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Wilson Loops in Large N Field Theories
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We propose a method to calculate the expectation values of an operator similar to the Wilson loo
the largeN limit of field theories. We considerN ­ 4 s3 1 1d-dimensional supersymmetric Yang-
Mills theory. The prescription involves calculating the area of a fundamental string world shee
certain supergravity backgrounds. We also consider the case of coincidentM-theory five-branes where
one is led to calculating the area ofM-theory two-branes. We briefly discuss the computation fo
s2 1 1d-dimensional supersymmetric Yang-Mills theory with 16 supercharges which is nonconform
In all of these cases, we calculate the energy of a quark-antiquark pair. [S0031-9007(98)06198-5
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It has been expected for some time that the ’t Hoo
limit [1] of large N gauge theories is related to a string
theory (see [2] and references therein). In [3], a preci
string theory was proposed for the ’t Hooft limit of
N ­ 4 supersymmetric Yang-Mills theory ins3 1 1d
dimensions, based on earlier studies [4]. The ’t Hoo
limit is defined as the limit ofN ! ` keeping g2

YMN
fixed. In this limit, we get a weakly coupled string theory
on AdS5 3 S5 where the radius of the five sphere an
the curvature radius of anti–de Sitter are proportional
s g2

YMNd1y4 in string units. There is also a flux of the
Ramond-Ramond self-dual five-form field strength on th
five sphere. The string coupling isg , g2

YM and goes to
zero in the ’t Hooft limit. In general, we do not know how
to solve free string theory onAdS5 3 S5. However, when
gN is large the radius of curvature is large, and we ca
use the string in background fields approximation. In [5
7], it was shown how to calculate conformal dimension
of operators and correlators in conformal field theory i
terms of supergravity whengN is large. In this paper, we
consider the problem of calculating the expectation valu
of Wilson loop operators. The proposal is that thes
expectation values correspond to the area of a world sh
whose boundary is the loop in question. We will furthe
consider similar observables for theM5-brane theory [the
conformals0, 2d six-dimensional theory]. We also discus
Wilson loops in nonconformal theories associated wi
D-two-branes.

The Wilson loop.—Consider a Yang-Mills theory. The
Wilson loop operator is

W sC d ­
1
N

Tr Pe
i
H

C
A

, (1)

where C denotes a closed loop in spacetime, and th
trace is over the fundamental representation. We will b
considering mostly the Euclidean field theory. We ca
view the Wilson loop as the phase factor associated to t
propagation of a very massive quark in the fundamen
representation of the gauge group. A loop that is ofte
considered is a rectangle with one direction along th
time direction of lengthT and the other direction of
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lengthL. From the expectation value of this rectangul
Wilson loop, it is possible to read off the energy of
quark-antiquark pair. Namely, in the limitT ! ` the
expectation value of the Wilson loop is

kW sC dl ­ AsLde2TEsLd, (2)

whereEsLd is the energy of the quark-antiquark pair.
In order to perform this calculation for the cases

interest, it will be necessary to introduce massive quar
To this effect consider breaking UsN 1 1d ! UsNd 3

Us1d by giving some expectation value$F to a Higgs field.
Then the massiveW bosons have a mass proportion
to j $Fj and transform in the fundamental representati
of UsNd. So in the limit j $Fj ! ` they provide the
very massive quarks necessary to compute Wilson lo
in the UsNd theory. Notice that we are interested i
physics for energy scales much lower thanj $Fj so that
the UsNd theory is effectively decoupled from the U(1
theory. Consider the equation of motion for the mass
W boson. Extracting the leading time dependence
W ­ e2ijFjtW̃ , we get an equation for̃W which to first
order in1yj $Fj reads

s≠0 2 iA0 2 iuI XI dW̃ ­ 0 , (3)

where we have defineduI ; FIyj $Fj. Notice thatA0 and
XI are matrices in the adjoint of UsNd. This implies that
if we consider this massiveW boson describing a closed
loop C its interaction with the UsNd gauge field will lead
to the insertion of the operator

WsC d ­
1
N

Tr Pe
i
H

dsfAmssd Ùsm1uI ssdXI ssd
p

Ùs2 g. (4)

