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Nonstandard Diffusion Properties of the Standard Map
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The diffusion properties of the Chirikov-Taylor standard map are shown to be nonuniversal in the
framework of the wave-particle interaction, because this map corresponds to a spectrum of waves
whose initial phases are all correlated. The occurrence of diffusion is shown to be a peculiarity of
the standard map when the average is made over the particles’ initial positions. The force correlation
time is shown to decrease more slowly with the wave amplitudes for the standard map than for waves
with noncorrelated phases. Lévy flights are shown to be one more peculiarity of the standard map.
[S0031-9007(98)06258-9]
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The Chirikov-Taylor map [1—3] defined by the finite over the electric field realizations. It will be shown in
difference equations g,+1 — g, = I,, I,+1 — I, = this Letter that dynamical quantities averaged over the par-
K sin(g,+1), has been so widely studied during the pastticles’ initial positions,(),, exhibit some nonremovable
two decades that it is often referred to asstendard map. statistical noise, which is, however, smoothed out when
It is one of the basic models used in chaos theory anthe average is performed over the initial phages, As
also has direct physical applications [4]. Itis, in particu-a consequencef,(v,) only converges towards a noisy
lar, relevant to the study of the statistical properties of theGaussian, and therefore does not obey a diffusion equation
dynamics of a charged particle in a broadband spectrunin the case of the dynamics defined by (2), whilgv, 1)
because it can be derived from the standard Hamiltoniandoes. In the case of the standard map one can define only

4o the velocity distribution functiory, (v, ) which will be
H = v/2 + (K/47) Z codg — mt), (1) shown to obey a diffusion equation for most valueskof
M=—oco allowing large scale transport. Hence, when the statistics

is made with respect to the particles’ initial positions, dif-

which describes the motion of a particle of mass 1inan . "o atypical property of the standard map. More-

infinite set of electrostatic waves having the same ampli- ; . .
having \mp over, the force correlation time will be shown to decrease
tudes, same wave numbers, zero initial phases, and inte

frequencies. q, is then defined by, — q(t — 2arn) and Yore slowly withK in the case of the standard map than in
d 85 qn S Yin = q\t = 2mn the case of the dynamics defined by (2). Finally, it will be
I, byl, = 27v(t = 2mn).

In order to check the universality of the standardShown that, because the initial phaggsare not all corre-

: g . . . lated inH’, the dynamics defined by (2) cannot exhibit any
m:&ilrti%?a:gmg diffusion, we consider in this Letter theLévy flights, in contrast to the case of the standard map.

We consider here only the case where the initial velocity
, ) ) w distribution functionf (v, 0), is a Dirac distribution. Then,
H' = v?/2 + (K/Am?) Y codqg — mt + ou), (2) ifthereis diffusion, i.e., b f (v, 1)/t = DO*f(v,1)/dv?,
m=-M f(v,t) is a Gaussian of variancgD:. In the case of
which has the same form as (1) but which includes only ahe standard Hamiltonian, wheédv?(7)), is numerically
finite number of waves whose initial phasgs are cho- observed to evolve linearly with time, the numerical distri-
sen independently. Choosing waves with initial randombution functionf, (v, r) indeed converges towards a Gauss-
phases corresponds to the choice usually made in plasnn, as expected. This can be seen by compafifig, ¢)
physics, when dealing with a wave spectrum resulting fromto a Gaussian of the same variance, like in Fig),1¢r by
the unstable growth of a random noise. It is, for exampleusing a statistical test, like the Kolmogorov-Smirnov (KS)
the case in the beam-plasma instability [5]. Yet, in chaogdest [7], which yields the probability that a given distribu-
theory, such a physical situation is often modeled using th&on function would be a Gaussian. In the case of Fig),1(
standard map [6]. the KS test indicates that, with a probability equal to 85%,
The velocity distribution functions obtained from (1) f,(v,¢) is a Gaussian.
and (2) are compared. Actually, in the case of the dynam- Surprisingly enough, the convergence £f(v, ) to-
ics defined by (2), one can define two different velocitywards a Gaussian is actually an atypical result as such a
distribution functionsf, (v, r), when the statistics is made convergence is not observed in the case of the Hamiltonian
with respect to the particles’ initial positions, afid(v,7),  (2). This is illustrated in Fig. ), and the KS test indi-
when the statistics is made over the initial phases, i.ecates a probability only equal to 30% thét(v, r) would
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to K2/3. Therefore, the reduced dynamics is a dynamical
system which changes as the particle’s velocity changes.
Actually, as the wave phases are independent variables, the
reduced dynamics changes in an incoherent way. In par-
ticular, the reduced dynamics related to velocitigsand

