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One cannot predict the 3D structure of a protein directly from its sequence because of errors in
the energy estimates. However, using a set of homologs (proteins with nearly identical 3D structures
despite numerous amino acid mutations in their chains) it is possible to average the fold energies over
the homologs (this diminishes energy errors) and to predict the common 3D fold of these proteins from
the set of their amino acid sequences. [S0031-9007(98)06152-3]

PACS numbers: 87.15.By, 36.20.Ey, 75.10.Nr
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The determination of the three-dimensional (3D) prote
structure from the amino acid sequence of its chain
a long-standing challenge to molecular biophysics. Th
problem is known to be soluble in principle, since a prote
chain itself resolves it by spontaneous foldingin vitro
as well asin vivo [1]. However, attempts ofa priori
computations of protein structures from the sequences ha
met with little success, unless the protein in question
similar to a protein with an already known 3D fold [2].
Protein fold recognition is more successful, but the numb
of “recognizable” folds is restricted by the set of alread
known 3D structures [2,3]. The principal obstacle to a
a priori protein structure prediction is connected with
unavoidable random errors in the energetic paramet
used to estimate the stability of competing 3D structures
a protein chain [3]. Actually, one can state that a prote
structure is unpredictable from its sequence alone.

A well known observation is that homologous protein
have nearly identical 3D folds despite very numerou
amino acid mutations [4]. It has been observed th
one can improve protein structure predictions by usin
predictions made for many homologous chains [2–6].
secondary structure prediction, the statistical errors a
reduced by averaging the predictions at each position
the aligned sequences [5]; however, a direct generalizat
of this approach to prediction of 3D protein structure
causes a problem.

The goal of this paper is to show how the homolog
should be used in the course of 3D structure predictio
by energy calculations and to prove that, using a set
homologs, it is possible to make ana priori prediction of
their common 3D fold from the set of their amino acid
sequences—despite the roughness of the energy estima

Experiments [1] and theory [7,8] point out in a very
suggestive way that a choice of the native (i.e., biological
functional) protein structure is determined by its hig
stability, i.e., a fold serves as the native fold of a give
protein chain only if its energy is at the very bottom o
the chain’s energy spectrum. [It should be noted that t
term “energy” is used here only for simplicity: actually
one has to speak about free energy of a fold, since t
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protein is in water and the solvent-mediated (hydropho
and electrostatic) forces contribute to its stability.]

The protein is a dense heteropolymer globule. Its ch
has a fixed sequence which looks very much like a rand
sequence of amino acid residues, but this sequence has
predominant (“native”) fold [4].

It is widely recognized that the energy spectra of t
dense globules formed by random heteropolymers
sufficiently (for thermodynamics) [9] described by th
spectra characteristic for the random energy model (RE
[10]. This model has been borrowed from the statistic
mechanics of spin glasses.

The REM assumes that each of theM possible struc-
tures (of theM chain folds, as far as polymers are co
cerned) acquires its energyEi with a Gaussian probability
p1sEid ~ exps2E2

i y2s2d, i ­ 1, . . . , M, independently of
the energies of the other structuresj fi i. As a result,
the density of the REM energy spectrum has a Gauss
form with the meankEl ­ 0 and the dispersionkE2l ­
s2; herek· · ·l means averaging over all theM structures:
kEl ­ 1

M

PM
i­1 Ei, etc. The number of folds,M, is very

large: it exponentially depends onL, the number of chain
links; s2 is proportional to the number of intrachain inte
actions, i.e., toL.

For a vast majority of heteropolymers (with random s
quences of links) the low-energy end of the spectrum c
responds to the critical energyEC ­ 2s2 ln Md1y2s [here
M 3 p1sECd , 1], the energy spectrum being dense a
quasicontinuous aboveEC [8,9].

A protein chain differs from the majority of random
sequences by one unusually stable native fold. The ene
EN of this foldN is sufficiently belowEC , while the whole
quasicontinuous energy spectrum (aboveEC) remains the
same, and, as a result, the averaged characteristics o
spectrum (kEl, kE2l, EC) remain essentially the same a
for random heteropolymers [9].

To predict protein structure, one has to identify the fo
N with the minimal energy.

However, an attempt to identify the lowest-energy fo
by the energy calculations encounters unavoidable er
in the energetic parameters [11]. Now we put apart
© 1998 The American Physical Society 4823
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the difficulties connected with sorting of the folds—in
principle they can be solvedwhenthe native fold energy is
well below the energies of its competitors [7]. We stre
that due to the errors in the energy estimates the calcula
energy of the foldN is above the calculated energies o
some other folds.

