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Sound Waves and the Absence of Galilean Invariance in Flocks

Yuhai Tu
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598

John Toner and Markus Ulm

Department of Physics, University of Oregon, Eugene, Oregon 97403-1274
(Received 22 October 1997

We study a model of flocking for a very large syste = 320000) numerically. We find
that in the long wavelength, long time limit, the fluctuations of the velocity and density fields are
carried by propagating sound modes, whose dispersion and damping agree quantitatively with the
predictions of our previous work using a continuum equation. We find that the sound velocity is
anisotropic and characterized by its speetbr propagation perpendicular to the mean velogity,
() itself, and a third velocityA(?), arising explicitly from the lack of Galilean invariance in flocks.
[S0031-9007(98)06186-9]

PACS numbers: 87.10.+e, 05.60.+w, 64.60.Cn

The dynamics of “flocking” behavior of living things, In the ordered phase whete > 0, the velocity field
such as birds, fish, wildebeest, slime molds, and bacteriand the density field can be written &s= v, + Sv,
has long attracted a great deal of attention among biolop = p, + 5p, wherep, andv, % are the space averaged
gists, computer animators, and physicists [1-3]. Itis crudensity and spontaneous symmetry broken velocity, re-
cial to correctly describe the interaction between memberspectively. The spontaneous symmetry breaking of a vec-
of the flock in order to understand and model the flock-tor field leads to large “Goldstone mode” fluctuations; in
ing behavior. As summarized in [2], a large flock doesflocks, this mode ig |, the projection ofsu perpendicu-
not have a global leader; instead, the impressive colledar to %, [we will hereafter use [{” (“ L") to denote the
tive flocking phenomena is caused by individual membergrojection of any vector along (perpendicular fq].
of the flock following the motion of their neighbors. deed, for equilibrium systems, such fluctuations are strong

In our earlier work [4], we studied the flocking dynam- enough in two dimensions to destroy the long range order
ics by using continuum equations for the coarse-graine@i7]. One of the remarkable predictions of our continuum
density fieldp (x, r) and velocity fieldv(x, r), written as model of flocking is that the ordered state is stable even

3,0 + A3 - V)b = av — Blo[*0 — VP in two dimensions due to the nonequilibrium effect of the

nonlinear terms. The mean squared fluctuations in Fourier

+ D V(V - ) + D,Vo space in 2D are

+ Dy(® - V) + f, (1) A 2
o 130G @) = SE25 ®3)
5 +V-(wp)=0, 2 ’
4
where B8, Dy, D,, and D, are all positive, ande < (v, G o)) = Allw — veqy)* + Dyqj] (4)
0 in the disordered phase and > 0 in the ordered ’ S(g, w) ’

state. Thea and 8 terms simply make the locab
have a nonzero magnitude= y/a/B) in the ordered where the denomlnatorS(q,w) = (o~ U‘q”)(w B
2

phase. D, are diffusion constants. The Gaussian?Vs4I) ¢ ¢ + [ — v [DT@q + Dygjl -
random noisef has correlationsy f;(7,1)f;(F. 1)) = Av,Dpgi P . Vaipo, D, =c /“_ Dy =Dy +
A5”5d(r — #18(t — ¢') where A is a constant, and, D, + D,, and D7, the renormalized diffusion constant,
j denote Cartesian components. Finally, the pressur%Calles as
P ="P(p)=>,_,0.(p — po)", wherep, is the mean DR(G 1. qis A pos o) = quzf(qn/qi), 5)
of the local number density(¥) and o, are coefficients
in the pressure expansion. The final equation (2) reflect¢here the exponentzsandg are found by RG analysis to
conservation of birds. bez =sand{ = 3 for two dimensions, and the scaling