v, separated bRAwv at least are completely uncorrelated.
These two reduced dynamics thus induce completely in-
dependent changes in the particle’s velocity, and also in
the particle’s position. As shown in [9], this last feature
prevents any recorrelation when the particle’s velocity as-
sumes once again the value after having been equal to
v,. Therefore, the particle experiences a sum of uncorre-
lated increments of velocity. Then, because of the central
limit theorem, the velocity distribution function obtained

0.154

0.05

(a) by averaging over the realizations of these uncorrelated in-

. : : : crements of velocity converges towards a Gaussian. As the
-10 -5 0 5 10 increments of velocity are uncorrelated becausegthare
v independent variables, averaging over thg is equiva-

lent to averaging over the realizations of the increments of

FIG. 1. Numerical distribution functions at time (solid ; ; ; sy diatribyg _
lines) compared to the Gaussian distributions of theveIOC|ty. This explains why the velocity distribution func

same variances (dotted lines)a) (standard mapK = 32,  tON fo(v.1) converges towards a Gaussian [9]. Now, it
t = 90(K /4m2)~2/3 = 104.4, 9000 particles’ initial positions; can easily be seen from the Hamilton equations of (2) that,

(b) Hamiltonian (2), K = 32, r = 900(K /47%)~%3 = 1044,  at any timer, the values of a particle’s position and veloc-
90000 particles’ initial positions;cf Hamiltonian (2), for the ity are uniquely determined once the valuegt®) + ¢,,
samek andt as in @), and 9000 phase realizations. is prescribed for anyn such that-M < m < M. This
implies that the set of parameters defining the dynamics of
be a Gaussian. Yet, as shown in [B\v?(1)), is indeed  (2) is of dimensio2M + 1. Inthe space of these parame-
numerically observed to evolve linearly with time, eventers, the point whose:ith coordinate is;(0) + ¢,, moves
for times shorter than the one corresponding to Fig).1( along a straight line when only(0) is varied. Therefore,
fq(v, 1) actually looks like a noisy Gaussian even thoughaveraging over the initial positior;(0), only amounts to
the number of samples and the time of integration correvisiting a straight line, and thus a set of dimension one, and
sponding to Fig. 1) are 10 times higher than in Fig.&(  of measure zero, in the set of all the parameters. This is
Actually, the amplitude of the noise in Fig.l(s foundto  not enough to obtain smooth quantities, and explains the
be the same in a velocity distribution function correspond-statistical noise observed in Fig.n)(
ing to a time twice shorter, or when the number of samples For the sake of simplicity, we carried out all of the
is divided by 10. Therefore, this noise does not decreasabove discussion in the particular case where ghe
as time goes on or if the number of samples is increased: &re independent. However, the results shown previously
is a nonremovable noise. This implies that, for the dynamremain valid in the case where thg, only depend on each
ics defined by (2), when the statistics is made with respeatther over a finite range, i.e., if there exists an intelger
to the particles’ initial positions, there is no diffusion. l. < M, such thatp; is independent of any; such that
However, a statistics made over the initial phages |i — j| = I.. Therefore, as regards transport properties,
yields a diffusion. f, (v, 1) is indeed numerically observed the standard map is only relevant to the description of
to converge towards a Gaussian as can be seenin l)g. 1(those wave spectra where the initial phases of almost all
for the same values & and time, and the same number of the waves are correlated.
samples as in Fig. &]. Moreover, the KS test also indi-  In order to further exemplify the difference between
cates a probability of 85% thét, (v, r) would be a Gauss- the averages made with respect to the particles’ initial
