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What Determines Inhomogeneous Linewidths in Semiconductor Microcavities?
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(Received 8 August 1997; revised manuscript received 1 December 1997)

Microcavity inhomogeneous linewidths are calculated numerically using a microscopic two
dimensional model of the polariton interaction with quantum well disorder. The calculations show
that in most structures the linewidths are determined by disorder scattering between polariton and
exciton states. This is because motional narrowing effectively removes the contribution due to multiple
scattering between polariton states. [S0031-9007(98)06159-6]

PACS numbers: 78.20.Bh, 71.35.Cc, 71.36.+c, 78.40.Pg
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Recent experimental results [1] have shown the impo
tance of motional narrowing in semiconductor microcav
ties. In a microcavity, the fundamental optical excitation
are polaritons, arising from the coupling of a confined ca
ity photon mode to exciton states in quantum wells withi
the cavity. The spectral features associated with the p
lariton are broadened, both homogeneously due to the fin
lifetime of the cavity photon, and inhomogeneously due
the interaction with disorder in the quantum wells. Mo
tional narrowing occurs because the polaritons, being p
photon, have very long wavelengths compared with tho
typical for excitons. The inhomogeneous broadening
therefore substantially reduced by averaging over a lar
area of the much shorter length scale disorder potential.
should be emphasized that the present usage of the te
“motional narrowing” differs significantly from its mean-
ing in spin systems, where it refers to the slowing dow
by scattering, of a relaxation process [2].

The important physical parameters which determine t
inhomogeneous linewidths are the dispersions of the ex
ton and photon, the strength of their interaction, and the s
tistical properties of the disorder. A good approximation
to treat each dispersion as parabolic, the finite photon m
of Ml , 3 3 1025me being a consequence of the effect
of cavity confinement [3]. The exciton-photon coupling
leads to the formation of two polariton branches, separat
at resonance by the vacuum Rabi splitting,h̄V , 5 meV,
which provides a measure of the strength of the intera
tion. Finally, the quantum well disorder potential is char
acterized by its amplitudeV0, of order a few meV, and a
correlation lengthlc , 100 Å.

The treatment of motional narrowing in Ref. [1] as
sumed the weak disorder limit,V0 ø h̄V, in which only
scattering between low momentum polariton states on t
same branch is allowed. It was then possible to use
simple scaling argument to predict the variation of th
linewidths with detuning. However, it has since bee
shown [4] that the scaling argument predicts the actu
value of the inhomogeneous linewidth, at resonance, to
G2D , V 2

0 E21
c , whereEc ­ h̄2y2Mll2

c . For physically rea-
sonable parameters,G2D is extremely small,,1024 meV,
compared to the experimental inhomogeneous linewidt
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of about0.3 meV. This disparity clearly indicates that th
assumption of weak disorder underlying the scaling tre
ment is not correct for the sample of Ref. [1].

The main aim of this Letter is to demonstrate that,
well as the polariton multiple scattering processes lead
to G2D, there is a contribution to the linewidth due to diso
der scattering between polariton and higher momentum
citon states. Such scattering is not included in the scal
treatment, since it assumes the polariton dispersion is p
fectly parabolic, while in fact the two branches decoup
at large wave vectors. The more realistic calculation d
scribed here uses a numerical simulation of a polariton
the presence of the disorder, which automatically includ
both types of scattering. For present day structures,
lariton to exciton scattering dominates the small polarit
multiple scattering contribution. In this regime, the nu
merical results agree very well with a simpler mode
similar to that proposed by Houdréet al. [5], in which the
exciton is treated as an energetically broadened but s
tially homogeneous oscillator. However, in higher quali
samples, whereV0 , h̄Vy2, scattering of polaritons into
exciton states would become energetically impossible, a
only the small polariton multiple scattering contributio
would remain.

The model used here is physically similar to the on
dimensional treatment of Savonaet al. [6]. However,
motional narrowing in one dimension is significantly les
important than in two, because averaging over a 1D st
samples much less of the variation of the potential th
an average over a 2D area of equivalent size. This d
ference can be seen very clearly by calculating the con
bution of polariton multiple scattering to the linewidth in
1D,G1D , V

4y3
0 E

21y3
c . For the same parameters that gav

G2D , 1024 meV, G1D , 1021 meV, 3 orders of magni-
tude greater, and far more comparable to the experime
linewidths. This comparison suggests that such 1D cal
lations are not adequate to describe the balance betw
polariton multiple scattering and polariton to exciton sca
tering in real structures.