The difference with (1) is the fact that we have an ex
coupling toXI . The operator in (4) is determined by th
contourC [or smssd] as well as a function$ussd mapping
each point on the loop to a point on the five sphe
We are interested in this operator because it is the
that naturally arises when we consider the propagat
of a massiveW boson. The appearance ofXI might
seem surprising at first sight, but it is obvious when w
© 1998 The American Physical Society 4859
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remember that a string ending on ap-brane is not only a
source of electric field but it also carries “scalar” charg
for the fieldsXI since it is pulling the brane. In fact, this
coupling is crucial to understand the Bogomol’nyi-Prasad
Sommerfield (BPS) bound for strings stretching betwee
different branes [8]. In the calculations below,ussd will
be basically constant.

Relation to supergravity.—A natural proposal for the
expectation value of the Wilson loop is

kW sC dl , e2S , (5)

where, in the largegN approximation,S is the proper area
of a fundamental string world sheet which at the bounda
of AdS describes the loopC and lies alonguI ssd onS5 (see
Fig. 1). In general, we should consider the full partition
function of string theory onAdS5 3 S5 with the condition
that a string world sheet is ending on the loopC and the
points $ussd onS5 at the boundary ofAdS. This is a natural
proposal in terms of the identification proposed in [5,7
for relating gauge theory observables to calculations o
AdS. However, the right-hand side in (5) contains als
the contribution from the mass of theW boson, and it is
therefore infinity. Subtracting this contribution, we find a
finite result for the Wilson loop operator

kW sC dl , lim
F!`

e2sSF2,Fd, (6)

where is the total length of the Wilson loop, measured
with the flat Minkowski metric appropriate to the gauge
theory, andF is the mass of theW boson. Equation (6)
is our final recipe for computing the Wilson loop. This
result is not “zigzag” invariant, in the sense of [2], sinc
the operator (4) is not invariant, as opposed to (1).

Quark-antiquark potential.—In this section, we con-
sider the calculation of the rectangular Wilson relevant
extract the quark-antiquark potential. We take the ang
uI ssd ­ u

I
0 to be a constant. We consider the limitT !

`. In this limit, the problem becomes translational invari
ant along thêT direction. We put the quark atx ­ 2Ly2
and the antiquark atx ­ Ly2. Here “quark” means an
infinitely massiveW boson connecting theN branes with

FIG. 1. Proposal to calculate Wilson loop expectation value
We should consider the partition function of string theory o
AdS5 3 S5 with a string world sheet ending on the contourC
on the boundary ofAdS.
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one brane which is far away in the direction$u0. The ac-
tion for the string world sheet is

S ­
1

2pa0

Z
dt ds

p
detGMN ≠aXM≠bXN , (7)

whereGMN is the EuclideanAdS5 3 S5 metric

ds2 ­ a0

"
U2

R2
sdt2 1 dxi dxid 1 R2 dU2

U2
1 R2 dV2

5

#
,

(8)

where R ­ s4pgNd1y4 is the radius in string units, and
U ­ rya0 has dimensions of energy. Notice that th
factors of a0 cancel out in (7), as they should. Since
we are interested in a static configuration, we taket ­ t,
s ­ x so that the action becomes

S ­
T

2p

Z
dx

p
s≠xUd2 1 U4yR4 . (9)

We need to solve the Euler-Lagrange equations for th
action. DefiningU0 to be the minimum value ofU, which
by symmetry occurs atx ­ 0, we find that the solution is
(all integrals below can be calculated in terms of ellipti
of beta functions)

x ­
R2

U0

Z UyU0

1

dy

y2
p

y4 2 1
, (10)

whereU0 is determined by the condition

L
2

­
R2

U0

Z `

1

dy

y2
p

y4 2 1
­

R2

U0

p
2 p3y2

Gs1y4d2 . (11)

The qualitative form of the solution is shown in Fig. 2
Notice that the string approaches the pointx ­ Ly2
quickly for largeU, Ly2 2 x , 1yU3.

