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Self-Consistent Electronic Structure of adx22y2 and adx22y2 1 idxy Vortex
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We investigate quasiparticle states associated with an isolated vortex in ad-wave superconductor
using a self-consistent Bogoliubov–de Gennes formalism. For a puredx22y2 superconductor we find
that there exist no bound states in the core; all the states are extended with continuous energy spe
This result is inconsistent with the existing experimental data on cuprates. We propose an explan
for this data in terms of a magnetic-field-induceddx22y2 1 idxy state recently invoked in connection
with the thermal conductivity measurements on Bi2Sr2CaCu2O8. [S0031-9007(98)06230-9]

PACS numbers: 74.60.Ec, 74.72.–h
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Behavior of superconductors in a magnetic field h
been traditionally at the center of the condensed ma
research because of the rich variety of fascinating ph
nomena in such systems and also because of its c
siderable technological importance. With the advent
high-Tc cuprates the subject became even more intere
ing owing to the realization that their order parameter
unconventional, exhibiting most likely adx22y2 symmetry.
A number of novel effects associated with the existen
of low-lying quasiparticle excitations near the gap nod
have been predicted [1–3]. While there exists experime
tal evidence for each of these effects [4–6], it is by n
means conclusive, and an active debate continues. Sev
fundamental issues remain unresolved. Among the m
interesting is the electronic structure of magnetic vortice
where a coherent physical picture is still lacking desp
the number of theoretical and experimental investigatio
Notably the nature of quasiparticle core states ind-wave
superconductors remains poorly understood. These st
are of considerable importance as they impact on va
ous static and dynamic properties of the mixed state su
as the structure of the flux lattice, pinning, and flux-flo
resistance.

It was established more than three decades ago by C
oli, de Gennes, and Matricon [7] that discrete quasip
ticle states exist localized in vortex cores of convention
s-wave superconductors. These states are labeled by
angular momentum quantum numberm, and the low-lying
eigenvalues areEm . msD2

0yEFd with m ­ 1y2, 3y2, . . . ,
D0 the bulk gap, andEF the Fermi energy. This pre-
diction has been later confirmed in detail by numeric
computations [8] and by experiments on NbSe2 [9]. In
a dx22y2 superconductor the situation becomes consid
ably more complex owing to the nontrivial structure o
the gap function which vanishes along the four nodes
the Fermi surface. While thes-wave bound states can b
intuitively understood by drawing an analogy to a simp
quantum-mechanical problem of a particle in the cylind
cal well of the radiusj . yFypD0 and heightD0, a suit-
able analogy in ad-wave case would involve a potentia
well whose radius and height depend on the polar an
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u, with Dsud vanishing along the four diagonal direction
causingjsud to diverge. Under such circumstances o
would expect low-lying states to beextendedalong the
node directions, rather than localized, unless the mix
of the core levels into the continuum is prevented by so
higher symmetry. The existing experimental work, ho
ever, appears consistent withlocalized core states with
large energy spacing [6,10–12].

The problem of a vortex in adx22y2 superconductor
has been considered theoretically by a number of auth
[13–17], but the detailed nature of quasiparticle co
states has not been addressed. Very recently Mo
Kohmoto, and Maki [18] studied this problem usin
an approximate version of the Bogoliubov–de Genn
(BdG) theory. As pointed out in a subsequent Comm
[19], this approximation improperly neglects an essen
element of the physics ofdx22y2 superconductors and
yields unphysical results.

In this Letter we present, for the first time, a fully sel
consistent numerical solution of the continuum BdG theo
for a single isolated vortex in ad-wave superconductor
In agreement with the above qualitative argument we fi
that for a puredx22y2 gap there exist notruly localized
core states [20]. We find low-lying states that are stron
peaked in the core but have tails along the gap no
directions which do not appear to decay to zero far fro
the core. The energy spectrum of these states beco
continuous in the limit of infinite system size. This
consistent with their extended nature, but inconsistent w
the experimental finding [6,10] of a large gap,E0 ø D0y5,
to the lowest core state in YBa2Cu3O72d. We propose
that one can reconcile the theory with experiment
assuming a parity and time reversal symmetry violati
dx22y2 1 idxy state which has recently been invoked
explain the thermal conductivity data on Bi2Sr2CaCu2O8

in finite magnetic fields [21,22]. Such a state is ful
gapped, and for a sufficiently largedxy component it can
support true bound states in the core of the nature sim
to thes-wave case.

