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One cannot predict the 3D structure of a protein directly from its sequence because of errors in
the energy estimates. However, using a set of homologs (proteins with nearly identical 3D structures
despite hnumerous amino acid mutations in their chains) it is possible to average the fold energies over
the homologs (this diminishes energy errors) and to predict the common 3D fold of these proteins from
the set of their amino acid sequences. [S0031-9007(98)06152-3]

PACS numbers: 87.15.By, 36.20.Ey, 75.10.Nr

The determination of the three-dimensional (3D) proteinprotein is in water and the solvent-mediated (hydrophobic
structure from the amino acid sequence of its chain ignd electrostatic) forces contribute to its stability.]

a long-standing challenge to molecular biophysics. This The protein is a dense heteropolymer globule. Its chain
problem is known to be soluble in principle, since a proteinhas a fixed sequence which looks very much like a random
chain itself resolves it by spontaneous foldiig vitro  sequence of amino acid residues, but this sequence has one
as well asin vivo [1]. However, attempts o& priori predominant (“native”) fold [4].

computations of protein structures from the sequences havelt is widely recognized that the energy spectra of the
met with little success, unless the protein in question iglense globules formed by random heteropolymers are
similar to a protein with an already known 3D fold [2]. sufficiently (for thermodynamics) [9] described by the
Protein fold recognition is more successful, but the numbespectra characteristic for the random energy model (REM)
of “recognizable” folds is restricted by the set of already[10]. This model has been borrowed from the statistical
known 3D structures [2,3]. The principal obstacle to anmechanics of spin glasses.

a priori protein structure prediction is connected with The REM assumes that each of the possible struc-
unavoidable random errors in the energetic parametetsires (of theM chain folds, as far as polymers are con-
used to estimate the stability of competing 3D structures oferned) acquires its enerd@y with a Gaussian probability

a protein chain [3]. Actually, one can state that a proteinp (E;) « exp(—E?/202),i = 1,...,M, independently of
structure is unpredictable from its sequence alone. the energies of the other structurgs# i. As a result,

A well known observation is that homologous proteinsthe density of the REM energy spectrum has a Gaussian
have nearly identical 3D folds despite very numeroudorm with the meanE) = 0 and the dispersiokE?) =
amino acid mutations [4]. It has been observed that?; here(---) means averaging over all thé structures:
one can improve protein structure predictions by usingE) = ﬁZﬁ'ilE,-, etc. The number of foldsV, is very
predictions made for many homologous chains [2—6]. Inarge: it exponentially depends d@n the number of chain
secondary structure prediction, the statistical errors arknks; 0% is proportional to the number of intrachain inter-
reduced by averaging the predictions at each position dadctions, i.e., td..
the aligned sequences [5]; however, a direct generalization For a vast majority of heteropolymers (with random se-
of this approach to prediction of 3D protein structuresquences of links) the low-energy end of the spectrum cor-
causes a problem. responds to the critical energy¢ = —(2In M)'/2¢ [here

The goal of this paper is to show how the homologsM X p;(Ec) ~ 1], the energy spectrum being dense and
should be used in the course of 3D structure predictiomuasicontinuous abové.: [8,9].
by energy calculations and to prove that, using a set of A protein chain differs from the majority of random
homologs, it is possible to make anpriori prediction of  sequences by one unusually stable native fold. The energy
their common 3D fold from the set of their amino acid Ey of this fold N is sufficiently belowE, while the whole
sequences—adespite the roughness of the energy estimatgaasicontinuous energy spectrum (ab@y€ remains the

Experiments [1] and theory [7,8] point out in a very same, and, as a result, the averaged characteristics of the
suggestive way that a choice of the native (i.e., biologicallyspectrum (E), (E?), Ec) remain essentially the same as
functional) protein structure is determined by its highfor random heteropolymers [9].
stability, i.e., a fold serves as the native fold of a given To predict protein structure, one has to identify the fold
protein chain only if its energy is at the very bottom of N with the minimal energy.
the chain’s energy spectrum. [It should be noted that the However, an attempt to identify the lowest-energy fold
term “energy” is used here only for simplicity: actually, by the energy calculations encounters unavoidable errors
one has to speak about free energy of a fold, since thim the energetic parameters [11]. Now we put apart all
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the difficulties connected with sorting of the folds—in  However, one can use additional information to predict
principle they can be solveslhenthe native fold energy is protein structures.
well below the energies of its competitors [7]. We stress It is known that homologous proteins have nearly iden-
that due to the errors in the energy estimates the calculatéital 3D structures despite the very numerous amino acid
energy of the foldV is above the calculated energies of mutations in their sequences [4]. This opens a possibility
some other folds. to predict the common fold of homologous proteins from
Indeed, instead of the true ener@y of any structure the setof their amino acid sequences despite the errors in
i (i =1,...,M) one knows only its “calculated” energy energy calculations. Such a prediction can be possible be-
E; which can be represented & = E; + AE;, where cause all the homologs observed among natural proteins
AE; is a random energy estimate error which does nofi.e., hemoglobins of horse, carp, sea worm, etc.) are not
correlate withE; [actually [11], E; should be represented randomly mutated initial sequence: they are naturally se-
asu X (E; + AE;); however, the multiplierw plays no lected to stabilize the same fold (all the hemoglobins stabi-
role in the comparison of structure energies, and one calize the globin fold, all the immunoglobulins stabilize the
omit it; neither does the mean value of error play any roldmmunoglobulin fold, etc.).
in the comparison, so one can assume {Adt) = 0]. Itis noteworthy that homology of natural proteins can be
Let us assume that not only the actual chain foldreliably established when they have as small as 35%—-40%
energies follow the random energy model, but also that thef identical amino acid residues in identical positions [4],
calculated (with errors) energies are randomly distributedvhile protein engineering can create completely different
around their true values (i.e., we consider the “best” caséolds with as much as 60% of identical residues [12]; this

when the systematic energy errors are excluded). stresses that protein fold is preserved by natural selection
Then the probability of erroAE; has a Gaussian form: rather than by the sequence identity itself.
perr(AE;) o« exp(—AE?/28%)—like the energyE;, the Let us considel” homologous chains, and average the

