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Collisionless drift-wave turbulence is studied with numerical simulations in a three-dimensional
sheared slab geometry. Nonlinear electron Landau damping associated with parallel trapping is
found to substantially reduce the anomalous particle transport for low magnetic shear (ŝ , 1),
whereas it plays a very weak role for higher shear (ŝ . 1). This result has implications for the
construction of transcollisional Landau-fluid models for passing electrons in the edge (rya . 0.8) of a
tokamak. [S0031-9007(98)06253-X]

PACS numbers: 52.35.Ra, 52.35.Kt, 52.65.–y
r

el
i-

t-

f

d

s

There is experimental evidence that the anomalo
transport in tokamak plasmas can be attributed to dri
wave turbulence in certain parameter regimes [1].
the steep gradient zone of a tokamak edge (rya . 0.8)
the passing electrons are at most weakly collisional
that parallel electron Landau damping plays a crucial ro
in the drift-wave dynamics. To avoid a fully kinetic
treatment, transcollisional Landau-fluid models [2,3] hav
been proposed to retain this important kinetic effec
While linear Landau damping in the parallel electron
dynamics can already be captured by these Landau-fl
models [2–5], the corresponding nonlinear effect (i.e
electrostatic trapping associated with the velocity-spa
nonlinearity in the electron drift-kinetic equation) ma
be much harder to incorporate. Earlier work by Le
et al. [6] in a two-dimensional shearless slab geomet
has shown that nonlinear electron Landau damping c
play an important role in determining the level of th
fluctuations in collisionless drift-wave turbulence. I
the following, we present well-resolved computation
studying this effect in a more realistic three-dimension
sheared slab geometry.

In a strongly magnetized, collisionless plasma (i.e
ne ø v ø Vi where ne and Vi are, respectively, the
electron collision frequency and the ion cyclotron fre
quency) the electron dynamics can be described by
drift-kinetic Vlasov equation [7] which reads in slab
geometry

≠fe

≠t
1 vE ? ='fe 1 wk=kfe 2

e
me

Ek

≠fe

≠wk

 0 . (1)

Here fesr, wk, td denotes the distribution function for
the electron guiding centers,vE  scyB2dE 3 B is the
E 3 B drift velocity, 2e and me are, respectively, the
electron charge and mass, andw is the velocity. k and
' denote the directions parallel and perpendicular to t
magnetic fieldB. Note that in a slab model,w' space can
be integrated out, so that the computational velocity spa
is one dimensional. In the electrostatic limit the electr
field is given byE  2=f, wheref is the electrostatic
potential.
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We treat the ions as a cold fluid, such that thei
drift velocity is vE and their parallel velocity,uk, re-
sults from Ek. Quasineutrality is maintained by the
ion polarization current, so that= ? J  0 for the to-
tal currentJ, with Jk  enuk 2 e

R
wkfe d3w andJ' 

enscyViBddE'ydt, wheren is the plasma density. This
constraint determines the time dependence off and hence
vE . Unfortunately, the term “nonlinear Landau damping”
is somewhat ambigious; it is used to describe both parall
electron trapping and perpendicular ion trapping (assoc
ated withvE ? ='fi) which can also be important in colli-
sionless drift-wave turbulence [6]. In our model,E 3 B
advection is retained in the equations forn anduk which
are all the ion moments present. As we are investiga
ing electron dynamics, this simplification is justified for
the development of a transcollisional fluid description o
passing electrons.

Under drift ordering,fe is split into a background
Maxwellian, fm, and a fluctuating part,̃f. The density
profile gradient (here we neglect=Te) appears infm

but is retained only invE ? =fm. Defining the electron
thermal velocity yT 

p
2Teyme, the ion sound speed

cs 
p

TeyMi , and the drift-wave dispersion scalers p
MiTe cyeB, the dependent variables are normalize

according tos f̃y
3
T yndd21 ° f, sefyTedd21 ° f, and

sukycsd sLnyqRdd21 ° uk, whered  rsyLn. Here,Te

is the electron temperature,Mi is the ion mass,Ln is the
density profile scale length, and2pqR is the magnetic
field line connection length. The independent variable
are scaled asxyrs ° x, yyrs ° y, zyqR ° z, wyyT °
w, andtcsyLn ° t. The dimensionless equations forf,
f, anduk are then given by

df
dt

 2fm
≠f

≠y
2 aewk=ks f 2 fmfd

2
d

2
ae

≠f
≠wk

=kf , (2)

d
dt

=2
'f  =k

√
uk 2

Z
aewkf d3w

!
, (3)

ês
duk

dt
 2=kf 1 mk=

2
kuk , (4)
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≠
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1 vE ? =' 

≠

≠t
2

≠f

≠y
≠

≠x
1

≠f

≠x
≠

≠y
, (5)

and fm  p23y2e2w2
. In Eq. (4) we have added a

parallel viscosity,mk which serves as a crude mode
for ion Landau damping. The most important paramet
in the present electrostatic collisionless model isae 
sLnyqRd s2Miymed1y2, which is given by the ratio of
the parallel to the perpendicular dynamical frequencie
i.e., thermal electron transit frequencyyT yqR to drift
frequencycsyLn. The parameter̂es  sqRyLnd2, which
controls the ion inertia, is secondary.

