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Noise-Induced Hypersensitivity to Small Time-Dependent Signals
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For a simple example of on-off intermittency, an overdamped Kramers oscillator with multiplicative

noise, we demonstrate a phenomenon of hypersensitivity to ultrasmall time-dependent signals.
[S0031-9007(98)06229-2]

PACS numbers: 05.40.+j, 05.45.+b

The phenomenon of on-off intermittency introduced re-the periodic input signal. Equation (1) is written in
cently [1-3] attracts now a growing interest of investiga-Stratonovich sense. The cade= ¢ = 0 was studied
tors in various natural sciences. The key feature of thén detail in [4]. Equation (1) contains both additive and
systems with this type of intermittency is the large magni-multiplicative noise terms, and just the latter is responsible
tude of fluctuations of physical variables, which can takefor hypersensitivity, as shown below.
both finite and extremely small (in laminar phase) values In the noise-free cas@(= o = 0) for A <« 1, Eq. (1)
with comparable probabilities. In the present Letter wecan be solved easily, and one could see that the output
describe a remarkable phenomenon that we found in suatignal amplitudeAx ~ A/|Al; i.e., the system does not
systems, namely, an immense response of the system to amplify signal at all. The Fokker-Planck equation (FPE)
ultrasmall external perturbation (hypersensitivity), whenfor Eqg. (1) has the form
the signal value, e.g., of the order t~?° results in re-

: 2
sponse value of the order of unity. We demonstrate such IF _ i[(/\ n B_)x US4 AR(t)j|F
a hypersensitivity for one of the simplest examples of on- gy dx 2
off intermittency, the overdamped Kramers oscillator with )
multiplicative noise. + 1 a_{(52x2 + 0})F}. )
The equations that describe our model are the following: 2 9x?
dx In general, it is a rather complicated task to solve Eq. (2)

— = Ax + B&(Wx — Ux® + op(t) + AR(1),

dt exactly, so we use the following approximation. The
(EDERY) = (o(DNe(t)) = 8(1 — 1), signalR(z) in (1) takes two values1. Let T, be the time
for establishing an equilibrium after switching the signal
(EMe(d) =0, (1)  from one of these values to another. We assume that the

T signal satisfies the adiabatic condition
1, 0<t= 3

R(t+T)=R(l‘)=[_1, T =T, T > Ty. ®3)

Here &(1), ¢(t) are the Gaussian white noise sourcesSolving FPE in this case, we obtain foqW, o) <

A B,U,0,A are the constant parameters, aRf) is | A, B,U)
2 (CV*])/Q 2
2AR(t U.
F(x) = C(x2 + 0—2) ex 2AR(1) arctan& — —x2 ,
B Bo o B (4)
2
o = E,
H . . | ¢ o—0
whereC is the normalization constant. mind that arctait= ‘— 7 sgnx — %, we obtain
Our working range of parameters 8,U ~ 1,A ~
0.01,A,0 ~ 107",n > 1. Then we obtain from Eq. (4) ATR(1) 2AR(1) Ux2
- . . . . . — a—1 _ -
the probability density of scaling type in a wide interval F(x) = Clx|*"" ex B 9™ T g 57 [
07" K x <1, (6)
F(x) = |x|*7". (5)
The power-law distribution of is known as one of the The first term in the exponent means that for positive
signatures of on-off intermittency [5-7]. signal the probability density is nonzero only wheris

We restrict ourselves by the limiir — 0 (the small positive, and for negativ&(z), correspondingly, when
signal is much greater than the additive noise). Taking ins negative. Thus Eq. (6) takes the form
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Fi = e otsournde 258 - 5| I NS
(7) a2 | |

<x(t)>

where® (x) is the Heaviside step function. ggg m
The normalization constanf cannot be obtained in 0os [

exact form, but its asymptotics fdr| < 1, B ~ 1 are & : '

the following: 0 10000 20000 30000
a; a>0z>1, by
1 .
C=1nl 1K1, (8) €100 | :
lalAlel, o <0, 2> 1, @ ol |
1 :
= |a|In—. i
A g 1
The crossover of these asymptotics takes place when the :
parameter; is of the order of unity, i.e., when the signal 0.4 il vl sl ol
amplitude is 10 10 10 07 10
1
Ag=exp —— |. 9) ©)
|a| 2 - ! T T T T T
1
Therefore, for smalla an ultrasmall signal is able to x E WWW

change the probability density drastically. To obtain an 00a ; . T
estimation of output signal amplitude, let us calculate a o0 ;/\\/\/\N
the moments of"(x) for z < 1. Taking into account the ¥ oomr

explicit form of R(z), we obtain -0.08 ; ' A ! . ;

o] 10000 20000 30000

B 1 : . . .

