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Concentration Dependence of the Effective Mass of3He Atoms in 3He-4He Mixtures
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Recent measurements by Yorozuet al. [S. Yorozu, H. Fukuyama, and H. Ishimoto, Phys. Rev. B
48, 9660 (1993)] as well as by Simons and Mueller [R. Simons and R. M. Mueller, Czech.
J. Phys. Suppl.46, 201 (1996)] have determined the effective mass of3He atoms in a3He-4He mixture
with great accuracy. We here report theoretical calculations for the dependence of that effective mass
on the 3He concentration. Using correlated basis function perturbation theory to infinite order to
compute effective interactions in the appropriate channels, we obtain good agreement between theory
and experiment. [S0031-9007(98)06235-8]

PACS numbers: 67.60.–g, 67.40.Db, 67.70.+n, 68.15.+e
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The effective mass of a3He atom in liquid 4He is
due to two effects. The dominant one is hydrodynam
backflow of the4He liquid around the impurity [1,2]. This
effect is largely independent of the3He concentration.
The second effect is the dynamics imposed on the3He
component by the Pauli principle [3]. This effect cause
a noticeable concentration dependence which has recen
been measured with high accuracy by Yorozuet al. [4]
and by Simonset al. [5]; it is the subject of this paper.

Ground state properties of3He-4He mixtures like the
energetics of the system and its local structure are tod
quite well understood from a microscopic point of view
[6]. For a microscopic understanding of thehydrodynamic
effective mass, rather advanced methods are needed
due to the high density of the4He background. On the
other hand, the3He component in the mixture is dilute, and
the interaction between individual3He atoms is dominated
by phonon exchange. Therefore, much simpler metho
than those necessary [8] for obtaining reliable resul
in pure 3He are adequate for calculating ground sta
properties of dilute mixtures [6].

Microscopic many-body theory postulates an empiric
Hamiltonian
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that contains only a two-body interaction [9] and th
masses of the two types of particles. One then uses
Feenberg form [10,11] for the ground state wave functio
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where F0shrs3d
i jd is a Slater determinant of plane wave

ensuring the antisymmetry of the fermion componen
of the mixture. The superscriptsa, b, . . . refer to the
type of correlated particles; the prime on the summatio
symbol in Eqs. (1) and (2) indicates that no two pair
si, ad, sj, bd can be the same. The correlation function
uabsri , rjd and uabgsri , rj , rkd are determined by the
functional minimization of the ground state energy

E0 ­ kC0jHjC0lykC0 j C0l (3)

with respect to the correlation functions [12–14]. Detail
of the procedure have been described in Ref. [6].

Within the above variational theory, the single particl
excitation spectrum is calculated by allowing for an
occupation of single particle orbitalsnk in the Slater
function that is different from the fermion ground state
n

s0d
k ­ uskF 2 kd, wherekF is the Fermi momentum of

the3He component. The single particle spectrum can the
be calculated, using the diagrammatic techniques of t
(Fermi)-hypernetted chain [(F)HNC] theory [6], by

es3dskd ­
dE0

dnk
­ t3skd 1 uskd 1 U0 , (4)

where we usetaskd ­ h̄2k2y2ma for the kinetic energy
of a free particle of speciesa. U0 is a constant related to
the chemical potential, anduskd a momentum dependent
average field. The general graphical analysis of th
variational single-particle fielduskd has been carried out
in Ref. [15]; if the 3He component is dilute, the average
field can be written in the form of a Hartree-Fock field in
terms of a local, effective interactioñWeffsqd

uskd ­ 2
Z d3q

s2pd3r3
ns0d

q W̃effsjk 2 qjd . (5)

It is known [8] that the naive use of a variational wave
function of the type (2) leads to an effective mass ofpure
3He that is—in sharp contrast to experiments [16,17]—
less than one [18]. The cause of this deficiency is that t
© 1998 The American Physical Society 4709
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wave function (2) describes theaveragecorrelations be-
tween particles, but it is not sensitive to thespecificsof
the correlations in the vicinity of the Fermi surface. Th
cure for the problem is correlated-basis functions (CB
theory [10] to infinite order [19]. The theory can be
mapped on a Green’s function approach in terms of effe
tive interactions [20] that are provided by the variation
theory. The single particle properties are described by
complexself-energySsk, Ed; the single particle spectrum
es3dskd is obtained from the solution of equation

es3dskd ­ t3skd 1 Ssssk, es3dskdddd . (6)

If only one-phonon coupling processes are consider
the self-energySsk, Ed is given by the so-calledG0W
approximation [21,22]

Ssk, Ed ­ i
Z d3qdsh̄vd

s2pd4r3
Gs0d

µ
jk 2 qj,

E
h̄

2 v

∂
3 Ṽeffsq, vd . (7)

Gs0dsk, vd ­
1 2 n

s0d
k

h̄v 2 t3skd 1 ih
1

n
s0d
k

h̄v 2 t3skd 2 ih

(8)
is the free single-particle Green’s function and

Ṽeffsq, vd ­ Ṽ 33
p-hsqd 1

X
ab

Ṽ 3a
p-hsqdxabsq, vdṼ 3b

p-hsqd

(9)

is the effective,energy dependent3He-3He interaction. In
Eq. (9), Ṽ

ab
p-h sqd is the local,particle-hole irreduciblein-

teraction matrix [6], andxabsq, vd is the density-density
response matrix. The particle-hole irreducible intera
tions, which are in conventional Green’s functions theori
the most significant source of uncertainty, are provided
the variational ground state theory.