In [4], we considered the special case of (1) with= 1. functionf(x) is unlversal up to an overall, nonuniversal
Just as the absence of the Galilean invariance for the flocknd w independent scale factor.
motion allowsa and 8 # 0 in Eq. (1), likewiseA need From the above expressions, the correlation functions
not be= 1. In [5] and this paper, we consider the morewill have peaks arounch)o(q) which satisfies(wo —
generic case\ # 1, which leads to a different direction vq) (wg — Avsq)) — ¢ qi = 0 with solutions: wg =
dependence of the sound speed than when 1 [6]. Q-(§) =31 + Mogg = [0 — M)2ulq) + 2q1]72
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This implies that for the wave vectofq),q.) = The above analysis shows that in order to test the
g(cog6,),sin(6,)) at smallg, there should be two peaks scaling behavior with a reasonable system size, one seeks
in the power spectrum located arouag = c~(6,)g with  a small/x;, by increasingAv and decreasing the radius
the sound speeds: of interactionR as much as possible without entering the
c+(0,y) = %(1 + Av, cog6,) disordered phase. In this paper, we report the results of a
1 2 2 2 1/2 simulation with system sizé X L with L = 400 and the
+ [3(1 = M)’ cos(8,) + ¢ sin(6,)] /(6) number of boidsV = 320000. We chooseR® = 1, gy =

) ] 0.6, vo = 1.0, [p = 0.707. For these parameter values,
The relative strength of the two peaks varies With It the flock becomes disordered Av,. ~ 0.375, as shown
is not hard to see from Egs. (3) and (4), thatat~ 0,

. S \ »in Fig. 1(a). The order parameter is defined simply as
(16p(g, )I") will only have a peak with corresponding the magnitude of the average velocity of the whole flock:
wave velocityc4 (8, = 0) = v, and{|v (¢, w)I*) will

¢ = =I>Y, 3;|. To stay in the ordered phase and have
only have a peak at-(6, = 0) = Av;. _ enough fluctuations, we choodes = 0.15.

In this paper, we study a discrete model numerically 10 preyious simulations have used periodic boundary con-
test the predictions made by our continuum theory. Thgjitions [3]. However, for any finite flock, the direction of
model we use is very similar to the one studied by Vicsekne average velocity will slowly change, making compari-
et al.[3]. Following [1], we call our simulated flockers gop to the analytical results, which assume infinite system
“boids.” At a given timer, the position and the direction size, and hence a constant direction oy, difficult. In
of the velocity for each boid are given &&(1), 6:(1)) for  order to makes) constant in its direction, we impose pe-

i =1,2,....N. The magnitude of the velocity is fixed: rjgdic houndary conditions in one of the directions, say the
|vil = vy, its direction is updated at the next time step by girection, and reflecting boundary conditions in the other
averaging over its neighbors’ moving directions: directiony, i.e., when a boid with velocity (v}, v}) col-

M . . . . _ . .
0,(t + 1) = ®<$ Z[{’j(f) + 3(0] + ﬁi(t))- 7) lides with the “walls” aty = *L/2, its velocity changes to
j=1

(v¥, —v}). The symmetry broken velocity is thus forced
M is the number of neighbors for boidwithin radiusg:  t© li€ along thex direction, without changing the bulk dy-
rij = |r; — ;| < R. The extra interaction terng;;

namics of the system. We will hereafter ud¢ ‘and x;
g0 = 7)) [(lo/ri;)* — (lo/rij)*] makes boids repel

“1” andy interchangeably.
each other when they are closer than and attract We first measure the equal time correlation functions.
each other otherwise, with, the average distance

From Eq. (3), we predict:
between boids in the flock, this interaction will pre- R R R sndw
vent formation of clusters. The noise ternj;(r) = (0p(q.0dp(=q.1)) = f<|5p(‘1’“’)| oy
Av(codme;(1)],siNme;(t)]), where e;(¢) is a random DA p2a?
number in the interva[—1,1]. The function ®(x) is Poq.L

Co(q)

Y(6,), (8)

just the polar angle of the vect@: The position update
is simply 7i(r + 1) = ri(z) + vo(cog6;()],sin;(r)]).
The parameters in this model ake [y, Av, vy, andgy.

