complex
laxation pattern can be interpreted as a superposition
different relaxation rates.

Computer simulations are suitable to obtain specific m
croscopic information. As has been shown in recent wor
from analysis ofthree-time correlations qualitatively new
information can be gained, yielding additional insight int
the underlying nature of complex dynamic processes [1
Such correlation functions are also accessible from expe
ments [7–9]. Among other things, it is possible to de
termine therelaxation type[10]. It distinguishes whether
nonexponential relaxation is due to a superposition of e
ponential processes with different relaxation rates (he
erogeneous scenario)—a simple example is an ensem
of diffusing particles with different diffusion constants—
or due to intrinisic nonexponentiality (homogeneous sc
nario). As extensively discussed in [10], the homogeneo
scenario can be traced back to correlated back-and-fo
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dynamics as expected for the dynamics in a cage. Exp
mentally, the rotational dynamics in thea regime turns out
to be heterogeneous [7–9,11–15].

The goal of this Letter is to obtain a detailed micro
scopic understanding of the different time regimes at t
glass transition. We mainly concentrate on the natu
of the cage effect as expressed by the questions rai
above. The information is mainly extracted from co
relating the position of a tagged particle at three subs
quent times$rs0d, $rstd, and $rs2td for different values of
t. The simulation is performed for a hard sphere syste
close to the glass transition densitysr  0.58d with N 
1000 particles. Because of its simplicity, it is an attrac
tive system for computer simulations (see, e.g., [16–19
and may yield generic features of the glass transitio
To some approximation an experimental realization
this system are colloidal suspensions [20]. Because
the polydispersity ofs  10%, crystallization is effec-
tively avoided in the present simulations [21,22]. A
Monte Carlo algorithm with a maximum step size of 0.0
(lengths are always given in units of the average radiu
is employed, corresponding to an acceptance rate of 50
see Ref. [18] for more details. We simulated108 Monte
Carlo steps (MCS), i.e.,N 3 108 moves. In reality, this
corresponds to the time scale of seconds. Data were ta
after a sufficiently long equilibration period.

For correlating the dynamics of two subsequent tim
intervals, we introduce the conditional probability func
tions p3,ks$r12r̂01jr01; td, andp3,'s$r12û01jr01; td with $rmn ;
$rsntd 2 $rsmtd, rmn ; j$rmnj. Here$u01 is an arbitrary vector
orthogonal to$r01. The hat denotes a unit vector. For late
purposes, we abbreviatex12 ; $r12r̂01 and y12 ; $r12û01.
p3,ksx12jr01; td denotes the probability that a particle move
by x12 in the second time interval, projected along the d
rection of the motion in the first time interval,under the
condition that it moved a distance ofr01 in the first time
interval. In analogy,p3,'s y12jr01; td contains information
about the motion perpendicular to the motion in the prece
ing time interval. Only in the case of dynamical process
without memory, i.e., Markovian dynamics, the dynamic
in both time intervals would be totally uncorrelated.
© 1998 The American Physical Society 4915
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In analogy to the discussion in [10], the relaxation typ
as introduced above, can be formally defined on the b
sis of p3,ksx12jr01; td andp3,'s y12jr01; td [23]. Note that
only for purely exponential relaxation$x01 and $r12 are
uncorrelated. In the purely heterogeneous scenario, o
has p3,ksx12jr01; td  p3,ks2x12jr01; td so that back-and-
forth jumps have the same probability (nodirection de-
pendence). In contrast, the purely homogeneous scen
is characterized by the lack of anydistancedependence,
hence, excluding the presence of different mobilities. Fo
mally, this implies thatp3,k and p3,' do not depend on
r01. In analogy to Ref. [10], we defineF2s2td ; kcos$q ?
$r02l (the conventional incoherent intermediate scatteri
function), andF3st, td ; kcos$q ? $r12 cos$q ? $r01l. After a
straightforward calculation (see Ref. [10]), one obtain
F2std2  F3st, td for the purely homogeneous case an
F3st, td  F2s2td for the purely heterogeneous case.