ian. We thus conclude that, in the case of the Hamiltoniamositions and the averages over the phase realizations,
(2), chaotic diffusion is an average-dependent statisticalet us investigate the evolution gAv?(¢)). A direct
property. calculation [9] ofAv?(2)),,, using the Hamilton equations
This can easily be understood using a property of localef (2), shows that during & -independent time,, shorter
ity, recently introduced in [9]. Using perturbation theory, than2, (Av2(t)), = 2DqLt, whereDqr, = K?/3273 is
it was shown in [9] that, when the,, are chosen inde- the so-called quasilinear value of the diffusion coefficient
pendently, the statistical properties of the dynamics def10] (see Fig. 2). Plotting the initial evolution ¢hv?(2)),
fined by (2) are the same as those of the reduced dynamidésr the Hamiltonian (2) shows that this curve is far from
which encompasses only the waves with phase velocitiggeing a straight line (see Fig. 2), and is actually a very
m such thaim — v(r)] = Av, whereAw is proportional  noisy curve. As forf,(v, ), the noise present i v?(1)),
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250+ below 5%. We then found that the force indeed decor-
relates when a particle has moved by a quantity close to
2004 2Av along the velocity axis. In order to illustrate this
,,,,,,,,, result, we estimated the valu€sandD which best fit the
A 150 linear evolution{(Av?(¢)), = 2Dt + C, and then plotted
= (Av%(t) — C),/2Dt as a function ofV, (1) = (vmax(t) —
v 1007 - vmin(1))/2Av, where Av = 0.43K%*3. One can see
o in Fig. 3 that(Av%(r) — C),/2Dt = 1 when N}, = 1.
507 /™ = Using the scaling properties analytically derived in [9],
0 e e this implies that the force correlation time scaleskas’?.
0.0 0'5 ] '0 1 '5 50 If we now consider the case where the averages are per-

formed with respect to the particles’ initial positions then,

FIG. 2. (Av?(1)), (solid line) and(Av?(t)), (dotted line) for when calculatingF (1)F (0)),, where F(z) is still the re-

the Hamiltonian (2) withk = 200. The dashed straight line duced force, the fact that the phases preseﬂf(m. and
has the quasilinear slope. F(0) are the same or not does not make any difference.

Actually, (F(1)F(0)), = 0 only if ¢(¢) can be considered
as independent from its initial value. Hence, force decor-

comes from the fact that averaging over the particlestelation is only due to the incoherent change of the posi-
initial positions amounts to averaging over a very smalltion, ¢(r), which begins to occur after a particle has moved
fraction of the parameters defining the dynamics of (2)by more thar2Av along the velocity axis. Therefore, un-
The strong discrepancy between the initial evolutions ofike in the case when the average is performed with respect
(Av2(1)), and (Av%(t)),, shown in Fig. 2, is a good to the phaseg,, a shift by2Av along the velocity axis
illustration of how different the statistical properties of aonly has an indirect consequence on force decorrelation.
dynamics can be, depending on the averaging process. The force is thus expected to decorrelate later when the

In the case of the standard map, investigating?(r))  statistics is made with respect to the particles’ initial po-
for times shorter thar27r does not make any sense sitions than when the averages are performed with respect
because, ift < 27, (Av*(t)) = 0. However, studying to the phase realizations. This is confirmed numerically,
(Av?(1)) for longer times enables one to estimate the forces the force decorrelates whah = 2.5 when the aver-
correlation time. Indeed, when the force is decorrelatedage is made over the particles’ initial positions, instead of
(Av?(1)) evolves linearly. Studying the long-time evolu- N, = 1 when the average is made over the phase realiza-
tion of (Av?(z)), we now compare the force correlation tions (see Fig. 3).
times for the Hamiltonians (1) and (2). In the case of the standard map, the way the force corre-

