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Sound Waves and the Absence of Galilean Invariance in Flocks
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We study a model of flocking for a very large systemsN ­ 320 000d numerically. We find
that in the long wavelength, long time limit, the fluctuations of the velocity and density fields
carried by propagating sound modes, whose dispersion and damping agree quantitatively wi
predictions of our previous work using a continuum equation. We find that the sound veloci
anisotropic and characterized by its speedc for propagation perpendicular to the mean velocityk $yl,
k $yl itself, and a third velocitylk $yl, arising explicitly from the lack of Galilean invariance in flocks
[S0031-9007(98)06186-9]
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The dynamics of “flocking” behavior of living things,
such as birds, fish, wildebeest, slime molds, and bacte
has long attracted a great deal of attention among biol
gists, computer animators, and physicists [1–3]. It is cru
cial to correctly describe the interaction between membe
of the flock in order to understand and model the flock
ing behavior. As summarized in [2], a large flock doe
not have a global leader; instead, the impressive colle
tive flocking phenomena is caused by individual membe
of the flock following the motion of their neighbors.

In our earlier work [4], we studied the flocking dynam-
ics by using continuum equations for the coarse-graine
density fieldrs $x, td and velocity field$ys $x, td, written as

≠t $y 1 ls $y ? =d $y ­ a $y 2 bj $yj2 $y 2 =P

1 DL=s= ? $yd 1 D1=2 $y

1 D2s $y ? =d2 $y 1 $f , (1)

≠r

≠t
1 = ? s $yrd ­ 0 , (2)

where b, D1, D2, and DL are all positive, anda ,

0 in the disordered phase anda . 0 in the ordered
state. Thea and b terms simply make the local$y
have a nonzero magnitudes­

p
ayb d in the ordered

phase. DL,1,2 are diffusion constants. The Gaussian
random noise $f has correlations:k fis$r , tdfjs$r 0, t0dl ­
Ddijdds$r 2 $r 0ddst 2 t0d where D is a constant, andi,
j denote Cartesian components. Finally, the pressu
P ­ Psrd ­

P`
n­1 snsr 2 r0dn, wherer0 is the mean

of the local number densityrs$rd and sn are coefficients
in the pressure expansion. The final equation (2) reflec
conservation of birds.

In [4], we considered the special case of (1) withl ­ 1.
Just as the absence of the Galilean invariance for the flo
motion allowsa and b fi 0 in Eq. (1), likewisel need
not be­ 1. In [5] and this paper, we consider the more
generic casel fi 1, which leads to a different direction
dependence of the sound speed than whenl ­ 1 [6].
0031-9007y98y80(21)y4819(4)$15.00
ria
o-
-
rs
-
s
c-
rs

d

re

ts

ck

In the ordered phase wherea . 0, the velocity field
and the density field can be written as$y ­ ysx̂jj 1 $dy,
r ­ r0 1 dr, wherer0 andysx̂jj are the space average
density and spontaneous symmetry broken velocity,
spectively. The spontaneous symmetry breaking of a v
tor field leads to large “Goldstone mode” fluctuations;
flocks, this mode is$y', the projection ofd $y perpendicu-
lar to x̂jj [we will hereafter use “jj” (“ '”) to denote the
projection of any vector along (perpendicular to)x̂jj]. In-
deed, for equilibrium systems, such fluctuations are stro
enough in two dimensions to destroy the long range ord
[7]. One of the remarkable predictions of our continuu
model of flocking is that the ordered state is stable ev
in two dimensions due to the nonequilibrium effect of th
nonlinear terms. The mean squared fluctuations in Fou
space in 2D are

kjdrs$q, vdj2l ­
Dq2

'r
2
0

Ss $q, vd
, (3)

kjy's $q, vdj2l ­
Dfsv 2 ysqjjd2 1 Drq4

jjg
Ss $q, vd

, (4)

where the denominatorSs $q, vd ­ fsv 2 ysqjjd sv 2

lysqjjd 2 c2q2
'g2 1 fsv 2 ysqjjd fDR

's $qdq2
' 1 Djjq

2
jjg 2

lysDrq3
jjg2. c ­

p
s1r0, Dr ­ c2ya, Djj ­ D1 1

D2 1 Dr, and DR
', the renormalized diffusion constant

scales as

DR
's $q', qjj; l, r0, snd ­ qz22

' fsqjjyq
z
'd , (5)

where the exponentsz andz are found by RG analysis to
be z ­

6
5 andz ­

3
5 for two dimensions, and the scaling

functionfsxd is universal up to an overall, nonuniversal$q
andv independent scale factor.