FIG. 2. (a) Initial configuration corresponding to twoW
bosons before we turn on their coupling to the UsNd gauge
theory. (b) Configuration after we consider the coupling to th
UsNd gauge theory. This configuration minimizes the action
The quark-antiquark energy is given by the difference of th
total length of the strings in (a) and (b).
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Now we compute the total energy of the configuratio
If we just plug in the solution (10) in (9), we find that the
answer is infinity. However, as we said above, this infini
is simply due to the fact that we are including the mass
the W boson which corresponds to a string stretching a
the way toU ­ `. We can regularize the expression b
integrating the energy only up toUmax. Subtracting the
regularized mass of theW boson which isUmaxy2p we
find a finite result

E ­ 2
4p2s2g2

YMNd1y2

Gs1y4d4L
. (12)

We see that the energy goes as1yL, a fact which is
determined by conformal invariance. Notice that th
energy goes ass gNd1y2 as opposed togN which is the
perturbative result. This indicates some screening
the charges. The above calculation makes sense for
distancesL whengN is large independently of the value o
g: This suggests that one could define a magnetic Wils
loop operator which for largegN would be determined
in terms of classical D-string solutions with prescribe
boundary conditions at infinity. In the standard ’t Hoo
limit, the interaction between Wilson loops is governed b
g which goes as1yN.

Case of nonconstant angle.—Now we consider the
case where the “angle” of the two quarks is different. Th
arises when we break UsN 1 2d ! UsNd 3 Us1d1 3

Us1d2 by giving expectation values$F1, $F2 to the two
U(1) factors. Then the angles are$ui ­ $Fiyj $Fj. So we
consider aW boson described by a string going betwee
the N branes and the brane associated to Us1d1 and aW
boson going between the brane associated to Us1d2 and
the N branes. Notice that the orientation of the strin
determines whether we have a quark or an antiqua
The potential for this configuration can be calculated
terms of the largeT limit of the expectation value of the
rectangular Wilson loop with different values of$u on each
timelike direction. So we should consider a string worl
sheet which atx ­ Ly2 goes toU ­ ` and to the point
$u1 of the five sphere and atx ­ 2Ly2 goes toU ­ `

and to the point$u2 of the five sphere. The action for a
time independent configuration is

S ­
T

2p

Z
dx

q
s≠xUd2 1 U2s≠x

$ud2 1 U4yR4 . (13)

From the symmetries of the problem we see that the str
will lie along a great circle of the sphere. So if we
call u the angle along this great circle we can choo
u1,2 ­ 6Duy2. The problem then becomes symmetr
aroundx ­ 0. We can solve the Euler-Lagrange equa
tions as above by using the fact that the Lagrangian (1
is independent ofx andu so that we have conserved quan
tities associated with “energy” and “angular momentum
(interpretingx as time). Solving these equations, we fin
n.
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x ­
R2

U0

p
1 2 l2

Z UyU0

1

dy

y2
p

s y2 2 1d s y2 1 1 2 l2d
,

u ­ l
Z UyU0

1

dyp
s y2 2 1d s y2 1 1 2 l2d

,
(14)

and the parametersU0, l are determined by the conditions

L
2

­ xsU ­ `d ­
R2

U0

p
1 2 l2 I1sld ,

Du

2
­ usU ­ `d ­ lI2sld ,

(15)

where Iisld are defined to be the integrals in (14) with
the upper limit being infinity. We can also calculat
the energy of the system, subtracting the mass of theW
bosons, and we find

E ­ 2
2
p

s2g2
YMNd1y2

L
s1 2 l2d3y2I2

1 sld , (16)

wherel is a function of the angle (15). It is interesting to
notice that whenDu ! p thenl ! 1. Then the solution
looks like two straight strings going down toU ­ 0 and
the energy (16) goes to zero, as expected since this
BPS configuration.

M-theory membranes.—If we study the theory of
coincidentM-theory five-branes, thes0, 2d conformal field
theory in six dimensions [9], we are led to considerM-
theory on AdS7 3 S4. In this case, one could define
Wilson “surface” observables [10]. Since we do no
have an explicit formulation of the theory, we do no
have a formula analogous to (4). However, we cou
define the Wilson “surfaces” as the phase factor associa
with the propagation of a very heavy string on brane
(subtracting the part proportional to the free propagati
of the heavy string). In order to be more precise, let
suppose that we start withN 1 1 branes and then we
Higgs by separating one of the branes. A membra
stretched between theN five-branes at the origin and
the Higgsed five-brane behaves as a string with tens
proportional to the separation of the branes. We cou
consider this heavy string as a probe for the unbrok
conformal field theory associated with theN branes that
are still together. The procedure is analogous to what
saw above. The Wilson surface operator is defined to
the extra phase factor associated with the interaction of
heavy string with theN five-branes. This Wilson “area”
operator in the supergravity picture is defined by requirin
that a membrane ends at the boundary ofAdS7 3 S4