Indeed, instead of the true energyEi of any structure
i (i ­ 1, . . . , M) one knows only its “calculated” energy
Ep

i which can be represented asEp
i ­ Ei 1 DEi , where

DEi is a random energy estimate error which does n
correlate withEi [actually [11],Ep

i should be represented
as m 3 sEi 1 DEid; however, the multiplierm plays no
role in the comparison of structure energies, and one c
omit it; neither does the mean value of error play any ro
in the comparison, so one can assume thatkDEl ­ 0].

Let us assume that not only the actual chain fo
energies follow the random energy model, but also that t
calculated (with errors) energies are randomly distribut
around their true values (i.e., we consider the “best” ca
when the systematic energy errors are excluded).

Then the probability of errorDEi has a Gaussian form:
perrsDEid ~ exps2DE2

i y2d2d—like the energyEi , the
DEi value summarizes many independent terms (i.e.,
errors in many independent interactions); and the disp
sion of errorsd2 ­ kDE2l is (like s2) proportional toL,
the number of chain links. The absence of the corre
tion between the true energies and the errors means
kEDEl ­ 0. Hence, the dispersion of the calculated e
ergies isksEpd2l ­ s2 1 d2 and the coefficient of cor-
relation between them and the true energies isCcomp ­
kEpElyfksEpd2l kE2lg1y2 ­ s1 1 d2ys2d21y2. The calcu-
lated energiesEp

i of the non-native structures have
Gaussian distributionpp

1 sEp
i d ~ expf2sEp

i d2y2ss2 1 d2dg
[this is a result of integration of the two-dimensional corre
lated Gaussian distributionp2sEi , Ep

i d ~ expf2E2
i y2s2 1

sEp
i 2 Eid2y2d2g over Ei] and are independent from one

another.
One can estimate the low-energy edge of the compu

energy spectrum: Ep
C ­ 2s2 ln Md1y2ss2 1 d2d1y2 ­

ECyCcomp . SinceCcomp is always below 1, the computed
Ep

C is below the trueEC . At the same time, the expected
calculated value of the native fold energyEp

N is about
EN 6 d and (since one can neglectd , L1y2 because
jEN j . jECj , L) Ep

N is close to EN . Thus, due to
the errors in the energies, the native structure isnot the
structure of the lowestcalculatedenergy and itcannot
be distinguished byany energy calculation when the
accuracy of the energy estimates is insufficient, i.e., wh
Ccomp , C0 ­ ECyEN [11].

Up to now there is no reliable estimate ofC0 (while
very approximate estimates show thatCcomp ø 0.5 0.8
for different employed sets of energy parameters; see [
and references therein), but it definitely seems [3,11] th
current accuracy of the energy estimates is much bel
the limit necessary for protein structure prediction, an
therefore the protein structure is now unpredictable fro
its sequencealone.
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However, one can use additional information to predi
protein structures.

It is known that homologous proteins have nearly ide
tical 3D structures despite the very numerous amino a
mutations in their sequences [4]. This opens a possibil
to predict the common fold of homologous proteins from
thesetof their amino acid sequences despite the errors
energy calculations. Such a prediction can be possible
cause all the homologs observed among natural prote
(i.e., hemoglobins of horse, carp, sea worm, etc.) are
randomly mutated initial sequence: they are naturally s
lected to stabilize the same fold (all the hemoglobins sta
lize the globin fold, all the immunoglobulins stabilize th
immunoglobulin fold, etc.).

It is noteworthy that homology of natural proteins can b
reliably established when they have as small as 35%–4
of identical amino acid residues in identical positions [4
while protein engineering can create completely differe
folds with as much as 60% of identical residues [12]; th
stresses that protein fold is preserved by natural select
rather than by the sequence identity itself.

Let us considerG homologous chains, and average th
computed energy of each structure over the homologs.
reveal a sense of the averaging, let us start with its simpl
form:

ep
i ­

1
G

GX
l­1

E
sldp
i . (1)

Here E
sldp
i is the computed energy of chainl sl ­

1, . . . , Gd in structure i si ­ 1, . . . , Md. As mentioned
above, the native fold’s calculated energyE

sldp
N ø EN

for each chainl, so thatep
C ø EN , and the calculated

energies of the other folds have Gaussian distributions w
the average characteristicskEsldpl ­ 0 and ksEsldp

i d2l ­
ssyCcompd2.

Thus, the mean averaged computed energykepl ­
k 1

G

PG
l­1 Esldpl ­ 0, and the dispersion of the homolog

averaged computed energiesep is

ksepd2l ­
1
M

MX
i­1

√
1
G

GX
l­1

E
sldp
i

! √
1
G

GX
m­1

E
smdp
i

!