From the above expressions, the correlation functio
will have peaks aroundv0s $qd, which satisfiessv0 2

ysqjjd sv0 2 lysqjjd 2 c2q2
' ­ 0 with solutions: v0 ­

V6s $qd ­ 1
2 s1 1 ldysqjj 6 f 1

4 s1 2 ld2y2
s q2

jj 1 c2q2
'g1y2.
© 1998 The American Physical Society 4819
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This implies that for the wave vectorsqjj, q'd ­
qsss cossuqd, sinsuqdddd at smallq, there should be two peaks
in the power spectrum located aroundv0 ­ c6suqdq with
the sound speeds:

c6suqd ­ 1
2 s1 1 ldys cossuqd

6 f 1
4 s1 2 ld2y2

s cos2suqd 1 c2 sin2suqdg1y2.
(6)

The relative strength of the two peaks varies withuq. It
is not hard to see from Eqs. (3) and (4), that atuq , 0,
kjdrs $q, vdj2l will only have a peak with corresponding
wave velocityc1suq ­ 0d ­ ys, and kjy's $q, vdj2l will
only have a peak atc2suq ­ 0d ­ lys.

In this paper, we study a discrete model numerically
test the predictions made by our continuum theory. Th
model we use is very similar to the one studied by Vicse
et al. [3]. Following [1], we call our simulated flockers
“boids.” At a given timet, the position and the direction
of the velocity for each boid are given assss$ristd, uistdddd for
i ­ 1, 2, . . . , N . The magnitude of the velocity is fixed:
j $yij ­ y0, its direction is updated at the next time step b
averaging over its neighbors’ moving directions:

uist 1 1d ­ Q

√
1
M

MX
j­1

f $yjstd 1 $gijstdg 1 $histd

!
. (7)

M is the number of neighbors for boidi within radiusR:
rij ­ j $ri 2 $rjj , R. The extra interaction term$gij ­
g0s $ri 2 $rjd fsl0yrijd3 2 sl0yrijd2g makes boids repel
each other when they are closer thanl0, and attract
each other otherwise, withl0 the average distance
between boids in the flock, this interaction will pre
vent formation of clusters. The noise term$histd ­
Dysss cosfpeistdg, sinfpeistdgddd, where eistd is a random
number in the intervalf21, 1g. The function Qs $xd is
just the polar angle of the vector$x. The position update
is simply $rist 1 1d ­ $ristd 1 y0sss cosfuistdg, sinfuistdgddd.
The parameters in this model areR, l0, Dy, y0, andg0.

The particular form of the interactions should not af
fect the universal predictions of the continuum theory pr
sented above, but rather should change only nonuniver
phenomenological parameters likec, l, Djj, etc. They
also affect the length scalelNL beyond which the asymp-
totic long wavelength forms of the correlation function
(3) and (4) apply. Indeed, a one-loop RG analysis predic
lNL , s10D

5y4
' D

1y4
jj ylD1y2d2ys42ddOs1d. Higher loop cor-

rections may affect this result, but it presumably remain
accurate to factors ofOs1d.

For our numerical model, we estimate (on dimension
grounds):l , 1, D , sDyd2 Rd

t0
, Djj , D' , R2

t0
. Insert-

ing these estimates, we findlNL , Rs 10R
Dyt0

df2ys42ddg. In our
simulation, choosing units of length and time such th
R ­ t0 ­ 1, and takingDy , Dyc , 1y3 in these units,
for d ­ 2 we get the lower boundlNL . 30. Previous
simulations [8] tookDy ø 1, and therefore have a much
largerlNL. Hence, no nontrivial nonlinear effects could b
observed since their systems were much smaller thanlNL.
4820
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The above analysis shows that in order to test th
scaling behavior with a reasonable system size, one se
a small lNL by increasingDy and decreasing the radius
of interactionR as much as possible without entering the
disordered phase. In this paper, we report the results o
simulation with system sizeL 3 L with L ­ 400 and the
number of boidsN ­ 320 000. We chooseR ­ 1, g0 ­
0.6, y0 ­ 1.0, l0 ­ 0.707. For these parameter values
the flock becomes disordered atDyc , 0.375, as shown
in Fig. 1(a). The order parameterf is defined simply as
the magnitude of the average velocity of the whole flock
f ­ 1

N j
PN

i­1 $yi j. To stay in the ordered phase and hav
enough fluctuations, we chooseDy ­ 0.15.