The numerical treatment is based on a two level mod
of the polariton, in which a discrete cavity mode couple
to the exciton ground state. The exciton interacts with t
© 1998 The American Physical Society 4791
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quantum well disorder potential, so in-plane momentum
not conserved. The model thus consists of coupled t
dimensional partial differential equations describing th
in-plane motion of both the exciton and cavity photo
This model contains a number of approximations, mo
notably the omission of excited exciton states and the la
of a proper treatment of the effects of the magnetic fie
applied in the experiments. These approximations rest
the possibilities for precise comparisons with experime
but the good general agreement which is obtained sugg
that the essential physics is included.

The Hamiltonian for the model system takes the form

H ­

0@ 2
h̄2

2Ml
=2 1 d 2 ig h̄Vy2

h̄Vy2 2
h̄2

2Me
=2 1 V srd

1A . (1)

In addition to the photon massMl, and the vacuum Rabi
splitting, h̄V, discussed above,Me is the exciton mass,d
the detuning of the cavity photon relative to the excito
and g the photon homogeneous width (due to esca
through the mirrors). The quantum well disorder,V srd, is
a Gaussian stochastic potential, constructed in the Fou
domain, following the method described by Glutsc
et al. [7]. Its amplitude,V0, is defined as the width at half
maximum of the potential probability distribution.

The inhomogeneously broadened spectra are calcula
from the photon Green’s function

Gkstd ­ 2ikmk je2iHty h̄jmklustd , (2)

wherejmkl represents a state of the system (not an eig
state) consisting of a plane wave cavity photon with i
plane wave vectork and no exciton. All the results given
in this Letter are for normal incidence, corresponding
k ­ 0. The Green’s function describes how a photo
which enters the cavity is scattered out of its initial plan
wave state by interactions with the disordered exciton. T
plotted spectra are actually the photon spectral functio
obtained by Fourier transforming the Green’s function
give G̃ksvd and extracting the imaginary part. They co
respond to what would be seen in an absorption measu
ment, but for well resolved features the linewidths shou
be the same in reflectivity experiments.

The Green’s function is obtained using an approa
similar to that of Glutschet al. [7]. Starting from an
initial state jcs0dl ­ jmkl, the wave functionjcstdl is
calculated by numerically solving the time depende
Schrödinger equation using the Hamiltonian Eq. (1). Fro
the solution at each timet, Gkstd is found by evaluating
kmk j cstdl ­ kmkje2iHty h̄jmkl. The calculation is carried
out on a two dimensional spatial grid, using a standa
alternating direction Crank-Nicholson algorithm [8]. Th
main difficulty is the need to use a grid which is fin
enough to reveal the correlated structure of the potent
on a length scalelc , 100 Å, yet large enough to avoid
significant size quantization for the low mass photon stat
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The present numerical results are for a211 3 211 grid
with spacing 100 Å, giving photon quantization energie
,0.05 meV, considerably smaller than typical calculate
linewidths of,0.3 meV.

Figure 1 shows spectra calculated for a realistic s
of parameters:Ml ­ 3 3 1025me, Me ­ 0.5me, h̄V ­
5 meV, V0 ­ 3.5 meV, andlc ­ 100 Å. For clarity, the
photon homogeneous linewidth,g, has been set to zero
The spectra display the variations in intensity typical
an anticrossing between two states, only one of which,
photon, has intrinsic strength. Close to resonance, wh
the polariton branches are equal mixtures of photon a
exciton, the two peaks have similar integrated streng
Further away from resonance, the more photonlike pe
is strong, while the other, predominantly exciton, is wea
The figure also shows the bare exciton spectrum, wh
is asymmetrically broadened due to the finite excito
mass [9,10].

In Fig. 2, the linewidths measured from the spectra a
plotted as a function of detuning. The asymmetry betwe
the linewidths of the two branches at zero detuning
very apparent: the upper branch has a width of,1 meV,
and the lower branch 0.25 meV. When a realistic phot
homogeneous broadening ofg ­ 1.25 meV is included
in the calculation, the widths become 1.4 and 0.6 me
respectively, close to the experimental values of,1.5 and
0.75 meV found in Ref. [1]. However, because of th
lack of a proper treatment of the magnetic field used
the experiments, this agreement can be regarded as
suggestive.

