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Traveling Waves in a Chain of Pulse-Coupled Oscillators
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We derive conditions for the existence of traveling wave solutions in a chain of pulse-coupled
integrate-and-fire oscillators with nearest-neighbor interactions and distributed delays. A linear stability
analysis of the traveling waves is carried out in terms of perturbations of the firing times of the
oscillators. It is shown how traveling waves destabilize when the detuning between oscillators or the
strength of the coupling becomes too large. [S0031-9007(98)06205-X]

PACS numbers: 87.10.+e, 05.45.+b

Many processes in nature can be described in terms @n the presence of a gradient of frequencies along the
finite chains of coupled nonlinear oscillators. Exampleschain with the wave propagating from the high frequency
include the undulatory motion of swimming organismsregion to the low frequency region. For example, if
such as the lamprey [1], leech [2], and the Xenopus tadpole,,+; — w, = A > 0 in Eqg. (1) then traveling waves
[3], peristalsis in vascular and intestinal smooth musclewill occur provided thatA is sufficiently small; when
[4], and synchronization and waves of excitation that arisehe gradient becomes too steep to allow phase locking,
during sensory processing in the cortex [5,6]. Variouswo or more pools of oscillators (frequency plateaus)
physical systems such as Josephson junction arrays [7,8nd to form that oscillate at different frequencies [4].
and laser arrays [9] can also be modeled in terms of coupletihe second mechanism for wave formation, which can
oscillators. A basic question concerning these systemgccur in systems of identical oscillators with anisotropic
is the condition under which traveling waves of activity coupling, is due to so-called nondiffusive coupling in
can occur. Traveling waves are typically phase-lockedvhich the interaction functio® satisfiesH(0) # 0 [12].
solutions in which each oscillator has the same frequency In this Letter, we investigate traveling waves in a chain
but the phase varies monotonically along the chain. of integrate-and-fire oscillators where the pulselike nature

Almost all analysis to date has been carried out forof the interactions between biological oscillators is explic-
chains of oscillators in the weak-coupling regime whereitly incorporated [13]. Pulse-coupled oscillators also arise
averaging methods can be used to reduce the model teithin the context of certain physical systems such as dis-
a system of phase equations. For a chainNof+ 1  crete phase-locked loops [14] and stick-slip models [15].
oscillators with nearest-neighbor coupling and natural freWe derive a set of equations for phase-locked solutions
quenciesw,, n = 1,...,N + 1, these take the form [4] that are structurally identical to those obtained from the

. 5 phase equation (1), and use this to establish the existence of

On = 0y + € > HOn— 0,) + 0, (1) traveling waves. In contrast to a chain of weakly coupled

(m,n) limit cycle oscillators, our results for integrate-and-fire

where(m, n) denotes a sum over nearest neighborg.of chains hold for arbitrary values of the couplieg We
The periodic interaction functiod depends on the nature also analyze the linear stability of traveling wave solutions
of the coupling and on the dynamics in a neighborhood ofor the integrate-and-fire chain and show how the condition
a limit cycle. The paramete¢ determines the strength for asymptotic stability reduces to that of a corresponding
of the interactions withe < 1 for weak coupling. Any phase model in the weak coupling limit. The existence and
phase-locked solution has the forth,(r) = Q¢ + {,,  stability of traveling wave solutions as a function of the
where(, is constant. Substitution &, = Q into Eq. (1) degree of detuning and the strength of coupling between
yields N fixed point equations for the phase differencesoscillators is investigated through a number of numerical
¢n=0,+1 — 0, n=1,...,N, which are independent examples. For simplicity, we restrict our discussion to the
of the collective frequency of oscillation3; the latter is  isotropic case.
then determined from the remaining equatidn= w; + Consider a chain oV + 1 integrate-and-fire oscillators
€H($1). Note that in general explicitly solving for the labeledn = 1,...,N + 1. Let U,(¢) denote the state of
fixed points{¢,} is a nontrivial task since it is necessary the nth oscillator at timer. Suppose that the variables
to take into account the boundary conditions at the end#,(z) satisfy the set of coupled equations

of the chain. (In contrast, waves on a circular ring of dU,(t) ~
identical oscillators arise naturally as a consequence of - U F Lt e > E,) (2)
the underlying translational symmetry [10,11].) One finds (m.n)

