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Recent experiments on spiral waves in the Belousov-Zhabotinsky reaction indicate that the w
may break up sufficiently far from the core into chemical turbulence. Simulations of target pat
in the FitzHugh-Nagumo and Ginzburg-Landau models indicate that such transitions occur whe
wave frequency pushes the selected wave vector into the regime ofabsoluteEckhaus instability. This
frequency in turn depends on the control parameter and boundary conditions through the solutio
nonlinear eigenvalue problem. [S0031-9007(98)06192-4]
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Complex spatiotemporal dynamics are found in man
continuous systems of physical interest [1]. In oscilla
tory systems this behavior often takes the form of defe
mediated turbulence [2]. In one dimension these defe
are calledholes [1,3]; in two dimensions they take the
form of spirals [1,3], and shock vertices[4]. Thus far
the resulting complex dynamics have been studied prim
ily within the complex Ginzburg-Landau (CGL) equation
[1,2], although similar dynamics have been found in man
reaction-diffusion systems [5]. In two dimensions eleme
tary solutions of the CGL equation in the form of uniformly
rotating spirals are well known. These solutions carry
net topological charge and rotate with a frequencyV de-
termined by the solution of a nonlinear eigenvalue proble
[6]. This frequency in turn selects the radial wave vect
and amplitude, and thus controls the global structure of t
spiral. Recent experiments on the Belousov-Zhabotins
(BZ) reaction by Ouyang and Flesselless [7] indicate th
the resulting spiral may break up into a turbulent regio
outside of a laminar core, a behavior they attribute to t
presence of a convective Eckhaus instability. We sho
below that in systems of finite aspect ratioL, however
large, an instability of the observed type occurs only in th
regime ofabsoluteEckhaus instability. This distinction is
critical because in the convectively unstable regime distu
bances undergo transient amplification as they propag
but must ultimately decay. In contrast, the absolute ins
bility regime is characterized by the presence of a globa
unstable mode. This mode is typically a wall mode co
fined to the outer boundary; the resulting instability move
in from the boundary as the control parameterm increases
beyond threshold, and forms afront separating the laminar
inner spiral from the turbulent outer regions, as in the e
periments [7]. We confirm these conclusions with simu
lations of the CGL and FitzHugh-Nagumo models.

Consider first the CGL model [3]
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in one and two dimensions, whereb, c are real coefficients
satisfying1 1 bc . 0, andm is the control parameter. If
(1) is posed on the whole real line,m can be scaled away.
On a finite domain, or one on which periodic bounda
conditions (PBC) are imposed, this is no longer so. In t
following we fix the domain sizeL, and increasem.

In two dimensions the direction of propagation of th
wave fronts (outward or inward) is determined by the fre
quencyV through the radial wave vector. This direction
ality is critical to much of the subsequent behavior. T
appreciate its role consider the one-dimensional CGL w
Axs0d ­ AsLd ­ 0 and a group velocity termygAx, yg .

0, added to the left hand side. This problem provides
simple model of the breakup process, withx ­ 0 play-
ing the role of the core andx ­ L the outer boundary.
The conditionAxs0d ­ 0 is necessary in order that the re
sulting solution represent a solution of (1) on the full do
main 2L , x , L. Within this model the trivial state
becomes convectively unstable to right-propagating wav
at m ­ 0. For 0 , m , mfsLd these waves exhibit tran-
sient growth, but eventually decay because they can
be reflected fromx ­ L [8]. As a result in a finite do-
main asustainedwave is possible only form . mfsLd ­
ma 1 O sL22d for L ¿ 1. Herema ; y2

gy4s1 1 b2d is
the threshold for the transition toabsoluteinstability, com-
puted for an unbounded domain [8]. Formf , m , mf 1

O sL25d this wave is a wall mode attached tox ­ L with
O sssygys1 1 b2dddd decay length; form ­ mf 1 O sL22d it
becomes a fully nonlinear wave, with a stationary front
x ­ x1 separating a small amplitudecoresolution from an
O s1d amplitude wave inx1 , x , L [9,10]. This front
moves inward with increasingm. In the absence of phase
slips at the front the wave number in the post-front regio
is selected by the frequency of the wave in the core r
gion. If m is not too large andL ¿ 1 this frequency is
V ø va ; by2