AE; value summarizes many independent terms (i.e., theomputed energy of each structure over the homologs. To
errors in many independent interactions); and the dispereveal a sense of the averaging, let us start with its simplest
sion of errorss? = (AE?) is (like o%) proportional toL,  form:

the number of chain links. The absence of the correla- r

tion between the true energies and the errors means that € = 1 Z El()‘)*_ (1)
(EAE) = 0. Hence, the dispersion of the calculated en- I' &

ergies is((E")?) = o + §2 and the coefficient of cor- Here E" is the computed energy of chaih (A =
relation between them and the true energie€ds,, = 1,...,l“l) in structurei (i = 1,....M). As mentioned
<E*E>/[<(E*).2><€2>]1/2 =1+ 62/.0'2)71/2' The calcu- above, the native fold’s calculated ener@%\)* ~ Ey
lated energiest; of the non-native structures have a¢or each chain), so thates ~ Ey, and the calculated

. I . . s * _ #\2 2 2 . . . . .
ﬁtﬁgsi?:?edsﬁ}tngfuia?gér(aﬁignocof'z(h% : V(VI(E),_ ()ji{nze(z-Si(;;aBl g(])rre_energies of the other folds have Gaussian dISt:’J\?kLJtIOHS with
the average characteristi¢8W*) = 0 and ((E;" )?) =

lated Gaussian distributigm (E;, E}) « exd —E? /202 + c 3
(Ej — E;)*/26%] over E;] and are independent from one (0/Ceomp)”.

another Thus, the mean averaged computed enetgl) =
) . 1 < I (A)#\ — : :

One can estimate the low-energy edge of the computer 21 EM) =0, and the dispersion of the homolog-
energy Spectrum: Ez, = _(ZlnM)1/2(0-2 + 62)1/2 = aVeI’aged CompUtEd energE%IS
Ec/Ceomp- SinceCeomyp is always below 1, the computed M r
E¢ is below the trueEc. At the same time, the expected ((¢*)2) — L Z(l Y E,(’\)*> (i > E,(”)*>
calculated value of the native fold energs is about M S\T o I =
Ey * 6 and (since one can negleét~ L!/2 because | L | r w
|Ex| > |Ec| ~ L) Ey is close to Ey. Thus, due to _ (A2 - (W g%
the errors in the)energies, the native structuredsthe I'2 ;«E o I'2 Zl ,L=IZ,,:L¢A<E EC)
structure of the lowestalculated energy and itcannot . . r
be distinguished byany energy qal_culatl_orj Wh_en the - (U/Cmmp)2(F + = Z Z C;(,A“))
accuracy of the energy estimates is insufficient, i.e., when A= u=Tn#A
Ccomp < Cy= Ec/EN [11] (2)

Up to now there is no reliable estimate while
verypapproximate estimates Show th@imp 560.(5—0.8 Here_C;zAM) = (EWEW) /[(EW*)?) (EW*)?)]/2 s the
for different employed sets of energy parameters; see [3E9eﬁ|0|ent of correlation bet_vveen the computed fold ener-
and references therein), but it definitely seems [3,11] tha@ies for chainsi and .. Using the averaged correlation
current accuracy of the energy estimates is much belowoefficient
the limit necessary for protein structure prediction, and
therefore the protein structure is now unpredictable from C, = (
its sequencealone
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one can present Eq. (2) in a simple form the €* values,

2
(€)= (0/Ceomp)’[Ch + (1 = CW)/T].  (4) <(6*)2>=( z ) i i[x—l]w, 6)

Ceomp n=1p=1
The dispersion((e*)?) of the homolog-averaged com- . . .
puted ene?gies ﬁ;g"ér than the dispgersiom(g*)2> — " and consequently the highest value, is achieved when

_ 5T -1 r r -1 . -1
(07/Ceomp)? Of the energies, separately computed for each* — p=tX "/ 2= 2t [X My here[X 1y,
of the homologs is the Auth element of the inverse of a matriX] hav-
- . (A)

The computed energies ..., E\' " of fold i in the N9 elemen(a@)(]w_z G whenA # pand[X]n = 1.
homologst, ..., T correlate between themselves, but theyWhen allC), M. =CjpatA # u,allay, =1/I" and Egs. (5)
are independent of the energies of the other fglds ;.  and (6) coincide.

In the spirit of the REM, one can tredt.”, ... E!” Certainly, a transition from the simplified REM to real
as a result of random sampling from tIFledi’mer;silonal proteins needs further investigations which can modify the

(and now correlated) Gaussian distribution. The probalUmerical estimates given here, but even the qualitative
bility of € is the result of integration of this distribu- results of this work show that, using a large set of distant

tion over theEm* E(F)* values under the condition homologs, one must b_e abl_e to p_redict their common 3D
LT s . . fold from the set of their amino acid sequences.
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