that there are at least two different mechanisms that cafor 0 < U, < 1. Equation (2) is supplemented by the
generate traveling wave solutions. The first is basedondition that the oscillator fires a single pulse or spike
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wheneverU, = 1 and that the state is immediately resetunder the assumption of weak coupling. Thus in the
to U, = 0. In Eq. (2),I, denotes a fixed external input former case, analysis of phase locking can be continued
andE,, n = 1,...,N + 1, represents the inputs from the to the strong coupling regime. Second, unlik&®),

nth oscillator. We shall assume thigt > 1 so thatin the Kr7(8) explicitly depends on the collective frequency
absence of any coupling (= 0) each oscillator fires at a of oscillations 1/T and the latter must be determined
rate of1/T, with T,, = In(1,,/[I, — 1]). The inputs take self-consistently.

the form The third significant difference is that integrate-and-
R o fire oscillators are of type I, which means that an instan-
E,(t) = f P(T)E,(t — 7)dT (3) taneous excitatory stimulus always advances its phase,

0 whereas limit cycle oscillators are typically of type Il
form=1,...,N + 1, whereE, (¢) is the sequence of since such a stimulus can either advance or retard the

spikes transmitted from the:th oscillator at timer and  phase, depending upon the point on the cycle at which
P(r) specifies a distribution of delayed connections. Inthe stimulus is applied [16]. This distinction manifests
the particular case of neural systems there are a number gelf in the nature of the coupling functiorf$(9) and
possible sources of delays including axonal transmissioRk;(6). In the case of purely excitatory interactions, only
delays, synaptic processing, and dendritic processing [11{he former takes on both positive and negative values over
Neglecting the shape of an individual pulse, each spikehe domaind € [0, 1], whereask;(0) is a positive func-
train can be represented as a sequence of Dirac deltwn. In order to allow for more general forms of the in-
functionsk, (1) = >;__..6(t — T}) whereT} is the jth  teraction functionk(6), we shall assume in Eq. (2) that
firing time of thenth oscillator, that is{/,(T}) = 1. there exists a combination of excitatoryand inhibitory
Suppose that we restrict our attention to phase-locke¢—) interactions between the integrate-and-fire oscilla-
solutions of Eq. (2) in which every oscillator fires with tors, such thaP(r) = P*(r) — P~ (7) with P=(7) = 0.
the same fixed period’, which has to be determined Such combinations are found, for example, in neural cir-
self-consistently. The state of each oscillator can theruits underlying locomotion [3] and cortical microcircuits
be characterized by a constant phase€ [0,1], and [17], where there is a mixture of long and short range
the firing times of thenth oscillator becomd’} = (j —  excitation and short range inhibition mediated through
6,)T. Following Ref. [11], we integrate Eq. (2) over the synaptic interactions. In fact both inhibitory and excita-
intervalt € (—=740,,T — T6,) using the reset conditions tory post synaptic potentials (PSPs) have some finite rise
U,(—6,T) =0 and U,(T — 6,T) =1 to obtain the and fall time. Moreover, the former are often generated
result by inhibitory interneurons leading to another form of de-
lay in the interaction process. For simplicity, we consider
(1—e™'=1,+e> Kr(6, — 6,) (4 asituation with nearest-neighbor interactions in which the
(m,n) inhibitory pathway is delayed with respect to the excita-
forn =1,...,N + 1 where tory one and describe both forms of PSP with a so-called
T a function g(r7) = a’7e~ %7, wherea is the inverse rise
Kr(0) = [eT — 1]‘1f e'P(t + 0T)dt, (5) time. The interactions may be written & (r) = g(7)
0 andP~(7) = g(r — 74)O(r — 74), wherer, is the de-
with P(r) =37 P(t + jT) for 0=t <T. P(r) is lay associated with the inhibitory pathway afdx) = 1
extended outside this range by taking it to be a periodidf x = 0 and is zero otherwise.
function of ¢ so thatK;(6 + 1) = Kr(6). Any solution If the number of oscillators is sufficiently large and
of Eqg. (4) can be specified in terms of thé phase the frequency gradient is sufficiently small, then phase-
differencesd = (¢,..., ¢n), ¢, = 0,+1 — 6,, and the locked solutions of Eq. (4) can be analyzed by extending
collective frequencyl /T. The phase$, are determined a continuum approximation method developed by Kopell
only up to an arbitrary uniform phase shift. Comparisonand Ermentrout for weakly coupled limit cycle oscillators
of Eqg. (4) with the corresponding set of conditions for[12]. We shall briefly indicate the underlying idea and
phase-locked solution®( = ) of Eq. (1) shows that present details elsewhere [18]. First, J&t and gr be
they are formally identical, withK; playing the role of the even and odd parts &, respectively, and define
the phase interaction functio” and w, — I,, & — Q = (1 — ¢ 7)"!. Rewrite Eq. (4) in terms of7, gr
(1 — e T)~1. It follows that various methods previously and then consider the following continuum approximation
developed to establish the existence of traveling wavefor N large but finite)
in chains of weakly coupled limit cycle oscillators can 1
be carried over to the case of integrate-and-fire chains. Q=1Ikx)+ e[sz(¢) + —[gT(¢):|Xi| (6)
Before illustrating this, however, a number of important N
differences between phase-locked solutions of Egs. (19upplemented by the boundary conditioQs= 7(0) +
and (4) need to be highlighted. First, Eq. (4) is exacte[ fr(¢) + gr(¢)] at x=0 and Q =1I(1) +
whereas Eq. (1) is valid only t@(e) since it is derived €[ f7(¢) — gr(¢)] at x = 1. Here I(x) is a smooth
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function of x, 0 = x = 1, such that/, = I(n/[N + 1])
and ¢(x) is a smooth approximation of,, that is,
¢, = ¢(n/[N + 1]). The next step is to assume that
is fixed, so thayfr andgy are known functions, and solve