on the surface that defines the operator. Notice th
we also have to specify a map from the surface
S4 for the same reasons described above forN ­ 4
supersymmetric Yang-Mills theory. Again we subtrac
the term corresponding to the free propagation of t
heavy string to obtain a finite result. For largeN, we
can trust the supergravity result.
4861
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As an example, consider a pair of parallel, infinit
strings corresponding to membranes ending on the fi
brane. Let us choose them with opposite orientation b
in the same direction onS4. This problem is translational
invariant along time and the direction of the strings. So t
problem of determining the minimal three-surface reduc
as above, to finding the minimum of the action

S ­
TL0

s2pd2

Z
dx

p
s≠V d2 1 V 3yR3 , (17)

where nowR3 ­ pN , andV ­ ryl3
p has dimensions of

senergyd2. The strings have lengthL0 and are separated
by a distanceL in the directionx̂. We obtain the solution

x ­
R3y2

V
1y2
0

Z VyV0

1

dy

y3y2
p

y3 2 1
, (18)

where Ly2 ­ xsV ­ `d. If we calculate the energy,
we find

E
L0

­ 2
N
L2

8
p

p Gs2y3d3

Gs1y6d3
. (19)

The dependence onL is the one expected from conforma
invariance.

Wilson loops in nonconformal theories.—Consider
s2 1 1d-dimensional supersymmetric Yang-Mills theor
with 16 supercharges which is the theory describi
coincident D-two-branes. We can define the Wilson loo
operator as in (4). Then we are led to consider strings
the background of D-two-branes. The largeN limit of
this theory was considered in [11], where it was observ
that the supergravity description is valid only in some r
gion of the solution. Therefore the analysis of the Wilso
loops will also be a bit more involved. We will find tha
we can calculate the Wilson loops from supergravity on
when the size of the loop is not too small. This is ju
related to the fact that for small distances we can tru
the perturbative supersymmetric Yang-Mills theory. Th
physical result is quite different when the Wilson loop
large. If we consider a string world sheet, embedded
the p-brane solutions studied in [11] in a configuratio
appropriate for studying the quark-antiquark forces, w
find that we have to minimize the action

S ­
1

2p

Z
dx

p
s≠xUd2 1 U5yR5 , (20)

whereR5 ­ 6p2g2
YMN. We obtain solutions very similar

to (10), which lead to the potential

E ­ 2
25y3pp Gs4y5d5y3

31y3Gs3y10d5y3

s g2
YMNd1y3

L2y3
­ 2

Gs4y5dU0
p

p Gs3y10d
(21)

between quarks and antiquarks.U0 is the minimum value
of U. Now we perform the analysis of when we can tru
4862
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(21). Let us first consider the largeU region. According
to [11], we can trust supergravity forU ø g2

YMN. The
solutions to (20) consist of string world sheets going a
the way toU ­ `. However, the largeU behavior of
the solution matches that of the infinitely massiveW
boson. So we will require the solution atU , g2

YMN
to be very similar to that of theW boson; i.e., we require
x 2 Ly2 ø L. This implies thatL ¿ 1ys g2

YMNd. If the
distance between the quarks was much smaller than
above bound then we can apply perturbative Yang-Mil
and we would obtain a potential proportional toV ,
g2

YMN logsLg2
YMNd. We see that these answers matc

a numerical coefficient with (21) when both calculation
break down atL , 1ys g2

YMNd.
Now we need to see if we can trust the behavio

of the solution at smallU, which corresponds to large
distances. At smallU, we expect that the world sheet
of the string turns into anM-two-brane wrapped along
the eleventh direction. IfU0 ¿ g2

YM, then we can trust
the above results (21). IfU0 is smaller, then we have to
consider a more complicated situation, where we have
solve the equation of theM-two-brane in the background
corresponding to a periodic array ofM-two-branes as
described in [11]: This presumably could be done bu
we will not attempt to do it here.
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