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What Determines Inhomogeneous Linewidths in Semiconductor Microcavities?
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Microcavity inhomogeneous linewidths are calculated numerically using a microscopic two
dimensional model of the polariton interaction with quantum well disorder. The calculations show
that in most structures the linewidths are determined by disorder scattering between polariton and
exciton states. This is because motional narrowing effectively removes the contribution due to multiple
scattering between polariton states. [S0031-9007(98)06159-6]

PACS numbers: 78.20.Bh, 71.35.Cc, 71.36.+c, 78.40.Pg

Recent experimental results [1] have shown the imporef about0.3 meV. This disparity clearly indicates that the
tance of motional narrowing in semiconductor microcavi-assumption of weak disorder underlying the scaling treat-
ties. In a microcavity, the fundamental optical excitationsment is not correct for the sample of Ref. [1].
are polaritons, arising from the coupling of a confined cav- The main aim of this Letter is to demonstrate that, as
ity photon mode to exciton states in quantum wells withinwell as the polariton multiple scattering processes leading
the cavity. The spectral features associated with the pde I';p, there is a contribution to the linewidth due to disor-
lariton are broadened, both homogeneously due to the finitder scattering between polariton and higher momentum ex-
lifetime of the cavity photon, and inhomogeneously due tcciton states. Such scattering is not included in the scaling
the interaction with disorder in the quantum wells. Mo-treatment, since it assumes the polariton dispersion is per-
tional narrowing occurs because the polaritons, being pafectly parabolic, while in fact the two branches decouple
photon, have very long wavelengths compared with thosat large wave vectors. The more realistic calculation de-
typical for excitons. The inhomogeneous broadening iscribed here uses a numerical simulation of a polariton in
therefore substantially reduced by averaging over a largtéhe presence of the disorder, which automatically includes
area of the much shorter length scale disorder potential. Roth types of scattering. For present day structures, po-
should be emphasized that the present usage of the ted@riton to exciton scattering dominates the small polariton
“motional narrowing” differs significantly from its mean- multiple scattering contribution. In this regime, the nu-
ing in spin systems, where it refers to the slowing downmerical results agree very well with a simpler model,
by scattering, of a relaxation process [2]. similar to that proposed by Houdet al. [5], in which the

The important physical parameters which determine th€xciton is treated as an energetically broadened but spa-
inhomogeneous linewidths are the dispersions of the exctially homogeneous oscillator. However, in higher quality
ton and photon, the strength of their interaction, and the st&samples, wher&, < /() /2, scattering of polaritons into
tistical properties of the disorder. A good approximation isexciton states would become energetically impossible, and
to treat each dispersion as parabolic, the finite photon mag#ly the small polariton multiple scattering contribution
of M; ~ 3 X 10 °m, being a consequence of the effectswould remain.
of cavity confinement [3]. The exciton-photon coupling The model used here is physically similar to the one
leads to the formation of two polariton branches, separatedimensional treatment of Savoret al.[6]. However,
at resonance by the vacuum Rabi splittiig) ~ 5 meV,  motional narrowing in one dimension is significantly less
which provides a measure of the strength of the interadmportant than in two, because averaging over a 1D strip
tion. Finally, the quantum well disorder potential is char-samples much less of the variation of the potential than
acterized by its amplitud&,, of order a few meV, and a an average over a 2D area of equivalent size. This dif-
correlation length, ~ 100 A. ference can be seen very clearly by calculating the contri-

The treatment of motional narrowing in Ref. [1] as- bution of polariton multiple scattering to the linewidth in
sumed the weak disorder limi¥y <« 7}, in which only 1D,I';p ~ V§/3Ec_1/3. For the same parameters that gave
scattering between low momentum polariton states on th&€,, ~ 10°* meV, I'i)p ~ 107! meV, 3 orders of magni-
same branch is allowed. It was then possible to use tude greater, and far more comparable to the experimental
simple scaling argument to predict the variation of thelinewidths. This comparison suggests that such 1D calcu-
linewidths with detuning. However, it has since beenlations are not adequate to describe the balance between
shown [4] that the scaling argument predicts the actuagbolariton multiple scattering and polariton to exciton scat-
value of the inhomogeneous linewidth, at resonance, to bering in real structures.