To separate the “hydrodynamic” and the “fermionic
component of the self-energy, we rewrite the singl
particle Green’s function as

Gs0dsk, vd ­
1

h̄v 2 t3skd 1 ih

1 n
s0d
k

"
1

t3skd 2 h̄v 2 ih

2
1

t3skd 2 h̄v 1 ih

#
; G

s0d
H sk, vd 1 G

s0d
F sk, vd (10)

and, correspondingly, the self-energy as

Ssk, Ed ­ SH sk, Ed 1 SFsk, Ed . (11)

The hydrodynamic partSHsk, Ed of the self-energy is, in
the limit r3 ! 0, identical to the self-energy of a single
3He impurity in the 4He host liquid [cf. Eq. (3.30) of
Ref. [7] ]; since we have found in Ref. [6] that the con
centration dependence is generally weak it is appropri
to identify SHsk, Ed with the self-energy of a single3He
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atom also at finite concentrations; we will return to thi
quantity later.

Let us first focus on thesecondterm in Eq. (11). The
energy integration yields the compact form

SFsk, Ed ­ 2
Z d3q

s2pd3r3
ns0d

q Ṽefffk 2 q, E 2 t3sqdg .

(12)

The relationship to Eq. (5) is apparent: IfṼeffsq, vd were
energy independent,SFsk, vd would be just a Hartree-
Fock average field of the form (5). Indeed, the expressio
(5) can be derived from Eq. (12) using the same “averag
energy” procedure that has been employed to establish
connection between the parquet-diagram theory and t
optimized HNC theory [23], namely, to identify

W̃effsqd ­ Ṽeffsssq, vsqdddd , (13)

where the average energȳhvsqd is chosen such that
both the energy dependent and the energy independ
interactions produce the same static structure functio
We stress that this result is only anobservationon how
the static approximation and theG0W approximation are
related. It doesnot imply that this approximation is also
adequatefor the single-particle properties.

With the relationship between theories established, w
now turn to the numerical application. The ingredients o
the theory—the effective interactionsṼ

ab
p-h sqd andW̃effsqd

as well as the Feynman spectrumes4dskd have been
obtained in Ref. [6]. The first important quantity is the
hydrodynamic effective mass. Because of the high density
of the background more elaborate methods than theG0W
approximation must be used for a quantitative predictio
[7]. To identify the Fermi-liquid effects we are interested
in here, we have, however, not used these results, b
rather let the hydrodynamic mass be a free paramet
After the concentration dependence was calculated fro
the Fermi-liquid contributions we made a single paramet
fit to the experiments of Refs. [4,5] to optimize the
overall agreement. That way, we arrived at the following
interpolation formulas for the hydrodynamic mass:

mH

m3

Ç
expt

­ 2.18 1 2.43r 1 2.67r2 2 1.17r3 (14)

for the data of Ref. [4] and

mH

m3

Ç
expt

­ 2.15 1 2.16r 1 4.47r2 (15)

from those of Ref. [5]. Here,r ­ r4yr0 2 1, r4 is
the 4He density andr0 ­ 0.02 183 Å23 is its value at
the saturation vapor pressure. Typically, the discrepan
between the two different extrapolations is 0.03 thes
values are throughout the full density regime about 0
above our theoretical calculation of Ref. [7].

A possible complication to be considered is the mome
tum dependence of the hydrodynamic effective mass sin
the particles at the Fermi surface have a finite momentu
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For that purpose, we have calculated the single-impur
spectrum,

h̄vH skd ­ t3skd 1 SHsssk, h̄vHskdddd , (16)

and have determined the momentum dependence of
hydrodynamic mass by writing, in a momentum regim
0 # k # 0.4 Å21 (chosen such that the upper bounda
is comparable to the Fermi momentum at the highe
pressure and concentration) the spectrum in the form

h̄vH skd ø
h̄2k2

2mH s1 1 bk2d
. (17)

We have verified that this form is adequate at sm
momenta and has a weak density dependence in ag
ment with experiments [24,25]. We have used the val
b ­ 0.114 at all densities.

Three calculations have been carried out to determ
the Fermi-liquid contributions to the effective mass of th
3He component as a function of concentration and de
sity. The transformation from the density and concentr
tion dependence to the pressure and concentration is d
using experimental results given in Ref. [26]. The fir
is the simple approximation (5). To account for the h
drodynamic backflow, one must supplement the Fermi
contribution (4) by the hydrodynamic contribution; th
spectrum has the form

es3dskd ­ h̄vHskd 1 uskd 1 U0 , (18)

where the Fermi correctionuskd is given in Eq. (5).
The effective masses derived from this spectrum a
significantly above the experimental one; cf. Fig. 1.

