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Origin of Strong Scarring of Wave Functions in Quantum Wells in a Tilted Magnetic Field
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The anomalously strong scarring of the electronic wave functions of quantum wells in a tilted
magnetic field is shown to be due to special properties of the classical dynamics of this system.
A certain subset of periodic orbits is identified which is nearly stable over a very large interval of
variation of the system parameters; hence this subset exhibits strong scarring. Semiclassical arguments
shed further light on why these orbits dominate the experimentally observed tunneling spectra.
[S0031-9007(97)04736-4]

PACS numbers: 05.45.+b, 03.65.Sq, 72.15.Gd, 73.20.Dx

The localization of certain quantum wave functions insuch orbits become monotonically more unstable as the
real space along unstable classical periodic orbits illuselassical parameter (such as energy) driving the system to
trates how quantum mechanics can violate the ergodichaos is increased. Therefore, such orbits only scar wave
behavior expected from classical mechanics. Such waviinctions in the small interval of classical parameter space
functions are conventionally termed “scars” [1] and theirin which they are close to stability. Persistent scarring
properties have been extensively studied by theorists diy the same orbit, as observed numerically in the tilted
quantum chaos during the past decade [2—4]. Recentlyyell, might then indicate that the association between small
an experimental system has been discovered and studi@tstability and scarring is violated in this system [11]. In
[5,6] in which such scarred wave functions control to afact, we will show in this Letter that a certain subset of
large extent an observable physical property, the tunnelinstable periodic orbits in the tilted well has an interesting
ing current through a double-barrier GaAs-AlGaAs het-classical “metastability,” which allows them to satisfy the
erostructure (*quantum well”) under high bias. When acriterion AT < 1 over a wide variation of the classical
magnetic field is applied at an anglewith respect to the dynamics, thus resolving the puzzle. All of the orbits
normal to the barriers (the electric field direction), the re-previously observed to cause strong scarring belong to
sulting dynamics makes a transition to chaos [5—7Pas this subset, which also contains new orbits whose strong
is increased from zero. Calculations by Fromhetdal.  scarring is demonstrated below. The theory also sheds
[8] on the system found strong periodic scarring of quanfurther light on why these scarred states dominate the
tum statesand that these scarred wave functions carriedtunneling current.
most of the tunnel current when the system was resonant. We model the system by two infinite potential barriers
In the initial experiments [5,6] the level broadening (duecorresponding to the-y planes at = 0 (the emitter) and
to optic phonon emission) was too large to observe the = d (the collector), with an electric field® = —E?%,
resonances due to individual levels. However, in a lateand a “tilted” magnetic field = B cosf#z + Bsindy for
experiment [9] this was done, albeit at such low quan0 < z < d (see inset, Fig. 1). The classical Hamiltonian
tum numbers that the concept of scarring becomes lessan be rescaled [12] so that the dynamics depends only
meaningful [10]. From extensive numerical [8—10] work on three dimensionless parametetsg = 2Bv,/E, and
we know (1) quantum states scarred by the same periy = ¢/¢V, whereV is the voltage across the well and
odic orbit persist as the energy or magnetic field is varvy = (2e/m*)!/? is the velocity corresponding to the total
ied so as to substantially increase the chaotic componeittjection energy. In the experimenys= 1.17 is constant
in phase space. (2) The scars arise from only a few ofo a good approximation [12] and so (at fixed tilt angte)
the many unstable short periodic orbits in the tilted well.the scaled magnetic field, is the single relevant variable.
(3) These scars carry much of the resonant tunneling cuth Fig. 1 we show a typical surface of section taken
rent forg > 20°. at the collector barrier for the system @t= 38°, y =