The solid lines in Figs. 1 and 2 show the results
a simpler model, which provides an excellent fit to th
numerical data. In this model, the full exciton Green
function G̃e

kk0svd is approximated by its diagonal par
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FIG. 1. Numerical absorption spectra (dots) at various valu
of the detuningd. The dashed curve shows the bare excito
line shape. The solid lines are the predictions of the coup
oscillator model (see text).
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FIG. 2. Numerical linewidths as a function of detuning,d,
for upper (open symbols) and lower (filled symbols) polariton
The solid lines are the predictions of the coupled oscillat
model, the dashed lines those of the absorption model.

dkk0 G̃e
k svd. With k thus conserved, the polariton problem

simplifies to a pair of coupled oscillators, which is easil
solved to obtain the polariton Green’s function

G̃ksvd ­
1

h̄v 1 ig 2 dk 2 sh̄Vy2d2 G̃e
k svd

, (3)

where dk ­ d 1 h̄2k2ys2Mld is the detuning for wave
vectork. The bare exciton Green’s functions̃Ge

k svd are
calculated using the same type of numerical simulation
for the full polariton. However approximate expression
for the finite mass exciton spectral function, by Glutsch an
Bechstedt [10], could be used for large exciton masses.

Equation (3) excludes polariton multiple scattering
since the polariton always has a definite wave vectork.
However, polariton to exciton scattering processes a
included, because the exciton Green’s functionG̃e

k svd
takes care of the scattering between exciton states. It ha
finite imaginary self-energy determining the rate at whic
excitons scatter out of the state with wave vectork. The
good fit to the numerical data which is obtained indicate
that the contribution of polariton multiple scattering is
negligible for these parameters, as is suggested by
estimate ofG2D given above.

An approximate expression for the polariton linewidth
can be found by examining Eq. (3). For sufficiently sma
broadening, the polariton line shape approximates to
Lorentzian, with full widthG dependent on the imaginary
part of the denominator at the polariton energy,vp,
according to

G ­ 2jclj
2fg 2 sh̄Vy2d2 ImhG̃e

k svpdjg , (4)

where jclj
2 is the photon fraction of the polariton. This

approximation is shown as the dashed lines in Fig. 2. F
large photon fractions, when the polaritons are resona
with the tails of the exciton line (see Fig. 1), the approx
mate expression agrees fairly well with the exact curv
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However, whenjclj
2 becomes small, Eq. (4) predictsG !

0, while the true value tends to the exciton linewidt
Equation (4) can be understood more physically by not
that the second term describes homogeneous broade
of the polariton due to the loss of photons in the cav
by absorption into exciton states—it is proportional
the photon fraction and the exciton absorption stren
2ImhG̃e

k svpdj. This is to be be expected for states in t
tail of the exciton line, which are too weak to require
strong coupling treatment, and thus act simply as a so
of absorption in the cavity.

In the coupled oscillator model, the difference betwe
the widths of the two polariton branches is a conseque
of the asymmetry of the exciton lineshape, which is,
turn, a result of the finite exciton mass. On the low ene
side of the line, there is an exponential cutoff, reflecti
the distribution of minima in the disorder potential, whi
on the high energy side the strength falls off mo
slowly, as,v22, determined by the perturbation of hig
momentum plane wave states by the potential [11]. T
explanation for the asymmetry is thus similar in esse
to the suggestion by Savonaet al. [6] that the larger upper
branch width is caused by scattering of polaritons in
higher momentum exciton states.

The coupled oscillator model can be shown to be
generalization of the phenomenological treatment o
spatially homogeneous but Gaussian broadened exc
introduced by Houdréet al. [5]. The only significant tech-
nical difference is that the Gaussian exciton line shap
replaced by an asymmetic function because of the finite
citon mass. More importantly, the present work provide
justification for this treatment starting from a microscop
model of disorder, and emphasizes that it succeeds
cause motional narrowing effectively eliminates the pola
ton multiple scattering contribution to the linewidth.

The most intriguing feature of the Gaussian oscilla
model, discussed by Savona and Weisbuch [12], is
prediction that the disorder contribution to the linewid
should disappear in high quality structures when polari
to exciton scattering becomes impossible. In terms of
absorption picture, this happens when the polariton st
are so far into the tails of the exciton line that no absorpt
occurs. The present calculations support this prediction
shown in Fig. 3, where numerical and coupled oscilla
model linewidths are plotted as a function of disord
strength,V0. As in Ref. [12], the lower branch width
rapidly becomes very small whenV0 , h̄Vy2. The effect
is much less pronounced for the upper branch, becaus
the longer tail on the high energy side of the finite ma
exciton line shape.