gy4s1 1 b2d. For largerm the frequency
V solves a nonlinear eigenvalue problem [9] and begi
to depart substantially fromva, and the selected wave
© 1998 The American Physical Society 4811
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number can change sign or be pushed into an Eckhaus
stable regime. In an unbounded domain the Eckhaus
stability is convective [11]. As a consequence the growin
disturbances are advected towards the boundary atx ­ L
and ultimately decay unless the threshold forabsoluteEck-
haus instability is exceeded, just as for the primary instab
ity [10]. The evolution of this instability nucleates defect
[12] and can lead to either defect-mediated turbulence [
or a secondary wave train with a different (and stable) wa
number. Both types of behavior have been observed [1
and are robust with respect to changing the boundary co
ditions, provided there are no incoming waves fromx , 0
[8]. In Fig. 1 we show the critical frequencyVae of the
basic wave train at the onset of absolute Eckhaus instabi
as a function ofb andc whenyg ­ 1.0. The instability
is present forV . Vae. This critical frequency is insen-
sitive to the core boundary condition. For example,mae

(the critical value ofm at which the secondary instability
sets in) was found to vary by less than0.1% when the core
boundary condition was changed toAs0d ­ 0.

In two dimensions Eq. (1) has axisymmetric solution
called target patterns. In these solutions, which can
computed with the boundary conditionsAs0d ­ AsLd ­ 0,
the r21Ar term in =2A plays the role of the drift term
added to Eq. (1) when discussing the 1D problem, a
is responsible for the presence of a preferred direction
propagation (Fig. 2). Consequently, our picture of targ
formation is essentially the same as in the 1D problem, e
cept thatma is now itself of orderL22: a target forms when
the threshold for primary absolute instability is exceede
In large domains the resulting pattern becomes nonline
almost immediately, and an exponential front forms sep
rating the core from the visible [i.e.,O s1d amplitude]
waves. As in the 1D case the frequency selects both
radial wave number and the amplitude of the waves outsi
of the core, as illustrated in Figs. 2 and 3. These resu

FIG. 1. The frequencyVae of the primary wave train at the
onset of absolute Eckhaus instability in the CGL equation
one dimension as a function of the coefficientsb, c, for L ­ 60
andyg ­ 1.0.
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represent time-asymptotic states, i.e., states of the syst
after transients [whose duration is at leastO sLd] have died
away. For the parameter values used the wave number
the basic target pattern is positive, i.e., the waves travel i
ward. If this wave number lies in the region of absolute
Eckhaus instability the evolution of the resulting instabil
ity leads to defect-mediated turbulence of the type see

FIG. 2. The breakup of a target pattern via absolute Eckha
instability obtained from the axisymmetric CGL Eq. (1) for
m ­ 3.5, b ­ 0.45, c ­ 22.0, and L ­ 60. The space-time
plots of (a) RefAsr , tdg, (b) jAsr , tdj reveal a front separating
a laminar region of (ingoing) waves from a turbulent region
near r ­ L. The meandering of the front is clearly visible.
(c) jAsr , tdj for m ­ 3.0 with no noise and (d)jAsr , tdj for
m ­ 3.0 and noise strengths ­ 1023, showing that atm ­
3.0 the Eckhaus instability is convective.
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FIG. 3. Target solutions (a) RefAsr , tdg, (b) jAsr , tdj of the
CGL equation (1) at a particular instant in time. The pa
rameters arem ­ 3.5, b ­ 0.45, c ­ 22.0, andL ­ 60.

experimentally [7] and found numerically in Eq. (1) with
no-flux boundary conditions [7]. As in the 1D case th
instability appears first atr ­ L; once this threshold is
exceeded the secondary front separating the inner (la
nar) behavior from the outer (turbulent) behavior move
inwards with increasingm. This is clearly visible in
Fig. 2(b), which shows a laminar wave train in0 ø r1 ,