The BdG equations for ad-wave vortex have been
previously solved numerically on the lattice [13,14].
© 1998 The American Physical Society 4763
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this work we adopt a continuum formulation of the
problem, which has been used to study conventionals-
wave vortices [8]. Such formulation allows us to directl
exploit various symmetries of the system, and as a res
we are able to consider much larger systems with
reasonable spectral resolution. The BdG equations fo
d-wave superconductor can be written as [23]

ĤeusRd 1
Z

dr DsR 2 ry2, rdysR 2 rd ­ EusRd ,

2Ĥ p
e ysRd 1

Z
dr DpsR 2 ry2, rdusR 2 rd ­ EysRd .

(1)

Here Ĥe is the single electron Hamiltonian, which we
assume to have a simple free particle form

Ĥe ­
1

2m

µ
p 2

e
c

A
∂2

2 EF , (2)

andDsR, rd ­ V srd kc"sR 2 ry2dc#sR 1 ry2dl is the or-
der parameter which is a function of the center-of-ma
and the relative coordinateR and r. In terms of the
quasiparticle amplitudesfun, yng the order parameter is
self-consistently determined from the gap equation

DsR, rd ­ V srd
X
n

0

funsR 2 ry2dyp
nsR 1 ry2d

1 unsR 1 ry2dyp
nsR 2 ry2dg

3 tanhsEny2T d , (3)

wheren labels the eigenstates of (1) and the prime mea
the usual restriction to energies smaller than a cutoff sca
Vc. V srd is the pairing interaction which we assume t
have the following model form:

V srd ­ V0dsrd 1 V1gswd
1
a

dsr 2 ad , (4)

with r ­ sr , wd. The potential (4) consists of a contact re
pulsion termV0 . 0, meant to model the on-site Coulomb
repulsion between holes, and a short range attractive p
V1 , 0, necessary to establish superconducting pairin
In order to model the lattice structure of cuprates we a
low this attraction to be angle dependent with

gswd ­ s1 2 ed cos2s2wd 1 e sin2s2wd , (5)

wheree is a parameter used to tune the relative strength
this model’s analog of nearest and second nearest nei
bor attraction. The nature of superconducting instabili
in this model depends on the dimensionless parame
h ­ akF . In the absence of magnetic field the groun
state has ad-wave symmetry forh . 1.9 and is ex-
tendeds-wave for h , 1.9. This is consistent with the
phase diagram of the related lattice model, whered-wave
is known to be stable only close to half filling [24].
Furthermore, in thed-wave regime, the ground state is
a pure dx22y2 for e ­ 0, a puredxy for e ­ 1, and a
dx22y2 1 idxy admixture for0 , e , 1. More generally
one can also allow for anisotropy in the single particl
HamiltonianĤe to account for the band structure effect
in cuprates. We find that such anisotropies do not mod
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the phase diagram significantly and have only seconda
effect on the vortex core structure. In the following we
therefore limit ourselves to the simple form (2), and w
furthermore neglect the vector potentialA, as appropriate
for the extreme type-II cuprates [7]. The magnitude o
the contact repulsionV0 has little effect on the physics in
thed-wave regime [24]. For simplicity we therefore take
V0 ­ 0.

The form of the pairing interaction (4) implies that the
order parameter depends on the relative coordinater only
through its polar anglew. It is convenient to expand it in
terms of the 2D angular momentum eigenstates,

DsR, rd ­ DsR, u; wd ­
X
p,l

e2ipueilwDplsRd , (6)

where R ­ sR, ud. In such a representation the intege
p characterizes winding of the superconducting pha
around the vortex andl specifies the orbital state of
the Cooper pair. Thus, for instance, the dominant ord
parameter near a singly quantizeddx22y2 vortex consists
of an equal superposition ofp ­ 1, l ­ 62 components:
DsR, u; wd ­ 2e2iu coss2wdD1,62sRd.