The numerical data in Figs. 1–3 are very well explain
by the coupled oscillator model, which includes on
polariton to exciton scattering. It is not possible in t
calculations to resolve directly the small polariton mul
ple scattering term,G2D, even forV0 ø h̄Vy2, when it
should be the only contribution to the linewidth. Howeve
4793
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FIG. 3. Numerical linewidths as a function of disorde
strength, V0, for upper (open symbols) and lower (filled
symbols) polaritons. The solid lines are the predictions of th
coupled oscillator model.

indirect evidence for the existence of polariton multipl
scattering can be obtained by using nonphysical paramet
which make it more important. As an example, Fig. 4(a
shows the dependence on the photon mass,Ml , of the nu-
merically simulated linewidths at resonance. The oscill
tor model predicts that the linewidths of the two branche
should be equal, as the calculation is for infinite excito
mass, and independent ofMl . For the realMl ­ 3 3

1025me, the linewidths are indeed equal. However, whe
Ml is significantly increased a difference appears, which
clearly due to polariton multiple scattering, as it grows i
proportion toG2D, plotted as the dashed curve in the figure

(a) 2D

(b) 1D
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FIG. 4. Numerical linewidths as a function of photon mas
Ml , for upper (open symbols) and lower (filled symbols
polaritons in (a) two dimensions and (b) one dimension, wi
Me ! `. Also shown (dashed lines and right hand scale) a
the polariton multiple scattering expressions,G2D andG1D [13],
discussed in the text.
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Figure 4(b) shows similar data for a one dimensional sy
tem. Again, the difference between the upper and low
branch widths grows, for smallMl , in proportion toG1D.
However, even for the realMl ­ 3 3 1025me, there is a
measurable difference in linewidths, some 0.05 meV. Th
result emphasizes the significant differences between
scattering processes which occur in 1D and 2D system

To summarize, the main conclusion of this Letter
that, in present day structures, a treatment of a spatia
homogeneous exciton with a broadened line shape is a
quate to understand experimental microcavity linewidth
Such a treatment corresponds to a model which includ
only polariton to exciton scattering processes, omitting t
effect of polariton multiple scattering on the linewidth
The justification for this model is that motional narrow
ing, due to the small polariton effective mass, rende
the polariton multiple scattering contribution negligible
Thus, though it does not directly determine the expe
mental widths, as was suggested in Ref. [1], motional n
rowing plays an essential role in explaining the reduc
linewidths observed close to resonance.
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[1] D. M. Whittaker, P. Kinsler, T. A. Fisher, M. S. Skolnick,
A. Armitage, A. M. Afshar, M. D. Sturge, and J. S.
Roberts, Phys. Rev. Lett.77, 4792 (1996).

[2] See, e.g., A. Abragam, inThe Principles of Nuclear
Magnetism(Clarendon, Oxford, 1961), p. 446.

[3] R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterl
P. Pellandini, and M. Ilegems, Phys. Rev. Lett.73, 2043
(1994).

[4] V. M. Agranovich, G. C. La Rocca, and F. Bassani (privat
communication).

[5] R. Houdré, R. P. Stanley, and M. Ilegems, Phys. Rev.
53, 2711 (1996).

[6] V. Savona, C. Piermarocchi, A. Quattropani, F. Tasson
and P. Schwendimann, Phys. Rev. Lett.78, 4470 (1997).

[7] S. Glutsch, D. S. Chemla, and F. Bechstedt, Phys. Rev
54, 11 592 (1996).

[8] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P
Flannery, in Numerical Recipes in Fortran(Cambridge
University Press, Cambridge, England, 1992), 2nd e
pp. 838–848.

[9] R. F. Schnabel, R. Zimmermann, D. Bimberg, H. Nicke
R. Lösch, and W. Schlapp, Phys. Rev. B46, 9873 (1992).

[10] S. Glutsch and F. Bechstedt, Phys. Rev. B50, 7733
(1994).

[11] Al. L. Efros, C. Wetzel, and J. M. Worlock, Nuovo
Cimento Soc. Ital. Fis.17D, 1447 (1995).

[12] V. Savona and C. Weisbuch, Phys. Rev. B54, 10 835
(1996).

[13] The plotted widths are actuallyG2Dy2 and G1Dy4, which
fit better to calculations of the bare exciton linewidths i
the strong motional narrowing limit.