r , r2 acquiring wave number and frequency modula
tion nearr ­ r2 and its subsequent breakup into turbu
lence with increasing modulation amplitude beyondr ­
r2. The “corrugations” visible in Fig. 2(a) near the fron
are a consequence of the outward phase velocity of t
modulation. Such spatially growing modulation of the ba
sic wave number on the laminar side of the front was o
served in the experiments [7]. In the present case the fr
itself is not stationary but meanders about a mean po
tion that depends on the system parameters. Except
the emphasis on the global aspects of the process of sp
breakup through its dependence on the frequency and
role played by the directionality of the waves in delimit
ing the regime of absolute Eckhaus instability the abo
picture is fundamentally that put forward in Ref. [13]. In
particular the instability is associated, at threshold, wi
a complex modulation wave numberk. The real part of
this wave number describes radial modulation of the targ
the instability first appears atr ­ L because Reskd , 0.
The amplitude of this modulation increases exponentia
with r with ane-folding distance given by2pyImskd. In
other words, the presence of the laminar region is no
manifestation of a convective instability, rather it is a con
sequence of an absolute instability with a complex mod
lation wave number. This means that the laminar region
stable with respect to infinitesimal noise, and does not
as a noise amplifier as it would in a truly convectively un
stable situation. In contrast atm ­ 3.0, before the onset
of absolute instability, the injection of noise of rms ampl
-
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tudes ­ 1023 results in noise-sustained turbulence nea
r ­ L [Fig. 2(d)] but no such structure is present when
s ­ 0 [Fig. 2(c)]. Thus atm ­ 3.0 no global mode is
present and the Eckhaus instability isconvective. It fol-
lows that the presence of convective instability doesnot
guarantee instability in a finite domain.

A useful model of the phenomena exhibited by the BZ
reaction is provided by the FitzHugh-Nagumo model [14

ut ­ 2
1
e

usu 2 1d
∑

u 2
y 1 b

a

∏
1 =2u ,

yt ­ u 2 y .
(2)

In Fig. 4 we show the results of integrating an axisymme
ric version of this model subject to the boundary condi
tions us0d ­ ys0d ­ 0, ur sLd ­ yr sLd ­ 0. The figure
shows the breakup of a target pattern ase increases for
a ­ 0.2, b ­ 20.3. Although in this case it is sub-
stantially harder to analyze the far-field instability of the
resulting target, the figure indicates that the secondary i
stability manifests itself in the same way as in the CGL
model: the secondary instability sets in first atr ­ L and
subsequently forms a (secondary) front separating a lam
nar inner region from the disordered outer region. The lo
cation of this front oscillates quite widely on a time scale
that is much longer than the period of the basic target pa
tern. Moreover, corrugations corresponding to the modu
lation of the basic wave number are visible to the left o
the front in Fig. 4(b), much as in the CGL example. In
Fig. 5 we show the time-averaged location of the onset o
spatial modulation as a function ofe, defined as the loca-
tion where the solution differs in amplitude from the basic
time-periodic state found in the laminar region by more
than 1%. The front atr2 ø 0.45L separates a region of
constant wave number (r , r2) from that with fluctuating

FIG. 4. Space-time diagrams showing target solutionsusr , td
of (2) with a ­ 0.2, b ­ 20.3, and L ­ 400.0, showing the
formation of the secondary front. (a)e ­ 0.05; (b) e ­ 0.08.
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FIG. 5. Time-averaged distance from the core atr ­ 0 of the
onset of spatial modulation in Fig. 4 as a function ofe.

wave number (r . r2), cf. Fig. 4(b). The importance of
the boundary conditions and of ther21 term is indicated
in Fig. 6, which shows the result of integrating Eqs. (2) i
1D with PBC. This problem lacks the preferred direction
ality of the 2D problem and the results differ completel
from those shown in Fig. 4; in particular, no secondar
front separating laminar and turbulent regions appears.

In finite domains unstable modes must set in as glob
eigenmodes. In large domains the threshold for the a

FIG. 6. Space-time diagrams showing solutions of Eqs. (
in 1D with PBC, for comparison with Fig. 4. The paramete
values are as in Figs. 4(a),4(b).
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pearance of such global modes approximates the thresh
for absolute instability, computed in the absence of boun
aries. Below this threshold, i.e., in the regime traditional
referred to as convectively unstable, all disturbances u
dergo transient growth but ultimately decay. This is so r
gardless of the boundary conditions provided these prev
the replenishment of the disturbances from the “upstrea
direction and is a consequence of the unidirectionality
the waves [8]. In the case of target patterns the core
r ­ 0 supplies such a no-flux boundary condition. St
tionary “shocks” separating multiple targets in unbounde
systems provide the same boundary condition. Since
difference between a spiral and a target is not fundamen
the observed spiral breakup must also be due to anabsolute
Eckhaus instability, as described above. This conclusi
has important consequences for any quantitative model
of both the experiments [7] and the simulations [4], and
particularly critical for the computation of the radius of th
laminar (i.e., ordered) region of the spiral pattern. Such
computation requires the calculation of the location of th
secondary front as a function of the system parameters
in Fig. 5.
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