We solve the BdG equations (1) numerically on
disk of the radiusR0 with a suitably chosen initial order
parameter, and we then iterate Eqs. (1) and (3) until se
consistency is achieved. Following Gygi and Schlute
[8] we expand the quasiparticle amplitudes in the bas
spanned by the eigenfunctions of̂He:

fusRd, ysRdg ­
X
m,m

eimuFmmsRd fumm, ymmg . (7)

Here FmmsRd ­ f
p

2 yR0Jm11sammdgJmsammRyR0d,
Jmszd is the Bessel function of orderm, andamm is the
mth zero of Jmszd. The integrodifferential equation (1)
thus becomes an eigenvalue problem with an infini
matrix which we truncate at large values ofjmj and m,
and diagonalize using a standardLAPACK subroutine.
In the s-wave case this matrix is block diagonal in the
angular momentumm and the resulting radial problem
can be solved for eachm separately. The crucial new
element in thed-wave case is that, due to the complicate
structure of the pairing term (6), the angular momentu
channels remain coupled and one has to solve thefull 2D
problem. This essential feature was ignored in [18].

To model a puredx22y2 case we chooseh ­ 2,
e ­ 0, VcyEF ­ 0.3, V1yEF ­ 1.6, and T ­ 0. We
assume the initial order parameter of the formD1,62sRd ­
D0 tanhsRyj0d, where j0 ­ yFypDd is the coherence
length [25]. The above parameters implyDd ­ 0.26EF

and j0 ­ 2.5k21
F . In the process of iterating Eqs. (1)

and (3) various other componentsDplsRd appear in the
self-consistent solution reflecting the spatial anisotropy
the dominantdx22y2 component and nucleation of various
subdominant order parameters near the core. Figure
shows the leading components of the self-consistent ord
parameter. Thedx22y2 order parameter relaxes to its bulk
value over a distance,20k21

F , which is much larger than
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FIG. 1. Dominant order parameter components for syste
size R0kF ­ 120. In terms of conventional notation we have
jdx22y2 j ~ sD1,22 1 D1,2d; jdxy j ~ sD1,22 2 D1,2d; and jsj ~
jeiwD21,0 1 e23iwD3,0j.

j0. In fact, by varying the coupling strengthV1 in a
wide range, we find that for coherence lengthsj0kF & 10
the order parameter profile (rescaled to its bulk valu
no longer depends onj0 and retains the universal shape
showed in Fig. 1. We also find that this profile is no
very well fitted by the usual tanhsRyj0d function for any
j0 but is more consistent with algebraic,1yr2 relaxation.
Figure 1 also shows sizable components withs-wave
symmetry of the form predicted by the Ginzburg-Landa
theory [3]. We have explicitly verified that, in agreemen
with [3], they will form four satellite vortices at a distance
,26k21

F from the origin.
We now investigate the nature of quasiparticle co

states by computing the generalized inverse participati
ratios, defined as [26]

an ­ sR0kFd2 kjunj4ls 1 kjynj4ls

skjunj2ls 1 kjynj2lsd2
, (8)

where k· · ·ls ­
R

· · · dR. As a function of increasing
system sizeR0 this quantity approaches a finite constan
for an extended state and grows asR2

0 for a state localized
within the characteristic lengthjL ø R0. Figure 2 shows
an as a function of energy for system sizesR0kF ­
80, 120. Over the entire energy range the data for tw
different sizes behave in a similar way. If there existe
localized states in the core their correspondingan would
have increased by more than a factor of2 between sizes
R0kF ­ 80 and120. No such increase is observed. W
carried out similar analysis for ans-wave case (same
parameters withh ­ 1), where it is known that only
localized states exist at low energies. Indeed, in this ca
a clearan , R2

0 scaling was observed [27] forEn , D0.
Figure 2 further shows that, unlike in thes-wave case [8],
there is no discernible pattern in the core energy leve
and their spacing decreases with increasing system s
Visual inspection of the amplitudes of these states (ins
of Fig. 2) reveals that they are highly anisotropic wit
peaks near the core and tails running along the gap no
directions which appear to saturate to afinite amplitude
far from the core. Similar states are known to exist ne
a strongly scattering nonmagnetic impurity [28].
m
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FIG. 2. Inverse participation ratiosan as a function of energy.
The arrow marks the maximum bulk gapDd . Inset: amplitudes
junsRdj and jynsRdj of the lowest core state.