In Fig. 1, F2std2, F3st, td, and F2s2td, as well as
the average mean-square displacement

p
kDr2stdl, are

displayed. The value ofq  3.1 is close to the maximum
of the structure factor. For the mean-square displaceme
one clearly observes three time regimes. The short-ti
dynamics st ø 100d is diffusive; i.e., kDr2l ~ t. On
intermediate time scales, corresponding to theb regime
st , 105d, subdiffusive dynamics is observed. In thea

regime at long times, the dynamics is again diffusiv
Because of the close agreement ofF2std2 and F3st, td,
the b regime is mainly homogeneous as expected if t
dynamics is strongly influenced by the presence of
cage. In contrast, thea regime is mainly heterogeneous
This shows that the nonexponentiality in thea regime is
mainly due to a superposition of diffusion processes wi

FIG. 1. (a) The two-time and three-time correlation function
F2s2td and F3st, td as well as fF2stdg2 for q close to the
maximum of the structure factor. From the relative positions
the three functions, one can directly deduce that the relaxat
type is mainly homogeneous in theb regime and mainly
heterogeneous in thea regime. (b) The square root of the
mean square displacement.
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different diffusion constants, rendering the concept of
rate distribution useful.

Although this analysis is convenient to obtain a firs
qualitative picture (and experimentally it is the only ac-
cessible way), it is more informative to directly analyze
the conditional probability functions. In Fig. 2, we show
p3,k andp3,' for t  4096. First we discussp3,k. Sev-
eral dominant features are present: (i) For all values o
r01 the average valuekx12l is negative. Hence, on aver-
age a tagged particle moves opposite to the direction it h
moved before. This is a direct signature of the cage effec
(ii) The distribution ofx12 for given r01 is to a very good
approximation symmetric aroundkx12l. Hence, the cage
effect can be separated into a deterministic part, drivin
the particle back with respect to its previous motion, an
a stochastic part, allowing for stochastic processes arou
this new equilibrium position. (iii) Forr01 , rcage ø 0.8,
one has to a good approximationkx12l  2cr01 with c 
0.43. Hence, for excursions smaller than its own radius
the particle on average is dragged back by a constant fra
tion of its previous motion. (iv) Forr01 . rcage, the back-
dragging effect slowly decreases. Hence,rcage can be
identified with the radius of the cage. Interestingly, the
value of rcage is close to the distance for which the dy-
namics starts to be fully diffusive in Fig. 1(b). (v) The
second moment of the distribution ofx12 as a function of
r01, denoteds

2
ksr01d, increases with increasingr01. Par-

ticles which move farther than the average particle durin
some time interval also move farther during the subseque
time interval (apart form the systematic backdragging e
fect). Hence, it is possible to call such particlesfast. This
is not possible for diffusive dynamics with a single diffu-
sion coefficient where the presence of far-moving particle
during some time interval is only a statistical effect.

FIG. 2. The conditional probability functions (a)p3,k 3
sx12jr01; td and (b) p3,'s y12jr01; td for t  4096, where
x12 ; $r12r̂01 and y12 ; $r12û01. The darker areas correspond to
high probabilities. The average valueskx12sr01dl andk y12sr01dl
are indicated.
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From the very definition of p3,', one expects
p3,'s y12jr01; td  p3,'s2y12jr01; td for all r01 and
p3,ks y12jr01; td ø p3,'sx12jr01; td for small r01 (in this
limit there is no difference between parallel and perpe
dicular motion). Surprisingly, the width ofy12, denoted
s'sr01d, hardly depends onr01 so that for larger01

the value sksr01d is significantly larger thans'sr01d.
Hence, the dynamics is strongly anisotropic due to (i)
systematic backdragging effect and (ii) the much larg
second moment along the selected direction. This ob
vation may be related to recent results by Donatiet al.,
observing stringlike motional patterns in simulations
Lennard-Jones systems [24,25]. Indeed, these collec
features would give rise to quasi-1D dynamics if an
lyzed in terms of single-particle properties. A preci
correlation, however, is beyond the scope of this Letter

In analogy to Fig. 2, we have calculated the condition
probabilities for all timest , 106. It turns out that the
general shape of the probability distributions is simil
to those shown in Fig. 2. The value ofrcage turns out
to be constant within 10% indicating that the cage is
static concept, independent of time scale. In analogy
the above, we introduce time-dependentcstd, skst, rd, and
s'st, rd.

In Fig. 3, we showskst, rd and s'st, rd for different
values oft andr. In analogy to the discussion of Fig. 2
the significantr dependence ofskst, rd for all t reveals
the presence of fast and slow segments. This ef
is more pronounced at longer time scales in agreem
with the interpretation of Fig. 1. We checked that th
distribution of mobilities is not related to the size of th
particle; i.e., small particles on average possess ne
the same mobility as large particles. If we definercstd so
that on average 5% of all particles move farther thanrcstd
during t (in Fig. 3 indicated by arrows), thensksssrcstd, tddd
and s'sssrcstd, tddd are a measure of the mobility of th
fast particles. The local anisotropies of the fast partic
disappear in the microscopic and thea regime.