I'op ~ V@E;l, whereE, = h2/2M,l§. For physically rea- The numerical treatment is based on a two level model
sonable parameterE;p is extremely small~10"% meV, of the polariton, in which a discrete cavity mode couples
compared to the experimental inhomogeneous linewidtht the exciton ground state. The exciton interacts with the
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quantum well disorder potential, so in-plane momentum isThe present numerical results are forzd x 2! grid
not conserved. The model thus consists of coupled twavith spacing 100 A, giving photon quantization energies
dimensional partial differential equations describing the~0.05 meV, considerably smaller than typical calculated
in-plane motion of both the exciton and cavity photon.linewidths of~0.3 meV.
This model contains a number of approximations, most Figure 1 shows spectra calculated for a realistic set
notably the omission of excited exciton states and the lackf parametersM; = 3 X 10 3m,, M, = 0.5m,, i) =
of a proper treatment of the effects of the magnetic fields meV, V, = 3.5 meV, andl. = 100 A. For clarity, the
applied in the experiments. These approximations restrigghoton homogeneous linewidtl, has been set to zero.
the possibilities for precise comparisons with experimentThe spectra display the variations in intensity typical of
but the good general agreement which is obtained suggests anticrossing between two states, only one of which, the
that the essential physics is included. photon, has intrinsic strength. Close to resonance, where
The Hamiltonian for the model system takes the form the polariton branches are equal mixtures of photon and
2 exciton, the two peaks have similar integrated strength.
B _2_M,V2 + 6 — iy rQ /2 Further away from resonance, the more photonlike peak
H = hQ /2 _ g V) ) @ s strong, while the other, predominantly exciton, is weak.
M. The figure also shows the bare exciton spectrum, which
is asymmetrically broadened due to the finite exciton

In addition to the photon mas¥;, and the vacuum Rabi
mass [9,10].

splitting, 7€), discussed abov@/{, is the exciton massj , ) .
the detuning of the cavity photon relative to the exciton, " Fig. 2, the linewidths measured from the spectra are
and y the photon homogeneous width (due to escapglottgd asafunctlon of detuning. The asymmetry be_twe(_a'n
through the mirrors). The quantum well disordgfr), is the linewidths of the two branches at zero detuning is
a Gaussian stochastic potential, constructed in the Fourid€"y @pparent: the upper branch has a width-afmeV,
domain, following the method described by Glutschand the lower branch 0._25 meV. When a rga!lstlc photon
etal.[7]. Its amplitude,Vy, is defined as the width at half "omogeneous broadening ¢f= 1.25 meV is included
maximum of the potential probability distribution. in the calculation, the widths become 1.4 and 0.6 meV,

The inhomogeneously broadened spectra are calculatéBSPECtively, close to the experimental values-afS and
from the photon Green’s function 0.75 meV found in Ref. [1]. However, b_ece_luse of th_e

lack of a proper treatment of the magnetic field used in
Gi(t) = —ipele 7 u)o(r), (2) the experiments, this agreement can be regarded as only
suggestive.
where|u) represents a state of the system (not an eigen- The solid lines in Figs. 1 and 2 show the results of
state) consisting of a plane wave cavity photon with in-a simpler model, which provides an excellent fit to the
plane wave vectok and no exciton. All the results given numerical data. In this model, the full exciton Green’s
in this Letter are for normal incidence, corresponding tofunction Gj.(w) is approximated by its diagonal part
k = 0. The Green’s function describes how a photon
which enters the cavity is scattered out of its initial plane
wave state by interactions with the disordered exciton. The
plotted spectra are actually the photon spectral functions,
obtained by Fourier transforming the Green’s function to Detuning
give G (w) and extracting the imaginary part. They cor- (meV)
respond to what would be seen in an absorption measure- +2
ment, but for well resolved features the linewidths should
be the same in reflectivity experiments.