turbationss;. Linearizing this map yields a linear delay-
difference equation that has solutions of the fofth=
Aks, with the eigenvalue\ satisfying the equation [18]:

(A = DAL ()5, =

—1+e€> P((On

{m,n)

- 0n)T)} . (8

Eq. (6) for largeN. This generates a singularly perturbed Z Z a,fm,j(q))

two-point boundary value problem fap(x), which can J=0 m.n)

be solved using the method of matched asymptotic ex- X A Gum( NS, — 8,1, (7)

pansions [12,18]. The latter involves piecing together alhereG,,,(A) = A if 6, < 6,, andG,,(A) = 1 if 6, >

outer solution, which has sufficiently slow spatial variationg, and

so that the ternV ~'[ g7(¢)], can be neglected in Eq. (6),

and an inner solution describing a rapidly varying bound- A’ (®) = |:I,,

ary layer. Imposing certain conditions on the functigins

andgr, this yields a unique solution to the given boundary ro. .

value problem including a value fd2, which we denote @ (P) = €e” j; e'P(t + (j+ 0w — 0,)T)dr.

by Q(T). If T is now treated as a free variable we obtain )

a one-parameter family of solutions wifd(7)) a known

function of T. A unique, self-consistent, phase-locked Here s indicates differentiation with respect to Note

solution to Eq. (6) then exists provided that there existghat one solution to Eq. (7) is given by the eigenvalue

a unique periodl’” satisfyingQ(T) = (1 — ¢ 7)"!,and Ao =1 and its corresponding eigenvectos,, = &

such that the original hypotheses on the coupling function&r all m. This reflects the invariance of the dynam-

fr andgr are not violated [18]. Finally, it can be proven ics with respect to a uniform shift in the firing times

that the original discrete model of Eq. (4) has a solutiorPf the oscillators. The condition for asymptotic sta-

that converges to the solution of the continuum modepility of a traveling wave solution igA| <1 for all

(nonuniformly in the boundary layer) in the limit — o, eigenvaluesA # Ao. In the weak-coupling limit, with

An example of a boundary layer is shown in Fig. 1, wherel, = I for some fixed/ > 1, solutions to Eg. (7) in

a traveling wave solution obtained by numerically solvingthe complexA plane will either be in the neighborhood

Eq. (4) is compared with the solution of the continuumof the real solutionA =1 or in the neighborhood of

model given by Eq. (6). one of the poles on Oanm,(d)))\ IGpm(A). These
The linear stability of a phase-locked solutigh, T) of ~ poles all lie inside the unit circle and hence are not