D% (@)qt + Dugfile?

whereY(6,) is a nonzeroO(1) function of §,. We see
that the equal time correlation function gives us a direct

The particular form of the interactions should not af- eagyre of the attenuation. The asymptotic behavior of
fect the universal predictions of the continuum theory pre-

sented above, but rather should change only nonuniversal

phenomenological parameters like A, D, etc. They

also affect the length scalg; beyond which the asymp- 02— ' ' 12 ; '

; . . ° i @ /RN ()
totic long wavelength forms of the correlation functions 5 | o - ! N O (@.q.22mL)
(3) and (4) a5;/34plyl./4lndeed, a one-loop RG analysis predicts el ) . | N’Q\m 5, M0@=0a) |
Ine ~ (10DY"D)/"/AAY2)2/E=D0(1). Higher loop cor- ¢ Zs
rections may affect this result, but it presumably remains 04 - =
accurate to factors ad(1). o2 b o] U5

For our numerical model, we estimate (onzdimensional =
grounds)A ~ 1,A ~ (AU)Z%,DH ~D, ~ 1{3_0. Insert- %0 o1 oz o3 o4 o 2 4

Av In(a,), In(a,)

ing these estimates, we firigy, ~ R(%)D/(“‘d”. In our

simulation, choosing units of length and time such thafIG. 1.

R = 1y = 1, and takingAv ~ Av,. ~ 1/3 in these units,
for d = 2 we get the lower boundy, > 30. Previous
simulations [8] tookAv < 1, and therefore have a much

(@) The order parametet, as defined in the text,
versus the noise strengthv. The arrow shows the value
of Av at which the fluctuations of the ordered state were
calculated. (b) The scaling behavior of the equal time
correlation function for the density fluctuations in the two limits

largeriny.. Hence, no nontrivial nonlinear effects could be a5 given in Egs. (9) and (10). The lines illustrate the predicted

observed since their systems were much smaller than
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C,(g) can be expressed as gion for the current simulation covers slightly less than one
S - decade ing . Itis not surprising that earlier simulations
— z
Col@) ~q.°s  qL>q, ©)  of smaller systems with less carefully chosen parame-
- 1/¢ ters (leading to largely.), did not observe the nontrivial
_ ‘1||2’ q1 > q1 > q)° . (10) scaliﬁlg, 9 gefyy)

In Fig. 1(b), we have plotted the equal time density cor- Another interesting measurement of the simulation is
relation functions in Fourier spac€,(q),q. = 27 /L)  the anomalous diffusion of individual boids in the di-
versusg) andC, (g = 0,q ) versusg, from our simu- rection y perpendicular to the flock’s moving direction.
lation. The scallng behavior at long length scalesWe measure the “width” of the dispersion of an ensemble
can be fitted with C,(gy,q. = 27/L) ~ ¢ and  of boids:w?(r) = ([ y;(r) — y;(0)P*). The analytical be-
C,(q) =0,q.) ~ g1 23. These two exponents show havior of the anomalous diffusion can be obtained from

w2(t) ~ [4 f0<v ()} (t"))dt' di” wherev|(7) is the ve-
gocity of the ith boid along the direction at timer. The

veIOC|ty correlation function is given by (4)

exfi(o — ¢q))t]A (0w — vqu)Zdzq dw ~ -1/
S(g, w) ’

excellent agreement with the analytical resuh?sand— =
respectively. As can be seen from Fig. 1(b), the scallng r

WLy (1)) ~ (vy (X + Pit,1)vy(X,0)) = [ (11)

which implies w2(r) ~ *=1/¢ = 43. In Fig. 2(b), we | and g, = 0. As predicted by Egs. (3) and (4), we see
have plotted the width squared?(r) versus timer in  one single peak for each correlation function. Indeed, as
log-log scale. The scaling can be fitted nicely withshown in Fig. 4, each power spectrum shows only one
w2(t) ~ t'3, which agrees well with the analytical result peak, and again as predicted by (3) and (4), the peak for
*/3. We have also simulated Vicsek’s original model, butthe v, power spectrum is at a different than the peak of
with parameters\v, etc., chosen to makig; as small as the density power spectrum. This means that the velocity
possible, and found again’(r) ~ ¢'3. This supports the fluctuations propagate with a different velocity than the
universality of our analytic results. density fluctuations in the direction.

