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Breakup of Spiral Waves into Chemical Turbulence
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Recent experiments on spiral waves in the Belousov-Zhabotinsky reaction indicate that the waves
may break up sufficiently far from the core into chemical turbulence. Simulations of target patterns
in the FitzHugh-Nagumo and Ginzburg-Landau models indicate that such transitions occur when the
wave frequency pushes the selected wave vector into the regimiesofuteEckhaus instability. This
frequency in turn depends on the control parameter and boundary conditions through the solution of a
nonlinear eigenvalue problem. [S0031-9007(98)06192-4]

PACS numbers: 82.40.Ck, 47.27.—i, 47.54.+r

Complex spatiotemporal dynamics are found in manyin one and two dimensions, whesec are real coefficients
continuous systems of physical interest [1]. In oscilla-satisfyingl + bc > 0, andu is the control parameter. If
tory systems this behavior often takes the form of defect{1) is posed on the whole real ling, can be scaled away.
mediated turbulence [2]. In one dimension these defect®n a finite domain, or one on which periodic boundary
are calledholes[1,3]; in two dimensions they take the conditions (PBC) are imposed, this is no longer so. In the
form of spirals [1,3], andshock verticed4]. Thus far following we fix the domain sizé., and increasg..
the resulting complex dynamics have been studied primar- In two dimensions the direction of propagation of the
ily within the complex Ginzburg-Landau (CGL) equation wave fronts (outward or inward) is determined by the fre-
[1,2], although similar dynamics have been found in manyguency() through the radial wave vector. This direction-
reaction-diffusion systems [5]. In two dimensions elemen-ality is critical to much of the subsequent behavior. To
tary solutions of the CGL equation in the form of uniformly appreciate its role consider the one-dimensional CGL with
rotating spirals are well known. These solutions carry &,(0) = A(L) = 0 and a group velocity term,A,, v, >
net topological charge and rotate with a frequefcyle- 0, added to the left hand side. This problem provides a
termined by the solution of a nonlinear eigenvalue problensimple model of the breakup process, with= 0 play-

[6]. This frequency in turn selects the radial wave vectoring the role of the core and = L the outer boundary.
and amplitude, and thus controls the global structure of th&he conditionA, (0) = 0 is necessary in order that the re-
spiral. Recent experiments on the Belousov-Zhabotinskgulting solution represent a solution of (1) on the full do-
(BZ) reaction by Ouyang and Flesselless [7] indicate thatmain —L < x < L. Within this model the trivial state
the resulting spiral may break up into a turbulent regionbecomes convectively unstable to right-propagating waves
outside of a laminar core, a behavior they attribute to thetu = 0. For0 < u < us(L) these waves exhibit tran-
presence of a convective Eckhaus instability. We shovsient growth, but eventually decay because they cannot
below that in systems of finite aspect rafio however be reflected fromx = L [8]. As a result in a finite do-
large, an instability of the observed type occurs only in themain asustainedvave is possible only for > us(L) =
regime ofabsoluteEckhaus instability. This distinctionis w, + O(L7?) for L > 1. Hereu, = v;/4(1 + b?)is
critical because in the convectively unstable regime disturthe threshold for the transition tbsoluteinstability, com-
bances undergo transient amplification as they propagafauted for an unbounded domain [8]. Fof < u < us +

but must ultimately decay. In contrast, the absolute insta® (L) this wave is a wall mode attachedto= L with
bility regime is characterized by the presence of a globallyO (v, /(1 + b?)) decay length; fop = u; + O(L7?) it
unstable mode. This mode is typically a wall mode con-becomes a fully nonlinear wave, with a stationary front at
fined to the outer boundary; the resulting instability movest = x; separating a small amplitu@ere solution from an

in from the boundary as the control parameteincreases O (1) amplitude wave iny; < x < L [9,10]. This front
beyond threshold, and formgmnt separating the laminar moves inward with increasing. In the absence of phase
inner spiral from the turbulent outer regions, as in the exslips at the front the wave number in the post-front region
periments [7]. We confirm these conclusions with simu-is selected by the frequency of the wave in the core re-
lations of the CGL and FitzHugh-Nagumo models. gion. If u is not too large and. > 1 this frequency is

Consider first the CGL model [3] O = 0, = bv;/4(1 + b*). For largeru the frequency