We define the exponentastd as the logarithmic slope op
kDr2stdl (a  0.5 in the diffusive regime); i.e.,astd ;

FIG. 3. The dependence of the standard deviationssk ands'

andr01 for different times.
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0.5 lnskr2
02lykr2

01ldy ln 2. In Fig. 4, we plot0.5 2 cstd and
astd. On a qualitative level, both quantities display a
similar time dependence. In the region of anomalou
diffusion sa ø 0.1d, the cage is very efficient in push-
ing back particles to their original positionsc ø 0.4d.
Indeed, it is possible to connectc and a even on a
quantitative level. We assume that (i)p3,ksx12jr01, td ~

exph2k2std fx12 1 cstdr01g2j and (ii) p3,'s y12jr01, td ~

expf2k2stdy2
12g. This choice approximately describes the

numerical results forr , rcage as expressed in Fig. 2
if the dependence ofsk,'st, rd on r is neglected. This
choice implies that the probabilityp2 to move by$r01 dur-
ing time t is Gaussian; i.e.,p2s$r01, td ~ expf2k1stdr2

01g
with k2std  k1std f1 2 cstd2g. After some straightfor-
ward calculation, one obtainskr2

01l  2yk1std andkr2
02l 

4f1 2 cstdgyk1std. From these values the logarithmic
slope of the mean-square displacement turns out to be

aeststd  0.5 1 lnf1 2 cstdgy lns4.0d . (1)

As shown in Fig. 4, we calculateaeststd from the simu-
lated values ofcstd. For t , 104, the agreement is very
good. This shows that the cage effect fully accounts fo
the observed anomalous diffusion. Fort . 104, more
particles leave the cagesr . rcaged leading to a stronger
increase of

p
kDr2l than expected from the slopecstd,

i.e., astd . aeststd. Interestingly, the simple model of
Brownian dynamics in an isotropic harmonic potentia
strictly fulfills assumptions (i) and (ii) [26]. Hence, one
has a simple model characterizing the cage. This obs
vation may come as a surprise since for hard spheres
concept of harmonic potential wells around some loca
energy minima does not exist (compare, howeve
Ref. [27]). We checked that describing the case b
a boxlike effective potential does not account for th
features seen in Fig. 2.

FIG. 4. The dependence of the initial slopecstd [extracted
from p3,ksx12jr01; td for r01 , rcage], the exponentastd charac-
terizing the local slope of the mean-square displacement wi
time [extracted from Fig. 1(b)], and the estimationaest from
cstd on the basis of Eq. (1).
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Now we are in a position to formulate a rather detaile
scenario of the dynamics of hard spheres close to t
glass transition. At short timesst , 100d, the dynamics
is mainly diffusive. At longer timesst ø 103d, the
dynamics can be separated into a deterministic part, due
the strong back-and-forth correlations resulting from th
restrictions of the cage, and a stochastic part, reflecti
the local mobility. On a local scale, the mobility is highly
anisotropic, indicating the presence of some “weak” loc
directions, i.e., an anisotropic harmonic potential. A
still longer times, two additional effects occur. First,
significant fraction of particles is successful in leaving th
cage as seen from the difference betweenastd andaeststd
for t . 104 ; t1. Second, the final decrease ofcstd
for t . 105 ; t2 indicates that the cage effect become
weaker. Qualitatively, this can be explained by the fa
that on longer time scales the cage may relax and, hen
adjust to the new position of the particle. It is plausibl
that t2 ¿ t1 since the particles forming the cage mus
have been able to escape their own cage as well. B
effects, starting att1 andt2, respectively, are not included
in the simple representation of the cage as a harmo
potential. Finally, in thea regime st . 106d, most
particles have left their cage, and the dynamics is main
diffusive sa ø 0.5d. However, the dynamics is still
nontrivial. First, one observes a systematic backdraggi
effect sc . 0d rendering the concept of a cage useful eve
in the a regime, and, second, the strong dependence
sk,' on r indicates a broad distribution of mobilities.
Only for much longer times, the particles may experienc
different environments so that the heterogeneities a
averaged out. Then the dynamics of a tagged particle c
be described by purely diffusive dynamics with a singl
diffusion constant.

It remains an interesting goal to extend this analy
sis beyond the single-particle picture and to get in
formation, e.g., about the spatial patterns. This wou
allow comparison with collective properties, as, e.g
obtained for the cage effect in Ref. [3]. However, a
ready the present analysis has shown that considerat
of multitime correlations contains relevant information
which allows a simple and model-free analysis of comple
dynamical processes like those occurring close to the gla
transition.
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