x(1)) = — ——R(t) FIG. 1. (a) Time series of raw output signal and its
Uln ensemble average (1)) over 4100 samples with identical phase

.32 1 of input signal for@ = 1.0, A = —0.01; (b) power spectrum of
<x2(t)> = — (10) «x for the signal (a), averaged over 200 samples of random

2U In% phase; (c) the same as for (a) but far= 0.03. The input

signal amplituded = 10~!"!, periodT = 8192.
x(0)* _
< 1.

2
() 2mng A stant output signal values can be of the order of unity,

thus allowing one to detect ultrasmall signal with a low

The gain factor is sensitive detector. When the adiabatic condition is ful-

_ @) _ [7 B (11) filled, we see from Eq. (10) thdk(r)) = yR(¢), and the
AR(t) 4U Am% ' gain factor/ = y/A. When the signal is nonadiabatic, we
can defind as
As an example, fog = 0.7,U = 1,A = 10~ !! the value T <x(t)>2
of I'is2.5 x 10°. = f (12)

We see that our simple model has an amazing feature
of hypersensitivity to small signals due to multiplicative From Fig. 1 it is seen that even after an averaging on 4100
noise. We should note that the related problem of addisamples(x(z)) still fluctuates noticeably, and it is more
tive noise-induced sensitivity to an ultrasmathtic per-  convenient to calculate the factbiin the following way.
turbation was studied by Kondepusdt al. (see [8] and It was shown in [9] that, when we have an ensemble of
references therein) in the context of branch selection itime series with random phase lag, their spectral density is
chemical system. In our system the hypersensitivity is inS(w) = 27 > |xc[*6 (0 — kQ) + Spoise (@), Where x;
duced by multiplicative noise and, much more importantare the Fourier coefficients of periodic functio(z)), and
the signal can béme dependentDespite relatively large  Syoise IS the purely stochastic term. From Eq. (12) we see
dispersion ofr, the phenomenon is observable easily withthat/? = Y, |x;|?/A2, i.e.,I> = 8 > (S; — Snoise)/A2,
the help of usual statistical methods. Figure 1 displays thevhere S; is the ith harmonic in the spectrum arglf is
normalized time serieéc(¢)) for A = 107!, A = —0.01  the spectral bandwidth. The dependence of gain fakctor
and0.01,8 = 1.0,U = 1 as an average on 4100 runs of on parametera. and « for fixed noise value8 = 0.7 is
the model with the same phase of input signal. Note thatshown in Fig. 2(a). We see that the estimate (11) (which
despite relatively smalaveragedoutput values, then-  is written for |a| = 0) is in excellent agreement with

4841



VOLUME 80, NUMBER 22 PHYSICAL REVIEW LETTERS 1 UNE 1998

a) is Tp ~ A~ %] becomes comparable to the signal period,
i.e., the adiabatic condition is no longer valid. When we

ET T T T increase the signal period, the range of adiabaticity obvi-
0 557 13 ously broadens. Figure 2(b) demonstrates the dependence
1095 2oA Af ° 4 2500 of the gain factor on the amplitude of multiplicative noise
10°F ﬁg s 1 (this latter might be regarded as a control parameter in
10 F A =200 T the model). This bell-shaped dependence resembles very
[ ok /’o ; 1400 ° much a conventional stochastic resonance, with the differ-
10°F / ., ] ence that in our system the signal is additive and the noise
10k L7 - 1000 is multiplicative.
10 E 4 1500 To conclude, we demonstrate, both analytically and by
107 Ag/ __________ ’ ] computer simulations, that an overdamped Kramers os-
: Lol ' ' T —— cillator with multiplicative noise, the simple stochastic

-0.25 -0.20 -0.15 -0.10 -0. . . 1 1 . . .
025 020 015 010 005 000 005 010 015 system with on-off intermittency, for small values of

A b parametera possess the feature afoise-induced hy-
o ) persensitivity to small time-dependent signalSuch a
E ' L 2 'a a ' sensitivity appears when the distribution ef obeys a
10°F ‘Aﬁ;"‘“‘-. . '\. T power-law dependence in a wide intentln” <« x < 1,
10°F ‘l’ . and thus one might expect to observe it in any system with
10 F 4 on-off intermittency.
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