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Noise-Induced Hypersensitivity to Small Time-Dependent Signals
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For a simple example of on-off intermittency, an overdamped Kramers oscillator with multiplica
noise, we demonstrate a phenomenon of hypersensitivity to ultrasmall time-dependent si
[S0031-9007(98)06229-2]
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The phenomenon of on-off intermittency introduced r
cently [1–3] attracts now a growing interest of investig
tors in various natural sciences. The key feature of
systems with this type of intermittency is the large mag
tude of fluctuations of physical variables, which can ta
both finite and extremely small (in laminar phase) valu
with comparable probabilities. In the present Letter w
describe a remarkable phenomenon that we found in s
systems, namely, an immense response of the system
ultrasmall external perturbation (hypersensitivity), wh
the signal value, e.g., of the order of10220 results in re-
sponse value of the order of unity. We demonstrate s
a hypersensitivity for one of the simplest examples of o
off intermittency, the overdamped Kramers oscillator w
multiplicative noise.

The equations that describe our model are the followi

dx
dt

 lx 1 bjstdx 2 Ux3 1 swstd 1 ARstd ,

kjstdjst 0dl  kwstdwst0dl  dst 2 t0d,

kjstdwst0dl  0 , (1)

Rst 1 T d  Rstd 
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T
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Here jstd, wstd are the Gaussian white noise source
l, b, U, s, A are the constant parameters, andRstd is
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the periodic input signal. Equation (1) is written in
Stratonovich sense. The caseA  s  0 was studied
in detail in [4]. Equation (1) contains both additive and
multiplicative noise terms, and just the latter is responsib
for hypersensitivity, as shown below.

In the noise-free case (b  s  0) for A ø 1, Eq. (1)
can be solved easily, and one could see that the outp
signal amplitudeDx , Ayjlj; i.e., the system does not
amplify signal at all. The Fokker-Planck equation (FPE
for Eq. (1) has the form
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In general, it is a rather complicated task to solve Eq. (
exactly, so we use the following approximation. Th
signalRstd in (1) takes two values61. Let T0 be the time
for establishing an equilibrium after switching the signa
from one of these values to another. We assume that
signal satisfies the adiabatic condition

T ¿ T0 . (3)

Solving FPE in this case, we obtain forsA, sd ø
sl, b, Ud
Fsxd  C

√
x2 1

s2

b2

!sa21dy2
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2l
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(4)
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whereC is the normalization constant.
Our working range of parameters isb, U , 1, l ,

0.01, A, s , 102n, n ¿ 1. Then we obtain from Eq. (4)
the probability density of scaling type in a wide interva
102n ø x ø 1,

Fsxd  jxja21. (5)
The power-law distribution ofx is known as one of the
signatures of on-off intermittency [5–7].

We restrict ourselves by the limits ! 0 (the small
signal is much greater than the additive noise). Taking
l

in

mind that arctanbx
s

s!0
!

p

2 sgnx 2
s

bx , we obtain

Fsxd  Cjxja21 exp

(
ApRstd

bs
sgnx 2

2ARstd
b2x

2
Ux2

b2

)
.

(6)

The first term in the exponent means that for positiv
signal the probability density is nonzero only whenx is
positive, and for negativeRstd, correspondingly, whenx
is negative. Thus Eq. (6) takes the form
© 1998 The American Physical Society
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Fsxd  Cjxja21ufsgnARstdxg exp

(
2

2ARstd
b2x

2
Ux2

b2

)
,

(7)

whereQsxd is the Heaviside step function.
The normalization constantC cannot be obtained in

exact form, but its asymptotics forjaj ø 1, U
b2 , 1 are

the following:

C 

8><>:
a; a . 0, z ¿ 1 ,

1
ln 1

A

; z ø 1 ,

jajAjaj; a , 0, z ¿ 1 ,

(8)

z  jaj ln
1
A

.

The crossover of these asymptotics takes place when
parameterz is of the order of unity, i.e., when the signa
amplitude is

A0  exp

√
2

1
jaj

!
. (9)

Therefore, for smalla an ultrasmall signal is able to
change the probability density drastically. To obtain
estimation of output signal amplitude, let us calcula
the moments ofFsxd for z ø 1. Taking into account the
explicit form of Rstd, we obtain

kxstdl 
b

2

r
p

U
1

ln 1
A

Rstd ,

kx2stdl 
b2

2U
1

ln 1
A

, (10)

kxstdl2

kx2stdl


p

2 ln 1
A

ø 1 .