The persistence of scarring by a single orbit as thd.17, 8 = 3.7 which would correspond, e.g., B =4 T,
degree of chaos in the classical dynamics is strongly variedV = e¢Ed = 0.67 V. Several stable and unstable period-
is puzzling and untypical of chaotic systems. It is wellthree (three collisions with the collector barrier before
known that scarred states are most likely to be associataepeating) orbits are present in a chaotic sea. A full
with orbits which are not too unstable. A sufficient theory of the bifurcation and stability properties of all
condition for strong scarring is thatT < 1, whereA is  the short periodic orbits (PO’s) in this system can be
the instability (Lyapunov) exponent associated with thefound elsewhere [12] and we sketch only the most salient
orbit [1], and T is its period. In Hamiltonian systems features here. Only PO’s which collide with both the
unstable periodic orbits appear as marginally stable orbitemitter and collector barriers contribute to the tunneling
at bifurcations; typically in chaotic systems (e.g., billiards)current, and we focus on these “emitter” orbits. Moreover,
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I E—— P I While the “death” of the orbits follows the generic rules
: of Hamiltonian bifurcation theory [13], all the relevant
orbits are “born” in a new kind of bifurcation, which we
refer to as a cusp bifurcation (CB) [12,14]. CB’s have
nongeneric properties since they appear on a closed curve
in the surface of section (SOS), where the Poincaré map
describing the dynamics is nonanalytic. This “critical”
curve separates initial conditions at the collector barrier
which will reach the emitter on the next try from those
which will not. Hence orbits originating just within the
curve will receive a “kick” at the emitter, while those
just outside will not. This leads to a discontinuity in the
I - I — stability matrix M of any periodic orbit corresponding to
-1 0 1 a fixed point which crosses the boundary. In particular,
' all CB’s occur by the simultaneous appearance of two new
X 0 orbits, which infinitesimally above threshold differ by one
FIG. 1. Poincaré surface of section at the collector barrief0int of contact with the emitter (this may correspond to
for 6 = 38°, B =37, v =1.17. The axes are the scaled either one or two fewer collisions). A similar discontinuity
velocities in the plane transverse to the electric field (seeyccurs near trajectories tangent to the circular reflector in

inset). The positions of one of the three fixed points of PR ; ;
different period-three orbits are indicated by arrows (othersthe Sinai billiard [15] and leads to strong diffraction effects

are symmetrically placed). Note that a large period-ond" the wave solutions. , ,
stable island near the center of the SOS also leads to strong We have shown [12] that of the two orbits born in a
localization of the quantum wave functions by the familiar cusp bifurcation the orbit which reaches the emitter more
procedure of local torus quantization. Because of its isolatioijmes has diverging stabilitf TrM | — «) at B.; while the

from the relevant unstable PO’s these stable contributions ca P ; ;
be easily distinguished from scars. The inset shows a schematﬁ:ther orbit in the pair can be either stabfgrd/| < 2) or

of the geometry with our axis conventions. unstable (Tr/| > 2) at Bci. _The latter case, in W_hiCh
two unstableorbits appear simultaneously, is forbidden

for generic Hamiltonian systems [13]. The appearance
optic phonon emission produces a temporal cutoff whiclof the relevant orbits away from marginal stability and in
allows only short periodic orbits to produce structure in theviolation of the standard rules of bifurcation theory has

tunneling spectra. made their appearance and subsequent evolution difficult
Emitter orbits have the following properties [12]. to detect by numerical search.
Periodn orbits exist which collide with the emittet: The above results imply that only one partner in a cusp

times, wherem =< n. m > n is forbidden since the bifurcation is a candidate for strong scarring, the orbit
emitter is at higher potential energy than the collectorthat is born with fewer collisions with the emitter barrier.
Hence, we denote emitter orbits @s, n), wherem # 0.  More detailed continuity arguments and numerical results
A crucial property of the emitter orbits in the tilted well [12] indicate that even though such orbits need not be
is that they exist only for a finite interval of variation marginally stable, near the cusp bifurcation they will have
of the classical dynamics, appearing above a thresholftM| = 2. Since these orbits are born near marginal
value of 8 = B, and disappearing at a higher value of stability and must die at marginal stability they have a
B = B by an inverse bifurcation [usually a tangent special metastability which prevents them from becoming
bifurcation or a period-doubling bifurcation (PDB)]. A highly unstable as the chaos in the system increases.
tangent bifurcation is one of the standard bifurcations oHence we argue that these, and only these orbits, will scar
Hamiltonian systems in which two PO’s which evolve duerepeatedly, as the chaos paramefgris varied.