In the case of the Hamiltonian (2), because of theation time,r., scales withk cannot be directly estimated
property of locality, force decorrelation can actually beby studying the evolution ofAv?(¢)),. This is due to the
deduced from the study of the reduced forE¢) =  fact that the force decorrelates after only a few map itera-
(K /47?) Dm-v(l=ay COSg — mt + @,). As already tions, which entails a too large imprecision epto de-
mentioned, after having moved by more thizhv along  rive a scaling. However, one can have some indications
the velocity axis, a particle is acted upon by a reduce@bout the way the force correlation time decreases With
force F(r) independent of any of the phases, present by studying how fast the diffusion coefficient converges
in F(0). This implies that{F(r)F(0)), = 0. When the
statistics is performed with respect to the phase realiza-
tions, the force is thus expected to decorrelate when the
particle has moved along the velocity axis by an amount
close to2Av. In order to numerically test this result,
one needs to clearly specify a definition of the force
correlation time, because there is actually no time
such that wherr = 7. the force correlation function is
exactly 0. Therefore{Av?(r)), never evolves exactly
linearly. Moreover, in a numerical simulation, the use of
a finite number of samples to perform the averages entails
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a statistical noise ifAv2(t)), which prevents its exact 0.0+~ : ; ; .
evaluation. In the simulations we performed, the relative 0 1 2 3 4
amplitude of the fluctuations giAv?(z)), was less than N,

5%. This led us to define the force correlation time, FIG. 3. (Av2(r) — C)/2Dt for the Hamiltonian (2) withk =

as the time such that, for= 7., the relative discrepancy 200: average over the phases (solid line); average over the
between(Av2(t)),, and its best linear fit always remains initial positions (dotted line).
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towards its quasilinear value whé&— <. Indeed, using dard map, for the dynamics defined by (Aw?(z)) cannot
our definition of the force correlation time, wher= 7., evolve in a superdiffusion way. Whéav?(¢)) is numeri-
the slope of Av?(1)), which yields an estimate of the dif- cally observed to evolve in a diffusionlike fashion, the
fusion coefficient, does not vary by more than 5%. Forforce correlation time was shown to decrease more slowly
instance, wherr, = 27, the diffusion coefficient for the for the standard map than for the Hamiltonian (2). More-
standard map differs from its quasilinear value by lesover, the convergence of the velocity distribution func-
than 5%. WherK = 8, we could estimate that the force tion towards a Gaussian was shown to be a peculiarity of
gets decorrelated after a number of iteratiansuch that the standard map when the statistics is made with respect
5=n="7. Therefore,l07 = 7. = 147. If 7. scaled to the particles’ initial positions. When the wave initial
asK 23, the valueKq, of the stochastic parameter cor- phases are not all correlated, such a convergence only oc-
responding tor. = 277 would be such tha89 = Ko, =  curs when the statistics is made with respect to the field re-
148. Now, it has been analytically estimated [3,11] thatalizations. Chaotic diffusion is thus an average-dependent
the relative discrepancy between the diffusion coefficienproperty. In particular, the evolution afAv>(r)) was
of the standard map and the quasilinear diffusion coeffishown to strongly depend on the averaging procedure.
cient isy/8/(7K)codK — 57 /4). This relative discrep- The authors acknowledge the hospitality of the Con-
ancy is less than 5% for ang = 3200/7 = 1020. This  sorzio RFX while writing this Letter. One of us (D.B.)
value is much larger than the one estimated by assunwas supported by an Allocataire Moniteur Normalien
ing 7. ~ K~%3. Therefore,r. decreases wittk more grant from the French Ministére de I'Enseignement
slowly thank ~2/3. Actually, if 7. ~ K~¢, then we esti- Supérieur et de la Recherche during the course of this
mate0.33 = a = 0.4. This result is thus different from research.
the one corresponding to the Hamiltonian (2).
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