() solves a nonlinear eigenvalue problem [9] and begins
A, = pA + (1 +ib)V’A — (1 +ic)|A]’A (1) to depart substantially fronw,, and the selected wave
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number can change sign or be pushed into an Eckhaus urepresent time-asymptotic states, i.e., states of the system
stable regime. In an unbounded domain the Eckhaus irafter transients [whose duration is at le@stL)] have died
stability is convective [11]. As a consequence the growingaway. For the parameter values used the wave number of
disturbances are advected towards the boundaty=atl.  the basic target pattern is positive, i.e., the waves travel in-
and ultimately decay unless the thresholddbsoluteEck-  ward. If this wave number lies in the region of absolute
haus instability is exceeded, just as for the primary instabilEckhaus instability the evolution of the resulting instabil-
ity [10]. The evolution of this instability nucleates defectsity leads to defect-mediated turbulence of the type seen
[12] and can lead to either defect-mediated turbulence [2]
or a secondary wave train with a different (and stable) wave
number. Both types of behavior have been observed [10],
and are robust with respect to changing the boundary con-
ditions, provided there are no incoming waves fror 0

[8]. In Fig. 1 we show the critical frequend,. of the
basic wave train at the onset of absolute Eckhaus instability
as a function ob andc whenv, = 1.0. The instability

is present fol) > (.. This critical frequency is insen-
sitive to the core boundary condition. For example,

(the critical value ofu at which the secondary instability
sets in) was found to vary by less th@% when the core
boundary condition was changedA®) = 0.

In two dimensions Eq. (1) has axisymmetric solutions
called target patterns. In these solutions, which can be
computed with the boundary conditioAf)) = A(L) = 0,
the r'A, term in V2A plays the role of the drift term
added to Eq. (1) when discussing the 1D problem, and
is responsible for the presence of a preferred direction of
propagation (Fig. 2). Consequently, our picture of target
formation is essentially the same as in the 1D problem, ex-
cept thatu,, is now itself of orde. ~2: a target forms when
the threshold for primary absolute instability is exceeded.
In large domains the resulting pattern becomes nonlinear
almost immediately, and an exponential front forms sepa-
rating the core from the visible [i.e®O (1) amplitude]
waves. As in the 1D case the frequency selects both the
radial wave number and the amplitude of the waves outside
of the core, as illustrated in Figs. 2 and 3. These results

time~

time-

r=0

FIG. 2. The breakup of a target pattern via absolute Eckhaus
instability obtained from the axisymmetric CGL Eq. (1) for
m =35 b=045 c= —2.0, andL = 60. The space-time

e — plots of (a) ReA(r,1)], (b) |A(r,?)| reveal a front separating

a laminar region of (ingoing) waves from a turbulent region

FIG. 1. The frequency),. of the primary wave train at the nearr = L. The meandering of the front is clearly visible.
onset of absolute Eckhaus instability in the CGL equation in(c) |A(r, )| for u = 3.0 with no noise and (d)A(r,t)| for
one dimension as a function of the coefficiebts, for L = 60 u = 3.0 and noise strengtlr = 10~3, showing that atu =
andv, = 1.0. 3.0 the Eckhaus instability is convective.
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(a) tude o = 1073 results in noise-sustained turbulence near
‘ E r = L [Fig. 2(d)] but no such structure is present when

o = 0 [Fig. 2(c)]. Thus atu = 3.0 no global mode is
present and the Eckhaus instabilitycdsnvective It fol-
lows that the presence of convective instability does
guarantee instability in a finite domain.

A useful model of the phenomena exhibited by the BZ
. reaction is provided by the FitzHugh-Nagumo model [14]

1 + b
u, = —:u(u— 1)|:u— v

vVy=u—v.

In Fig. 4 we show the results of integrating an axisymmet-
0.5} : ric version of this model subject to the boundary condi-
0.0k ‘ ‘ ] tions u(0) = v(0) = 0, u,(L) = v,(L) = 0. The figure

0 R0 40 60 shows the breakup of a target patterneascreases for
_ i a =02, b =—03. Although in this case it is sub-

FIG. 3. Target solutions (a) Re(r,1)], (b) |A(r, 7| of the  stantially harder to analyze the far-field instability of the

CGL equatlon_(l) at a_partlcula_r TStam in t'Te' The pa'resulting target, the figure indicates that the secondary in-

rameters arge = 3.5, b = 0.45, ¢ = —2.0, andL = 60. - . . . .