Although not truly localized these core states shoul
still give rise to enhanced tunneling conductance from
the cores. In Fig. 3(a) we display this quantity compute
from the present model. The closely spaced core sta
give rise to a broad peak centered near the zero ener
The peaks corresponding to individual states can still b
resolved, but by studying the size dependence of su
spectra we conclude that in the limit of infinite size thes
will form a continuum, similar to that reported by Wang
and MacDonald in their lattice calculation [14]. While
the fine details of the spectrum depend on paramete
of the model as well as on the system size, its gros
qualitative features, and, in particular, the vanishingl
small gap to the lowest state, remain remarkably robu
for a wide range of parameters considered. These spec
are, unfortunately, in disagreement with the experiment

FIG. 3. Tunneling conductancegsE, Rd at the center of the
vortex (solid line) and far from the vortex (dashed line), both
spatially averaged over a circular ring2k21

F wide. Dashed and
dash-dotted vertical lines mark the maximum and minimum
bulk gaps, respectively;R0kF ­ 120.
4765
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finding of a large,Ddy5 gap to the lowest core state
[6,10]. It is in principle possible that the intragap spectr
features found experimentally are, in fact, resonanc
rather that true bound states. Even so, we find
indication of such resonant behavior in our calculatio
Reference [6] also reports that the core states are spat
isotropic, in contradiction to strong anisotropies found b
this work and by quasiclassical computations [15,16].

It would thus appear that a model based on a puredx22y2

order parameter is in all aspectsinconsistentwith the pub-
lished experimental data. We therefore propose an exp
nation in terms of a mixeddx22y2 1 idxy state, which may
be formed in cuprates in finite fields at low temperatur
[21,22]. Such a state is fully gapped, and we therefore e
pect the quasiparticle core states to recover some of th
localizeds-wave character. Within the present model w
study such a scenario by takinge ­ 0.25 (with other pa-
rameters unchanged). This results in adx22y2 1 idxy state
with dxy . 0.17dx22y2 , roughly consistent with Laughlin’s
prediction [22] forT ­ 0 and B ­ 6 T. The order pa-
rameter distribution near the core remains qualitative
similar to that reported in Fig. 1, but now with unequa
magnitudes ofD1,2 andD1,22. Carrying out the analysis
of participation ratios we find that the core states below t
minimum gapdxy are truly localized and nearly isotropic
in agreement with experiment. Figure 3(b) shows the c
responding tunneling conductance, which is now qua
tatively consistent with experiment in that there exists
finite gap to the lowest core state which is independent
the system size. This gap is, however, still too small
account for the experimental result; we find that the agre
ment becomes better for largerdxy component. Note that
within the present model thedxy component is brought
about by change in the pairing interaction, rather than ma
netic field, and it would therefore be present even at ze
field. Although we expect that the qualitative features
the core states are insensitive to the origin ofdxy, a more
satisfactory model would correctly describe the transiti
to the time reversal breaking state as a function of fie
This would require explicitly including the vector poten
tial termA in the kinetic energy (2); the work on this is in
progress.

Our results firmly establish the absence of localiz
vortex core states in superconductors with a puredx22y2

gap. We speculate that a sizable admixture of a subdo
inant order parameter is needed to reconcile theory w
experiment. A magnetic-field-induceddxy component ap-
pears to be the most acceptable choice at present. T
is by no means free of problems. A sufficiently larg
dxy component could be difficult to justify since on gen
eral grounds one would expectdxyydx22y2 to scale as the
ratio of the corresponding critical temperatures [22]. Fu
thermore, a transition to the fully gappeddx22y2 1 idxy

state would be observable in the specific heat or muo
spin-rotation measurements of the penetration depth,
no such effect has been reported [5,29]. In the pres
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context of the vortex core states, however, our propositio
can be easily tested by measuring the core spectra at low
fields (or higher temperatures). If the present spectra a
indeed characteristic of adx22y2 1 idxy state a dramatic
change should be observable at the transition to the pu
dx22y2 state.
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