The coordinate systemsx, y, zd is aligned to the back-
ground gradient and magnetic field, which is modeled
a sheared slab by takingB  Bf=z 2 sxyLsd=yg, where
Ls  qRyŝ is the shear length. The orientation is=x ~

2=n and =x 3 =y ? =z  1. Alignment to B is done
by transformingy such thatB ? =y  0, which gives
x ° x, y 1 xzyLs ° y, andz ° z, leaving=k  ≠y≠z.
The nonorthogonal property of this coordinate system
reflected in the metric [8]

=2
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(6)

and in the parallel boundary condition [9–11]

Ssx, y, z 1 2pd  Ssx, y 2 2p ŝx, zd (7)

for any scalar quantityS. In the perpendicularsx, yd
plane, periodic boundary conditions are applied.

Numerically, we use a nonlinear Vlasov code whic
is based on a finite-difference scheme for the electr
distribution function. The velocity-space nonlinearity i
the drift-kinetic equation becomes more important wit
increasingd. We usually setd  0.02 which is a large
but realistic value. The other simulation parameters we
the following. The computational domain was32rs 3

64rs 3 2pqR; the total simulation time was up to
2000Lnycs. This corresponds to about3 cm 3 6 cm and
2 ms for typical tokamak conditions.wk ran from23yT

to 3yT . The grid was typically32 3 64 3 16 3 100
nodes insx, y, z, wkd space. The initial condition for the
distribution functionf was a localized disturbance in rea
space and a Maxwellian in velocity space, whereasf and
uk were both set to zero.

To get a better understanding of the turbulent syste
one can construct energylike expressions in terms
squared fluctuating quantities, e.g.,

En 
1
2

kn2l, Ef 
1
2

ky2
El , (8)

wheren 
R

f d3w is the zeroth moment of the electron
distribution function, andk· · ·l  V 21

R
· · · d3r denotes

spatial averaging. Other terms could be defined simila
[12] but for the following discussion,En and Ef are
sufficient. Using the above equations (2) and (3), one c
4884
l
er

s,

as

is

h
on
n
h

re

l

m,
of

rly

an

calculate their time derivatives,

ÙEn  Gn 2 kn=kykl, ÙEf  kf=ksyk 2 ukdl , (9)

whereyk 
R

aewkf d3w is the first moment of the elec-
tron distribution function. The termGn  2kn≠fy≠yl
acts as a source forEn and drives the turbulence by ex-
tracting energy from the background density gradient an
putting it into the density fluctuations. At the same time
it measures the particle transport in the radial direction
In terms of spectra,GnsNd will refer to the contribution of
a given parallel wave numberkk to Gn [13]. Noting that
n ø f for drift waves, it is clear that energy is transferred
from En to Ef through parallel compression.

Let us first examine the case with an unsheare
magnetic field (see Fig. 1). If one starts out with a densit
fluctuation amplitude well below unity, the system firs
goes through a linear phase in which the nonlinear term
are negligible and the various modes in the system a
not coupled to each other. As expected, it turns out th
the system is quickly dominated by the most unstab
mode, N  1 in our case, where the mode numbersN
are given byN  kkqR. Free energyEn is tapped via
the linear instability (1) and put intoEf through drift-
wave equipartition (2). In the subsequent nonlinear phas
fluctuation energyEf is transferred from theN  1
modes (drift waves) toN  0 modes (convective cells,
not drift waves) through the inverse energy cascade (3
This mechanism is caused by theE 3 B nonlinearity
in the vorticity equation, as was inferred from anothe
run where it was turned off. And although there is no
direct coupling between the density and the potenti
fluctuations forN  0, energy can now be extracted from
the background gradient and put intoEn through passive

N
N = 0  N = 1

n

Φ

n

Φ

➀

➁

➂

➃

➄

shear

FIG. 1. Energy transfer processes in parallel wave-numb
space N  kkqR  1, 2, . . . for the case of an unsheared
magnetic field. In the sheared system,N  0 modes are
also directly coupled to each other. The processes 1–5 a
described in the text.
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FIG. 2. Drive rate spectrumGnsNd, Gn 
P

N GnsNd, in par-
allel wave-number spaceN  kkqR  0, 1, . . . for the case of
an unsheared magnetic field. More than 90% of the transp
is caused by convective cells, i.e., modes withN  0.

advection of the density (4). TheE 3 B nonlinearity in
the drift-kinetic equation then transfers density fluctuatio
energy back to the drift waves (5). This inherentl
nonlinear drive mechanism is mediated through ener
transfer in kk space and characterizes the physics
the turbulent system. It can be described as a coupl
between drift waves and convective cells and has be
seen before both in collisionless [14] and collisiona
[13] three-dimensional systems. During fully develope
turbulence, more than 90% of the transport is inde
caused by convective cells, not drift waves, as can be s
in Fig. 2.