The Green’s function is obtained using an approach
similar to that of Glutschet al.[7]. Starting from an
initial state |/(0)) = |ux), the wave function|i (1)) is
calculated by numerically solving the time dependent 0
Schraédinger equation using the Hamiltonian Eq. (1). From
the solution at each timg G,(r) is found by evaluating
(e |0 (0)) = (uile /7 ). The calculation is carried -1. - - ‘
out on a two dimensional spatial grid, using a standard -5 25 0 25 5
alternating direction Crank-Nicholson algorithm [8]. The Energy (meV)

main difficulty is the need to use a grid which is fine . . .

._FIG. 1. Numerical absorption spectra (dots) at various values
enough to reveal the correlated structure of the potentla f the detuningé. The dashed curve shows the bare exciton
on a length scalé. ~ 100 A, yet large enough to avoid |ine shape. The solid lines are the predictions of the coupled
significant size quantization for the low mass photon statesscillator model (see text).
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However, wherjc;|> becomes small, Eq. (4) predidis—

0, while the true value tends to the exciton linewidth.
Equation (4) can be understood more physically by noting
that the second term describes homogeneous broadening
of the polariton due to the loss of photons in the cavity
by absorption into exciton states—it is proportional to
the photon fraction and the exciton absorption strength
—Im{G{(w,)}. Thisis to be be expected for states in the
tail of the exciton line, which are too weak to require a
strong coupling treatment, and thus act simply as a source
of absorption in the cavity.

In the coupled oscillator model, the difference between
2 0 2 4 6 the widths of the two polariton branches is a consequence
Detuning (meV) of the asymmetry of the exciton lineshape, which is, in
FIG. 2. Numerical linewidths as a function of detuning, tgrn, a reSU|t. of the finitf—:‘ exciton mass. On the low energy
for upper (open symbols) and lower (filled symbols) polaritons.Side of the line, there is an exponential cutoff, reflecting

The solid lines are the predictions of the coupled oscillatorthe distribution of minima in the disorder potential, while
model, the dashed lines those of the absorption model. on the high energy side the strength falls off more
slowly, as~w ~2, determined by the perturbation of high
S Gr(w). With k thus conserved, the polariton problem momentum plane wave states by the potential [11]. This
simplifies to a pair of coupled oscillators, which is easily explanation for the asymmetry is thus similar in essence
solved to obtain the polariton Green’s function to the suggestion by Savoeaal. [6] that the larger upper
branch width is caused by scattering of polaritons into
! _ 3) higher momentum exciton states.
hw + iy — & — (hQ/2)2Gi(w)’ The coupled oscillator model can be shown to be a
generalization of the phenomenological treatment of a
spatially homogeneous but Gaussian broadened exciton,
introduced by Houdrét al. [5]. The only significant tech-
Rical difference is that the Gaussian exciton line shape is
eplaced by an asymmetic function because of the finite ex-
iton mass. More importantly, the present work provides a
) . ) -~ justification for this treatment starting from a microscopic
Equation (3) excludes polariton multiple Scatte”ng'model of disorder, and emphasizes that it succeeds be-

since the polariton always has a definite wave veétor . . : L :
P . S . cause motional narrowing effectively eliminates the polari-
However, polariton to exciton scattering processes arg

. . , o on multiple scattering contribution to the linewidth.
included, because the exciton Green's functiofi(w) The most intriguing feature of the Gaussian oscillator

takes care of the scattering between exciton states. It hasn?odel discussed by Savona and Weisbuch [12], is the