to the variation of a system parameter become degenerateBifurcation and stability diagrams illustrating the be-
and hence can disappear without violating conservatiohavior just described are shown in Fig. 2 for the case of
laws such as the Poincaré index theorem [13]. In geriod-two and period-three orbits. Among the period-
period-doubling bifurcation an existing orbit gives birth two orbits the orbit denotedi,2)™ fits our criteria [the

to a new orbit with the period equal to twice the period —, + denoting (in-)stability; see caption]. A = 28° it

of the original orbit. Exactly at a PDB the new orbit is is born in a CB with the higher connectivity orlf, 2)~ at
degenerate with the second repetition of the original orbit3 = 4.0 and dies in an inverse TB with the orlfit, 2)* at

At such degeneracy points the orbits must be marginally3 = 7.0. This period-two orbit and another topologically
stable, which is expressed by the conditidmM| = 2,  similar orbit (not shown) which appears at a slightly higher
whereM is the stability matrix associated with the orbits. value of 8 account very well [12] for the peak-doubling re-
In the tilted well all emitter PO’s disappear by such gions observed ned@ = 28° in the experiments of Muller
bifurcations. et al.[6]. This orbit was found to scar many wave
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of the three orbits just identified [see Figs. 3(a)—3(c)].
By generating many spectra at different valuesBoF
we can search in the experimentally appropriate intervals
of B with 1.1 <y <12 and systematically detect
these scars. In Figs. 3(d)—3(f) we plot a measure of
scar strength versus action of the scarring orbit. As
noted before [8,21], the energiaes, of scarred states
satisfy an approximate Bohr-Sommerfeld quantization
rule, S(e,) = (n + ¢)27h, so we expect and find a
strong periodic modulation which turns on at the tangent
bifurcation at which the orbit appears [19].

Finally, we comment on the fact that these scarred
] ] ] ] states tend to dominate the tunneling current at large
FIG. 2. ~ Bifurcation diagrams for the relevant period-two ;i angles. Al of the orbits studied here and elsewhere
(@) and period-three (c) orbits. The axs (defined in text) B . X .
may be regarded as the scaled magnetic field; the vertical ax[§ 10] Wh'c_h scar S,tfong'y have only a single collision
is the v, coordinate of one of the fixed points in the SOS With the emitter barrier. Since both emitter and collector
associated with the orbit as indicated by the arrow in the insetsurfaces of section must be symmetric whgn— —uv,,
(b), (d) Plots of the trace of the monodromy (stability) such orbits must have, = 0 at the emitter barrier [22].
ane"‘rfgi(egorsg&lﬁ;rﬁgg%ﬂ.‘d'g?b?trsb'éz;nsoqggg;{a(fﬂ'%[)q\fl]rlefn;)n Thus these orbits have unusually low transverse velocity at
slightly unstable over a large variation @f, Ieladfng to strong the.emllt_ter_ barrier compared_ to other Orb't_s with the same
scarring. The notatior(m,n)* used for the periodic orbits Periodicity in the collector Poincaré map. Since the emitter
represents the topology of the orbit: (collisions with the wave function is primarily a superposition of the first few
em[tter barrie_r anch collisions with phg collector barrier per Landau levels, the source of tunneling current has low
Eg%org; itJ; ’Jségﬂ'ggﬁgﬁcéhﬁty EESe?srgltbi;irs;?izlﬁ)’ unstable justyansyerse velocity and couples very well to these scarred

' states. The strong coupling of these particular scars to the

functions in the work of Fromholét al. [8]. Note from 0 _ 0 o .