stability manifests itself in the same way as in the CGL

model: the secondary instability sets in firstrat= L and
experimentally [7] and found numerically in Eq. (1) with subsequently forms a (secondary) front separating a lami-
no-flux boundary conditions [7]. As in the 1D case thisnar inner region from the disordered outer region. The lo-
instability appears first at = L; once this threshold is cation of this front oscillates quite widely on a time scale
exceeded the secondary front separating the inner (lamihat is much longer than the period of the basic target pat-
nar) behavior from the outer (turbulent) behavior movesern. Moreover, corrugations corresponding to the modu-
inwards with increasingu. This is clearly visible in |ation of the basic wave number are visible to the left of

Fig. 2(b), which shows a laminar wave trainir~= r; <  the front in Fig. 4(b), much as in the CGL example. In

r < ry acquiring wave number and frequency modula-Fig. 5 we show the time-averaged location of the onset of

tion nearr = r, and its subsequent breakup into turbu-spatial modulation as a function ef defined as the loca-

lence with increasing modulation amplitude beyone=  tion where the solution differs in amplitude from the basic

r;. The “corrugations” visible in Fig. 2(a) near the front time-periodic state found in the laminar region by more

are a consequence of the outward phase velocity of thighan 1%. The front atr, ~ 0.45L separates a region of

modulation. Such spatially growing modulation of the ba-constant wave number (< r,) from that with fluctuating

sic wave number on the laminar side of the front was ob-

served in the experiments [7]. In the present case the front (a)

itself is not stationary but meanders about a mean posi-

tion that depends on the system parameters. Except for

the emphasis on the global aspects of the process of spiral

2.0F

} + Vu, @

1.5)

|l

1.0

breakup through its dependence on the frequency and the >

role played by the directionality of the waves in delimit- g

ing the regime of absolute Eckhaus instability the above

picture is fundamentally that put forward in Ref. [13]. In %
particular the instability is associated, at threshold, with r= P,
a complex modulation wave numbkr The real part of

this wave number describes radial modulation of the target; (b)

the instability first appears at = L because Rg&) < 0. -~
The amplitude of this modulation increases exponentially ,".7/
with r with an e-folding distance given b@a /Im(k). In 1 :;//
other words, the presence of the laminar region is not a g ;/’/
manifestation of a convective instability, rather it is a con- i ;',/
sequence of an absolute instability with a complex modu- 7
lation wave number. This means that the laminar region is o/
stable with respect to infinitesimal noise, and does not act r=0 r=L

as a noise amplifier as it would in a truly convectively un-

FIG. 4. Space-time diagrams showing target solutints r)

stable situation. In contrast at = 3.0, before the onset of (2) with @ = 0.2, b = —0.3, and L = 400.0, showing the
of absolute instability, the injection of noise of rms ampli- formation of the secondary front. (&)= 0.05; (b) e = 0.08.
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1.2 ] pearance of such global modes approximates the threshold
for absolute instability, computed in the absence of bound-
S ] aries. Below this threshold, i.e., in the regime traditionally
A | referred to as convectively unstable, all disturbances un-
1 dergo transient growth but ultimately decay. This is so re-
osl A ] gardless of the boundary conditions provided these prevent
, R ] the replenishment of the disturbances from the “upstream”
I ] direction and is a consequence of the unidirectionality of
0.6 A - the waves [8]. In the case of target patterns the core at
ia I N ] r = 0 supplies such a no-flux boundary condition. Sta-
B i A ] tionary “shocks” separating multiple targets in unbounded
0.4 A, 7 systems provide the same boundary condition. Since the
I ] difference between a spiral and a target is not fundamental,
f A ] the observed spiral breakup must also be due tbaolute
0.2 A ] Eckhaus instability, as described above. This conclusion
N has important consequences for any quantitative modeling
ook ] of both the experiments [7] and the simulations [4], and is
oL ] particularly critical for the computation of the radius of the
laminar (i.e., ordered) region of the spiral pattern. Such a
-0.2L Ll Ll Ll C computation requires the calculation of the location of the
0.04 0.06 0.08 0.10 0.12 secondary front as a function of the system parameters, as
€ in Fig. 5.
FIG. 5. Time-averaged distance from the core &t 0 of the This work was supported in part by the National
onset of spatial modulation in Fig. 4 as a functioneof Science Foundation under Grant No. DMS-9703684. We

are grateful to M. Bar and M. Proctor for discussions.
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