Besides the scaling behavior, the analytical results (3), We can then extract from Fig. 4 the valuesgf= 0.93,
(4) also imply the existence of sound waves as reflected = 0.75. (The fact thatA # 1 reflects the absence of
in the peaks of the correlation functions, Egs. (3) andGalilean invariance.) With the value of= 0.62 deter-
(4). From Eq. (3), at a given value @f, the correlation mined through Fig. 3, we can predict the sound speeds in
function has peaks ab = c+(6,)g. We have measured all other directions of propagation from Eq. (6) with no
the power spectrum in thedirection:(|8p (¢ = 0,¢q. =  adjustable parameters. To test these predictions, we have
2L n,w = 2—nw)|2> (T = 1024) with different values of ~also calculated the power spectra for the density and the ve-
n, (= 1,2,...,20). Figure 3 shows the power spectra for locity fields at two other angles: téth,) = 1/3,4. Forthe
n; = 5,10, 20 The spectra are symmetric around= 0
(we show only half of the spectrum fas > 0) and the 0
positions of the peaks,, versusn, are shown in the inset
of Fig. 3, whose slope determines the sound velocity in the

40 T T T

y directionc = 0.62. We have calculated the power spec- 30 .
trum of v | in they direction, which shows the same peaks. i o Dnnn“'j
An interesting phenomenon happens when we calculate,\ 10° %®‘22) =% o _

the spectrum along the direction, i.e., withg # 0

Ln(w’(t))

g
5}

o 20 40 e 8 100
0.0
n (=wT/2m)
%o 20 40 50 80 FIG. 3. The power spectrum of the density for different wave

tn® vectors. The inset shows the peak positions of the power

FIG. 2. The log-log plot of the anomalous transverse diffusionspectrum versus wave number. The linear slope determines
of an individual boid versus time. the sound velocity.
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FIG. 4. Power spectra for the density and velocity fluctuation
for the same wave vector along the parallel direction. Th
peaks of the two curves are clearly different.

large angled,; = arctari4) = 76.0°, the data are shown
in Fig. 5(a). The peaks fgv andv, are at the same loca-
tion, and the wave velocities are (6,,1) = 0.75, —0.37.
The data ford,, = arctaril/3) = 18.4° are shown in
Fig. 5(b). The peak ab = c-(6,>) is just barely visible
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¥IG. 5. The power spectra for the density and the velocity
fluctuations in directions (ay, = arctart4) and (b) 6,, =

arctarfl/3). The two peaks are clearly visible, albeit with
different magnitudes. In (c), the wave velocities(6,) are
plotted in polar angle coordinate-(6,),6,) for the four
different directionsd, = 0,6,,,0,,,7/2, the two axes rep-
resentc, = c+(6,) cog6,) and ¢, = c+(0,) sin(d,) respec-
tively. The solid curve is the prediction from Eq. (6) in
the text.

in the density correlation, but both peaks show very wellUniversity of Colorado, Boulder for their hospitality while
in the velocity correlation, and the peaks for both correlaa portion of this work was completed.

tion functions are at the same locations, giving the veloc
ity c¢=(6,42) = 0.97,0.59. In Fig. 5(c), we have plotted

the angle dependence of the wave velocity as predicted i

Eq. (6) in polar angle coordinat¢s(6,), 8,], with the
values ofv,, A, andc determined earlier. We have in-

cluded in Fig. 5(c), the sound velocities for the two angles

0,1 andé,,. The agreement with the predicted velocities
is excellent.
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