­
1

G2

GX
l­1

ksEsldpd2l 1
1

G2

GX
l­1

GX
m­1,mfil

kEsldpE
smdp
i l

­ ssyCcompd2

√
1
G

1
1

G2

GX
l­1

GX
m­1,mfil

C
slmd
h

!
.

(2)

HereC
slmd
h ­ kEsldpEsmdpplyfksEsldpd2l kEsmdpd2lg1y2 is the

coefficient of correlation between the computed fold ene
gies for chainsl andm. Using the averaged correlation
coefficient

C̄h ­

√
GX

l­1

GX
m­1,mfil

C
slmd
h

!,
GsG 2 1d (3)



VOLUME 80, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 25 MAY 1998

e
e
t

D

e
n-
d

.

.

d

one can present Eq. (2) in a simple form

ksepd2l ­ ssyCcompd2fC̄h 1 s1 2 C̄hdyGg . (4)

The dispersionksepd2l of the homolog-averaged com-
puted energies issmaller than the dispersionksEpd2l ­
ssyCcompd2 of the energies, separately computed for ea
of the homologs.

The computed energiesE
s1dp
i , . . . , E

sGdp
i of fold i in the

homologs1, . . . , G correlate between themselves, but the
are independent of the energies of the other foldsj fi i.
In the spirit of the REM, one can treatE

s1dp
i , . . . , E

sGdp
i

as a result of random sampling from theG-dimensional
(and now correlated) Gaussian distribution. The prob
bility of e

p
i is the result of integration of this distribu-

tion over theE
s1dp
i , . . . , E

sGdp
i values under the condition

1
G

PG
l­1 E

sldp
i ­ e

p
i , i.e., the probability of e

p
i has a

conventional Gaussian form. Thus, the spectrum of t
homolog-averaged computed energiese

p
i si ­ 1, . . . , Md

also has a Gaussian form; and the above estimatedksepd2l
is its dispersion.

Correspondingly, the low-energy edge of the qua
sicontinuous part of the homolog-averaged comput
energy spectrum isep

C ­ 2s2 ln Md1y2ksepd2l1y2 ­ sECy
Ccompd fC̄h 1 s1 2 C̄hdyGg1y2. The e

p
C is significantly

above the point Ep
C ­ 2s2 ln Md1y2ksEpd2l1y2 ­ ECy

Ccomp , where the edges of all the individual computed en
ergy spectra were before the averaging over the homolo

Now one can find the native fold by its computed
energy—when e

p
C is higher thane

p
N ø EN . The above

estimates show that this condition is fulfilled when

sCcompd2 . sC0d2fC̄h 1 s1 2 C̄hdyGg . (5)

Protein structure prediction can be successful whenC̄h

is small andG is large.
In practiceG can be about 5 or 10 and̄Ch ø 0.15 0.2—

the latter means that a pair of homologs has 15%–20
of identical amino acid residue pairs, i.e., 40%–45% o
identical residues in identical chain positions. WithG ­
5 10 and C̄h ­ 0.15 0.2, a successful prediction can be
done whenCcomp is as low as 0.5–0.6, which does no
exceed the current level of correlation between theoretic
and experimental estimates of protein structure stabil
(see [3], and references therein). Thus, a homolog-bas
fold prediction must be feasible, and, in particular,
folding simulation must bring a correct native structure [7
at least for small proteins.

Actually, Eq. (1) gives only the simplest form of the
homolog-averaged computed energy; the general form
e

p
i ­

PG
l­1 alE

sldp
i si ­ 1, . . . , Md, where

PG
l­1 al ­ 1.

It is easy to show that the minimal possible dispersion
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theep values,

ksepd2l ­

√
s

Ccomp

!2 ,
GX

h­1

GX
m­1

fX21ghm , (6)

and consequently the higheste
p
C value, is achieved when

al ­
PG

m­1fX21glmy
PG

h­1

PG
m­1fX21ghm; herefX21glm

is the lmth element of the inverse of a matrixfXg hav-
ing elementsfXglm ­ C

slmd
h whenl fi m andfXgll ; 1.

When allC
slmd
h ­ C̄h atl fi m, all al ­ 1yG and Eqs. (5)

and (6) coincide.
Certainly, a transition from the simplified REM to real

proteins needs further investigations which can modify th
numerical estimates given here, but even the qualitativ
results of this work show that, using a large set of distan
homologs, one must be able to predict their common 3
fold from the set of their amino acid sequences.
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