The velocity-space nonlinearity which is associate
with the effect of nonlinear Landau damping has a
impact on the parallel dynamics of the electrons an
therefore on the properties of the drift wave syste
(see Fig. 3). Electrons whose kinetic energy is le
than the electrostatic energy of the wave get trapped
the potential fluctuations and are forced to move alo

FIG. 3. Through the influence of the velocity-space nonlin
earity, low-energetic electrons can get trapped in the drift-wa
potential and are then forced to move along with the wave
the parallel direction.
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with the wave in the parallel direction. Therefore the
transport properties of the unsheared system are chang
only indirectly as the velocity-space nonlinearity has no
direct influence on the convective cells which contro
the transport level observed in the simulations to a larg
degree.

The effect of nonlinear electron Landau damping wa
studied quantitatively with numerical simulations. Each
run was repeated (using the exact same set of physical p
rameters) with the velocity-space nonlinearity switched on
An example of the resulting time-averaged transport lev
els calculated from the simulations of the unsheared sy
tem is listed in Table I under run number 1. One observe
a substantial suppression of anomalous transport which
accompanied by a decrease in the fluctuation levelkf2l1y2

from 4.2 to 3.6. As the energy inEf enters only through
En at finite kk, this shows that this linear energy trans-
fer process is reduced by the velocity-space nonlinea
ity. Hence, less energy reaches the potential fluctuatio
with N  0 and the drive via convective cells is weak-
ened. Obviously, the self-consistent dynamical equilibri
of the turbulent systems with and without nonlinear elec
tron Landau damping are quite different from each othe
It should again be stressed here that the homogeneous s
tem consists of two subsystems, namely, the drift wave
and the convective cells, which are only coupled throug
the E 3 B nonlinearities in the equations forf and f.
The subtle balance between the two clearly leads to a qu
high sensitivity with respect to changes in the parallel pa
of the drift-wave dynamics.

In the case of a sheared magnetic field the bas
equations are modified in two ways, as explained abov
First, as potential fluctuations spread along the magne
field lines, they are twisted due to thez dependence of the
metric, as described by Eq. (6). Second, strict periodicit
in z is broken by the field line connection, as describe
by Eq. (7). This means that for finiteky the existence
of strict kk  0 modes is not allowed [11]. Rather, each
mode has a finite parallel component which keepsn andf

directly coupled to each other, i.e., there are no longer an
pure convective cells, just the drift waves. Akk spectrum
can still be described, but nowN refers to the part of
the spectrum withkkqR betweenN 2 1y2 andN 1 1y2
[11]. Consequently, one can expect major differences

TABLE I. Influence of nonlinear electron Landau damping on
the particle transportGn for d  0.02. G0

n corresponds to the
runs with the velocity-space nonlinearity switched on.

Run m̂  2ya2
e ŝ Gn G0

n sG0
n 2 GndyGn

1 0.3 0.0 0.80 0.50 238%
2 10 0.32 0.52 0.36 231%
3 10 0.64 0.21 0.16 224%
4 10 0.95 0.098 0.081 217%
5 10 1.27 0.041 0.037 210%
4885
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FIG. 4. Typical snapshots offswkd at a fixed point in space
for runs (a) without and (b) with nonlinear electron Landa
damping. The dashed lines showfmf for comparison.

the unsheared case as thekk space scenario described
above is no longer valid (see Fig. 1).

The simulations were started with a density fluctuatio
amplitude well above unity, and the system then relax
towards a turbulent steady state which was driven no
linearly [15–17] just as in the unsheared case. Aga
all the runs were repeated with the velocity-space nonl
earity switched on. A signature of the impact that it ha
on the parallel electron dynamics can be seen in Fig
which shows two typical snapshots offswkd at a fixed
point in space for runs with and without nonlinear elec
tron Landau damping. As parallel trapping is associat
with diffusion in wk space [18], one expects a smoothin
of fswkd which is indeed observed in the simulations. A
can be seen from Table I, the differences in the transp
level reduce with increasing shear parameterŝ. For mod-
erate or high shear,̂s . 1, the suppression is only abou
10% or less, i.e., of the order of the statistical uncertai
tiesDGnyGn observed in the simulations. Thus the effec
of nonlinear electron Landau damping can be neglegt
for collisionless drift-wave turbulence if and only if the
magnetic shear is high enough,ŝ . 1, whereas for low
shear,̂s , 1, it can suppress the resulting turbulent tran
port significantly. As has been explained, this behavior
a consequence of the nonlinear drive mechanism. In
unsheared case, the subtle balance between the drift wa
and the convective cells makes the system quite sensi
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with respect to changes in the parallel electron dynamic
whereas for finite shear,n and f are directly coupled to
each other through a nonzerokk.

So our results show that in a tokamak edge (rya .

0.8) where generallyŝ . 1, nonlinear electron Landau
damping does not need to be considered in the constru
tion of transcollisional Landau-fluid models for nonadia
batic passing electron dynamics. Thus we have remov
one potential source of disagreement between fully k
netic models and their less costly substitutes, Landau-flu
models. Nevertheless, nonlinear fluid models of collision
less drift-wave turbulence will still have to be compared
against fully kinetic calculations like the present one in
order to test their applicability in the strongly turbulen
regime.
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