In the next step, we use the full self-energy in an “o
shell” approximation

e
s3d
OSskd ­ h̄vH skd 1 SFsssk, t3skdddd . (19)

This form of the self-energy relaxes the approximatio
made by the variational theory. We see in Fig. 1 th
the agreement with the experiment is no better than
the FHNC approximation, the effective mass now bein
significantlybelowthe experimental value.

Finally, we carry out a self-consistent calculation of th
effective mass. Because of the low concentrations,
may assume a single-particle spectrum of the formt3skd ­
h̄vHskd in the Green’s function (8) and, consequently,
Eq. (12); note that the hydrodynamic mass is includ
in the Green’s function. This effective mass is the
calculated self-consistently by requiring that the spectru
es3dskd determined by

es3dskd ­ h̄vHskd 1 SFsssk, h̄vH skdddd (20)

can be fitted by the same effective mass that has b
used in the self-energy. This theoretical calculation pr
duces, especially at lower densities, a slightly strong
concentration dependence than seen experimentally. C
pared with both the FHNC and the on-shell approxim
tion, the self-consistent result shown in Fig. 1 appears qu
satisfactory.
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FIG. 1. Theoretical and experimental effective mass ra
mpsP, xdym as a function of pressureP and concentration
x. The thick full curve is the fully self-consistent resul
with the hydrodynamics mass fitted to the experiments
Ref. [4] (circles with error bars). The thin, dash-dotted curve
the on-shell approximation and the thin, short dashed curve
static approximation using the same hydrodynamic mass. T
thick dashed curve is the fully self-consistent result usin
the hydrodynamic mass fitted to the results of Ref. [5] (box
with error bars).

The essential difference between the on-shell and
self-consistent calculation is that information about th
hydrodynamic backflow has gone intoG

s0d
F sk, vd. Note

that hydrodynamic backflow is—as a feature of excit
tions—genericallynot included in the approximation (5).
Indeed, generalizing the variational theory to dynam
correlationswithout introducing the coupling to the back-
ground would lead to an effective mass close to the o
shell mass, which is notably too low.

To produce Fig. 1 we have used—as stated before
the hydrodynamic mass given in Eqs. (14) and (15
respectively. Our calculations predict a curvature of th
effective mass as a function of concentrationx, leading
to a hydrodynamic effective mass slightly lower than th
one predicted by linear extrapolation; cf. Table I. Suc
a curvature is caused by the Fermi functions; already t
4711
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ed from
fit to
TABLE I. Pressure dependence of the hydrodynamic effective mass and the coefficients of the expansion (21) as obtain
the present calculation and fitted to the data of Ref. [4]. Also shown are the linear extrapolation of Ref. [5] as well as our
these data.

P mH ym3 mH ym3 mH ym3
(atm) (this work) a b c d (Ref. [5]) (fitted to Ref. [5] data)

0 2.18 1.49 1.39 218.2 36.7 2.23 6 0.02 2.15
5 2.31 1.07 3.00 222.6 40.2

10 2.44 0.789 4.48 228.2 50.4 2.52 6 0.02 2.39
15 2.54 0.501 6.17 236.1 66.8
20 2.64 0.310 7.41 242.1 80.1 2.70 6 0.03 2.62
,

,

.

s.

t.

r-

d

simple approximation (18) predicts a behavior

mpsxdym3 ­ mHym3 1 ax2y3 1 bx 1 cx5y3 1 dx7y3.
(21)

The precise values of these coefficients are a matter o
microscopic calculation. In Table I we list the values o
a, b, c, andd for different pressures as obtained from th
least squares fit to the self-consistent solution of Eq. (20

In summary, we have demonstrated that the conce
tration dependence of the effective mass is essentia
a Fermi-liquid effect, enhanced by the renormalizatio
of the single particle propagator through hydrodynam
backflow. The technical simplifications caused by th
relatively low density of the fermion component has a
lowed us to highlight the relevant physical mechanism
quite clearly. The data of Ref. [5] are consistently be
low those of Ref. [4]; the difference of 0.03 might be at
tributable to the different pressure gauge. This differen
might appear negligible, but we need to point out that
produces uncomfortably large uncertainties in predictio
for the first antisymmetric Landau Fermi liquid paramete
Fa

0 from magnetic susceptibility measurements [27].
On the other hand, we find that the concentratio

dependence of the effective mass—in other words t
generic Fermi-liquid effect—is consistent between bo
sets of experiments and theory. Extrapolations to ze
concentration also appear to be consistent.

Besides providing an accurate microscopic calculatio
of the concentration dependence of the3He effective mass
in 4He, we have analyzed various procedures for ca
culating the effective mass. By comparing the stat
calculation with the dynamic CBF calculation, we hav
discussed an instructive example for the delicate inte
play between single-particle and Fermi-liquid effects i
3He-4He mixtures.
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