ﬁmt.et’ Imagln?try seh;—e??rr]gy (t:iettermtlqu]mg the ra(;f a_}_r\:Vh'Chprediction that the disorder contribution to the linewidth
e>(§c(:)| dO{i]ts t(?ctﬁeer:uomue?ical ?:Iast:\:evr:/;lclh i\év?)\gtea\i/r?e doirn di::eate should disappear in high quality structures when polariton
9 Yo exciton scattering becomes impossible. In terms of the

that the contribution of polariton multiple scattering is absorption picture, this happens when the polariton states

negligible for these parameters, as is suggested by thaere so far into the tails of the exciton line that no absorption

es'tal\rrr]lzte ?&ﬁqg;\éegxafgsv;bn for the polariton linewidthsCCUrs: The present calculations support this prediction, as
bp P P shown in Fig. 3, where numerical and coupled oscillator

g?ga?jiri?#ndt% ex(z)alr;rlir:(l)r;g I[iEn?e. Sr?é Feogsmcrf(')f('ﬁg,?’ezrqgumodel linewidths are plotted as a function of disorder
Lorentziangywith fSII widthI’ dependgnt or?r;he imaginary gtrength,Vo. As in Ref. [12], the lower branch width
’ : ! rapidly becomes very small whéfy < /() /2. The effect
part Of the denominator at the polariton energy,, is much less pronounced for the upper branch, because of
according to the longer tail on the high energy side of the finite mass
= 2ry, — 2 e exciton line shape.

I'=2lally = (/27 IM{Gidw, )], “) The numerical data in Figs. 1-3 are very well explained
where|c;|? is the photon fraction of the polariton. This by the coupled oscillator model, which includes only
approximation is shown as the dashed lines in Fig. 2. Fopolariton to exciton scattering. It is not possible in the
large photon fractions, when the polaritons are resonardalculations to resolve directly the small polariton multi-
with the tails of the exciton line (see Fig. 1), the approxi-ple scattering terml’,p, even forV, < i€} /2, when it
mate expression agrees fairly well with the exact curveshould be the only contribution to the linewidth. However,
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Gil(w) =

where 8; = 8 + h?k*/(2M;) is the detuning for wave
vectork. The bare exciton Green’s functio (w) are

calculated using the same type of numerical simulation a
for the full polariton. However approximate expressions
for the finite mass exciton spectral function, by Glutsch an
Bechstedt [10], could be used for large exciton masses.
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Figure 4(b) shows similar data for a one dimensional sys-
oL tem. Again, the difference between the upper and lower
branch widths grows, for smal,, in proportion tol';p.
However, even for the redll; = 3 X 10 °m,, there is a
measurable difference in linewidths, some 0.05 meV. This
result emphasizes the significant differences between the
scattering processes which occur in 1D and 2D systems.
To summarize, the main conclusion of this Letter is
that, in present day structures, a treatment of a spatially
homogeneous exciton with a broadened line shape is ade-
quate to understand experimental microcavity linewidths.
0 L L Such a treatment corresponds to a model which includes
ODisordtzer Strer?gth (m%V) only polariton to exciton.scattering processes, omitting the
effect of polariton multiple scattering on the linewidth.
FIG. 3. Numerical linewidths as a function of disorder The justification for this model is that motional narrow-
strength, Vo, for upper (open symbols) and lower (filled jng due to the small polariton effective mass, renders
symbols) polaritons. The solid lines are the predictions of thethe polariton multiple scattering contribution negligible.
coupled oscillator model. . . . .
Thus, though it does not directly determine the experi-
mental widths, as was suggested in Ref. [1], motional nar-
indirect evidence for the existence of polariton mu|tip|erowing plays an essential role in explaining the reduced
scattering can be obtained by using nonphysical parameteligewidths observed close to resonance.
which make it more important. As an example, Fig. 4(a) | thank C. L. Foden, M. S. Skolnick, and J. J. Baumberg
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FIG. 4. Numerical linewidths as a function of photon mass, .

M,, for upper (open symbols) and lower (filed symbols)[12] V. Savona and C. Weisbuch, Phys. Rev.5B, 10835

polaritons in (a) two dimensions and (b) one dimension, with (1996). ) )

M, — =. Also shown (dashed lines and right hand scale) ard13] The plotted widths are actually,p/2 and I'ip /4, which

the polariton multiple scattering expressiofisy, andI'p [13], fit better to calculations of the bare exciton linewidths in

discussed in the text. the strong motional narrowing limit.
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