The gain factor is

I 
kxstdl
ARstd



r
p

4U
b

A ln 1
A

. (11)

As an example, forb  0.7, U  1, A  10211 the value
of I is 2.5 3 109.

We see that our simple model has an amazing fea
of hypersensitivity to small signals due to multiplicativ
noise. We should note that the related problem of ad
tive noise-induced sensitivity to an ultrasmallstatic per-
turbation was studied by Kondepudiet al. (see [8] and
references therein) in the context of branch selection
chemical system. In our system the hypersensitivity is
duced by multiplicative noise and, much more importa
the signal can betime dependent.Despite relatively large
dispersion ofx, the phenomenon is observable easily w
the help of usual statistical methods. Figure 1 displays
normalized time serieskxstdl for A  10211, l  20.01
and0.01, b  1.0, U  1 as an average on 4100 runs
the model with the same phase of input signal. Note th
despite relatively smallaveragedoutput values, thein-
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FIG. 1. (a) Time series of raw output signalx and its
ensemble averagekxstdl over 4100 samples with identical phase
of input signal forb  1.0, l  20.01; (b) power spectrum of
x for the signal (a), averaged over 200 samples of random
phase; (c) the same as for (a) but forl  0.03. The input
signal amplitudeA  10211, periodT  8192.

stant output signal values can be of the order of unity
thus allowing one to detect ultrasmall signal with a low
sensitive detector. When the adiabatic condition is ful
filled, we see from Eq. (10) thatkxstdl  yRstd, and the
gain factorI  yyA. When the signal is nonadiabatic, we
can defineI as

I2 
1
T

Z T

0

kxstdl2

A2
dt . (12)

From Fig. 1 it is seen that even after an averaging on 410
sampleskxstdl still fluctuates noticeably, and it is more
convenient to calculate the factorI in the following way.
It was shown in [9] that, when we have an ensemble o
time series with random phase lag, their spectral density
Ssvd  2p

P
k jxkj2dsv 2 kVd 1 Snoisesvd, where xk

are the Fourier coefficients of periodic functionkxstdl, and
Snoise is the purely stochastic term. From Eq. (12) we se
that I2 

P
k jxkj2yA2, i.e., I2  df

P
isSi 2 SnoisedyA2,

whereSi is the ith harmonic in the spectrum anddf is
the spectral bandwidth. The dependence of gain factorI
on parametersl and a for fixed noise valueb  0.7 is
shown in Fig. 2(a). We see that the estimate (11) (whic
is written for jaj ø 0) is in excellent agreement with
4841
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FIG. 2. (a) Dependence of gain factorI for signal period
T  819 (triangles), T  8192 (circles), and relaxation time
T0 (dotted line) on parameterl for fixed b  0.7. Dashed
line represents simulations with a constant input signal. Th
cross displays an estimate (11). (b) The gain factorI versus
noise intensityb for values ofl  20.01 (squares) and0.01
(triangles). The input signal is the same as in Fig. 1.

simulation results. The dashed line represents the ca
of static signal [Rstd  1]. We see also that the gain
factor decreases from its static value when the relaxatio
time T0 [its values obtained from simulation are shown
by the dotted line in Fig. 2(a) and the theoretical estima
4842
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is T0 , A2a ] becomes comparable to the signal period
i.e., the adiabatic condition is no longer valid. When w
increase the signal period, the range of adiabaticity obv
ously broadens. Figure 2(b) demonstrates the depende
of the gain factor on the amplitude of multiplicative noise
(this latter might be regarded as a control parameter
the model). This bell-shaped dependence resembles v
much a conventional stochastic resonance, with the diffe
ence that in our system the signal is additive and the no
is multiplicative.

To conclude, we demonstrate, both analytically and b
computer simulations, that an overdamped Kramers o
cillator with multiplicative noise, the simple stochastic
system with on-off intermittency, for small values of
parametera possess the feature ofnoise-induced hy-
persensitivity to small time-dependent signals.Such a
sensitivity appears when the distribution ofx obeys a
power-law dependence in a wide interval102n ø x ø 1,
and thus one might expect to observe it in any system w
on-off intermittency.
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