Previous simulations have used periodic boundary co
ditions [3]. However, for any finite flock, the direction of
the average velocity will slowly change, making compari
son to the analytical results, which assume infinite syste
size, and hence a constant direction fork $yl, difficult. In
order to makek $yl constant in its direction, we impose pe-
riodic boundary conditions in one of the directions, say th
x direction, and reflecting boundary conditions in the othe
directiony, i.e., when a boidi with velocity syx

i , y
y
i d col-

lides with the “walls” aty ­ 6Ly2, its velocity changes to
syx

i , 2y
y
i d. The symmetry broken velocity is thus forced

to lie along thex direction, without changing the bulk dy-
namics of the system. We will hereafter use “jj” and x;
“'” and y interchangeably.

We first measure the equal time correlation functions
From Eq. (3), we predict:

Crs $qd ­ kdrs$q, tddrs2 $q, tdl ­
Z

kjdrs$q, vdj2l
dv

2p

­
2Dr

2
0q2

'

c2fDR
's $qdq2

' 1 Djjq
2
jjgq2

Y suqd , (8)

whereYsuqd is a nonzeroOs1d function of uq. We see
that the equal time correlation function gives us a direc
measure of the attenuation. The asymptotic behavior
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FIG. 1. (a) The order parameterf, as defined in the text,
versus the noise strengthDy. The arrow shows the value
of Dy at which the fluctuations of the ordered state wer
calculated. (b) The scaling behavior of the equal tim
correlation function for the density fluctuations in the two limits
as given in Eqs. (9) and (10). The lines illustrate the predicte
slopes.
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Crs $qd can be expressed as

Crs $qd , q2z
' , q' ¿ qjj , (9)

, q22
jj , qk ¿ q' ¿ q

1yz

jj . (10)

In Fig. 1(b), we have plotted the equal time density co
relation functions in Fourier space:Crsqjj, q' ­ 2pyLd
versusqjj andCrsqjj ­ 0, q'd versusq' from our simu-
lation. The scaling behavior at long length scale
can be fitted with Crsqjj, q' ­ 2pyLd , q22.05

jj and
Crsqjj ­ 0, q'd , q21.23

' . These two exponents show
excellent agreement with the analytical results22 and2

6
5 ,

respectively. As can be seen from Fig. 1(b), the scaling
r-

s

re-

gion for the current simulation covers slightly less than on
decade inq'. It is not surprising that earlier simulations
of smaller systems with less carefully chosen param
ters (leading to largerlNL), did not observe the nontrivial
scaling.

Another interesting measurement of the simulation
the anomalous diffusion of individual boids in the di
rection y perpendicular to the flock’s moving direction
We measure the “width” of the dispersion of an ensemb
of boids: w2std ­ kf yistd 2 yis0dg2l. The analytical be-
havior of the anomalous diffusion can be obtained fro
w2std ,

Rt
0

Rt
0kyi

yst0dyi
yst00dldt0 dt00 whereyi

ystd is the ve-
locity of the ith boid along they direction at timet. The
velocity correlation function is given by (4)
kyi
ys0dyi

ystdl , kyys $x 1 fx̂t, tdyy s $x, 0dl ­
Z expfisv 2 fqjjdtgDsv 2 ysqjjd2d2q dv

Ss $q, vd
, t121yz , (11)
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which implies w2std , t321yz ­ t4y3. In Fig. 2(b), we
have plotted the width squaredw2std versus timet in
log-log scale. The scaling can be fitted nicely wit
w2std , t1.3, which agrees well with the analytical resu
t4y3. We have also simulated Vicsek’s original model, b
with parametersDy, etc., chosen to makelNL as small as
possible, and found againw2std , t1.3. This supports the
universality of our analytic results.