Fig. 2 that in roughly the samg interval there are two of 1F o OF ]| e ©f
other period-two emitter orbits denotdd,2)~,(1,2)", N DSOS 45 /b\ S /I/% g
each with rapidly varying stability. Both are born in CB’s 1 ; 0] \/ "i-j F [ \/ ‘*I‘ .
paired with an orbit with fewer collisions with the emitter; AR RS A AR AL AR

hence they are initially enormously unstable. Therefore

. e I N ORI ®
they do not generate strong scars in the spectrum. c ] ]
A similar story holds for one of the eight period-three s ] ]
orbits which appear aroung = 3.5 at 6 = 38°. We : m H l l ] “l l J ‘ H [ ' l l“
denote this orbit(1,3)"; its fixed points are indicated bbb ) el
50 55 60 57 60 63 66 69 72 110 115 120 125

in Fig. 1 along with schematics of the orbit. This orbit
has been discussed previously [16—18], particularly in
connection with the observability of trifurcations, in the FIG. 3. (a)—(c) Examples of wave functions scarred by

data of Ref. [6]. It is born in a CB as the partner of a‘(”;Stab'e(laz)} orbit f(a)'b-(tl’” orbit (b), ang(l’(g))f (?;blts
P . ) o c); y-z projections of orbits are superimposed. (d)- car
(3,3)" orbit, remains near marginal stability for2 < strength” H vs the scaled actiorS(s,)/h of the unstable

B <44, and dies in a TB with thél,3)". Again, in  orpit which scars the eigenstate of energy. The three
the same interval there are several other unstable periodases shown are (&),2)~ orbit, (b) (1,3)~ orbit, (c) (1,5)”
three emitter orbits which do not belong to the specialrbit. The arrows indicate the values @ for the tangent
metastable subset and hence do not scar strongly. Finall 'f“err‘]:aﬂfc':é{‘;";i‘r'%h g'c‘f[ﬁ) E'rzgrtoeggfgi’;rﬁgc tg%gﬁt Ei?tﬁ?cght%n
by the same reasoning we have found ) orbit which at higher 8 ~ 1/,/e occurs at thelower action side. The
scars strongly. peaks of the scar strength below the tangent bifurcation are

Note that by our criteria the scarring orbits must alwaysdue to the “ghost effect” [19,20]. Scaled actions below the
be (m, n) orbits withm < n; e.g., (1,2) can scar strongly, bifurcation points were obtained by linear extrapolation of
whereas (2,2) should not. On the other hand, it is easil;?"e (approximately linear) functiosi(e)/h. Scar strengtht!
shown [12] that a®) — 0 the only emitter orbits are of > defined as the value of the OHUSZ,'m' functii(y ’Opi") -
the type(n,n). Therefore, the interval of existence of the [{N ﬁzj: Y ZV”(y ’(I;L?)e;xggg()¥/z_ iys)/tc;fe_ e?ééii,; prﬁ,;/:gtic
chrrlng orbits is small for smadl. Thus, for example, the length] cglculated for the normal derivative of thg wave
period-three scarred states are unimportantfer 20°. function  [W,(y.p,) = [ dAya, W(y — Ay/2,009,W(y +

We have tested this argument quantitatively byay/2,0)explip,Ay/#)] at the location of the fixed point
analyzing the quantum states of the tilted well for scargy° « v,, p§,’ o« v,) of the unstable periodic orbit.

Scaled action S,/h Scaled action S;/h Scaled action Sg/h
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emitter has been understood previously [9], and leads tfi1] Despite the extensive numerical work on this system,

guasiselection rules even far from the perturbative regime.  we are not aware of any published results analyzing the

This makes tunneling spectroscopy particularly suited to  stability of the scarred orbits.

detecting scars in the tilted well. [12] E.E. Narimanov and A.D. Stone, cond-mat/9704083
We believe that the periodic orbit scenario describe [Phys. Rev. B (to be published)].

here of metastable orbits created in cusp bifurcation(%l?’] K.R. Meyer, Trans. Am. Math. SodAq, 95 (1970).

will be generic for nonintearable Hamiltonian svstems 14] The term cusp bifurcation denotes the occurrence of a
g 9 y cusp in the bifurcation diagram for a pair of orbits born in

comprising the sum of smO_Oth and hard-wall pOtemi"’}lS' such a bifurcation; it should not be confused with the cusp
Hence the anomalous scarring found here may occur in a  catastrophe of Thom.
wide class of quantum-chaotic systems. [15] H. Primacket al., Phys. Rev. Lett76, 1615 (1996).
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