Eg. (2) can be determined along similar lines to the analyimportant in terms of determining whether or not a

sis of globally coupled integrate-and-fire oscillators [19]Phase-locked solution is stable. Thus to first order

by considering small perturbations of the phase-locked firin € we setA =1 and T — T = In(//[1 — 1]) on

ing patterng’} = (j — 6,)T + §}. Solving Eqg. (2) and the right-hand side of (7). The result is that &(e)

the reset condition leads to an |mpI|C|t map for the perthe spectrum close tor =1 coalesces intoN + 1

distinct points given byAg =1 and A, =1 + ypu,,
p=1,....,N, where y = €[l — e‘T]/(T[I —1]) and
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, up are the eigenvalues of tie + 1 X N + 1
matrix Amn(q)) mn(cb) - Bm,n Z(p,n) Jpn(q)) with
Jun(®@) =3, n>K (6, — 6,)8,,,. The condition for
stability reduces to R@p <Oforalp=1,....,N. An
identical stability condition would be found for phase-
locked solutions of Eq. (1) wittH — K7. This can be
understood by noting that in the weak coupling limit an
averaging procedure applied to Eq. (2) leads to such a
phase model [11].

We deduce from the above linear stability analysis that
in the weak coupling limit the behavior of the integrate-
and-fire chain will be similar to that found previously
for the phase-coupled model (1). However, we expect
new features to emerge as the coupling is increased. To

FIG. 1. A traveling wave solution foiv = 36, 7, = 0.6,
a =10, e =0.1, B =00le, and I, = 1.3. The points
represent the numerical solution of Eqg. (4), while the solid

investigate this further it is useful rewrite Eq. (4) in terms
of the N phase differenceg, assuming a constant input

line is the solution of the corresponding continuum boundarydradientl/,+; — I, = B:

value problem. The right inset shows how the intersection of 0= 8 + €[k - K + Kr(—

Q(T) and Q(T) =[1 — ¢ T]"! yields a unique value for the A (Kr(buer) r(én) r(=¢n)
collective period] = 1.47. — Kr(—dn-1)], (10)
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fire at approximately twice the frequency of the boundary
ones (see left-hand inset of Fig. 2). Note that in contrast
to the weak-coupling regime, destabilization of a phase-
. ] locked solution no longer requires that eigenvalues cross
T the unit circle close tov = 1. Indeed, preliminary stud-
L 0432 ies suggest that the mechanism of destabilization is very
: 0 1530 35 30 35 . i distinct from that occurring for sma# and large3. We
' 0.430 N hope to pursue this issue further elsewhere.
'\.\ 0?4'2'8 1 We conclude that a gradient of synaptic drive can
‘ ’ sustain a stable traveling wave, with realistic neuronal
firing frequencies, for a large range of coupling strengths.
19020 25 30 3 Importantly, such a mechanism is believed to underly the
. swimming behavior observed in Xenopus embryos, where
15 a rostral-caudal gradient in synaptic drive is believed to be
el sustained by positive feedback within the premotor neural
FIG. 2. Numerical continuation of a phase-locked solutionCircuitry [3]. A more detailed model based on the work
into the strong coupling regime with = 36, 7, = 1.0, a = in this Letter is being used to test such hypotheses.

8, B = 0.0005, and; = 1.1. Such solutions may destabilize  This research was supported by Grant No./&B6220
if one or more of the eigenvalues of the linearized firing mapfrom the EPSRC (U.K.).

cross the unit circle and new stable solutions may appear.
Numerical support for this possibility is provided in the left
inset where we show a stable nonfrequency-locked solution
which exists at the poinA (e = 0.4) in the strong coupling

.
......

------------------------

30

regime. At pointB (e = 0.03), frequency locked states cease

to exist in favor of a stable two-plateau state in which each
group of oscillators has a differing frequency, as shown in the
right inset.

(1 —e D V=1 + ekr(ehy), (11)

and the boundary conditions are taken toKad — ¢¢) =

0 = Kr(¢pn+1).- The parameteB determines the amount
of detuning of the oscillator frequencies. In the weak
coupling limit with T — T, phase-locked solutions will
depend only on the parameteesB through their ratio
B/e. As previously found for weakly coupled phase os-
cillators [4], we would expect that increasing the level
of detuningg for fixed e (small) leads to the disappear-
ance of stable phase-locked solutions and the formatio
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