Besides the scaling behavior, the analytical results (
(4) also imply the existence of sound waves as reflec
in the peaks of the correlation functions, Eqs. (3) a
(4). From Eq. (3), at a given value of$q, the correlation
function has peaks atv ­ c6suqdq. We have measured
the power spectrum in they direction:kjdrsqjj ­ 0, q' ­
2p

L n', v ­
2p

T nvdj2l sT ­ 1024d with different values of
n's­ 1, 2, . . . , 20d. Figure 3 shows the power spectra fo
n' ­ 5, 10, 20. The spectra are symmetric aroundv ­ 0
(we show only half of the spectrum forv . 0) and the
positions of the peaksnp

v versusny are shown in the inset
of Fig. 3, whose slope determines the sound velocity in t
y directionc ­ 0.62. We have calculated the power spec
trum ofy' in they direction, which shows the same peak

An interesting phenomenon happens when we calcul
the spectrum along thex direction, i.e., with qjj fi 0
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FIG. 2. The log-log plot of the anomalous transverse diffusio
of an individual boid versus time.
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and q' ­ 0. As predicted by Eqs. (3) and (4), we se
one single peak for each correlation function. Indeed,
shown in Fig. 4, each power spectrum shows only o
peak, and again as predicted by (3) and (4), the peak
they' power spectrum is at a differentv than the peak of
the density power spectrum. This means that the veloc
fluctuations propagate with a different velocity than th
density fluctuations in thex direction.

We can then extract from Fig. 4 the values ofys ­ 0.93,
l ­ 0.75. (The fact thatl fi 1 reflects the absence of
Galilean invariance.) With the value ofc ­ 0.62 deter-
mined through Fig. 3, we can predict the sound speeds
all other directions of propagation from Eq. (6) with n
adjustable parameters. To test these predictions, we h
also calculated the power spectra for the density and the
locity fields at two other angles: tansuqd ­ 1y3, 4. For the
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FIG. 3. The power spectrum of the density for different wav
vectors. The inset shows the peak positions of the pow
spectrum versus wave number. The linear slope determi
the sound velocity.
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FIG. 4. Power spectra for the density and velocity fluctuation
for the same wave vector along the parallel direction. Th
peaks of the two curves are clearly different.

large angleuq,1 ­ arctans4d ­ 76.0±, the data are shown
in Fig. 5(a). The peaks forr andy' are at the same loca-
tion, and the wave velocities arec6suq,1d ­ 0.75, 20.37.
The data foruq,2 ­ arctans1y3d ­ 18.4± are shown in
Fig. 5(b). The peak atv ­ c2suq,2d is just barely visible
in the density correlation, but both peaks show very we
in the velocity correlation, and the peaks for both correla
tion functions are at the same locations, giving the velo
ity c6suq,2d ­ 0.97, 0.59. In Fig. 5(c), we have plotted
the angle dependence of the wave velocity as predicted
Eq. (6) in polar angle coordinatesfc6suqd, uqg, with the
values ofys, l, and c determined earlier. We have in-
cluded in Fig. 5(c), the sound velocities for the two angle
uq,1 anduq,2. The agreement with the predicted velocitie
is excellent.

In summary, the numerical simulations reported he
strongly support our analytical continuum theory o
flocks. The observed sound speeds agree very well w
our predictions. In particular, our analytical model’s
assertion that Galilean invariance is absent is confirm
by the existence of two different nonzero sound spee
for propagation along the mean direction of flock motion
In addition, the sound attenuation shows the anomalo
scaling we predict [9].
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FIG. 5. The power spectra for the density and the velocit
fluctuations in directions (a)uq,1 ­ arctans4d and (b) uq,2 ­
arctans1y3d. The two peaks are clearly visible, albeit with
different magnitudes. In (c), the wave velocitiesc6suqd are
plotted in polar angle coordinatessssc6suqd, uqddd for the four
different directionsuq ­ 0, uq,1, uq,2, py2, the two axes rep-
resent cx ­ c6suqd cossuqd and cy ­ c6suqd sinsuqd respec-
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the text.
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