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Stabilization, Selection, and Tracking of Unstable Patterns by Weak Spatial Perturbations
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A spatial perturbation method for the stabilization of an unstable state of a pattern forming system
is presented. The perturbation, as a weak driving signal, mimics the target pattern. Stabilization,
selection, and tracking of unstable rolls, squares, hexagons, and honeycombs are demonstrated by
numerical simulations through the example of an optical system. The application of an external spatial
perturbation also results in critical slowing down and resonant phenomenon. [S0031-9007(98)06218-8]
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Since the pioneering work of Ott, Grebogi, and York
(OGY) [1], considerable efforts have been made
suppress temporal disorder in chaotic regimes. In t
past few years several methods have been propos
The main technique (OGY method) is to stabilize on
of the unstable periodic orbits embedded in the chao
attractor based on the determination of the stable a
unstable directions in the Poincaré section [1–5]. Anoth
procedure is to introduce a self-controlling feedback [6,7
The third important and effective method is to modulate
system parameter with a small periodic perturbation
to add a weak periodic forcing to the system [8–14
The OGY method is rigorously proved to be valid fo
every system in general cases, while the self-controlli
feedback method and the perturbation method are m
suitable for experiments in practical systems, although
underlying dynamics is not so clear.

Early efforts toward control of spatiotemporal dynam
ics have been made by using the extension of the OG
algorithm [15,16]. Since then suppressions of spatiote
poral disorder in chaotic regimes have been investiga
in different systems [17,18]. Recently, Luet al. [19] ex-
tended the Pyragas method [6] to perform spatiotempo
control in an optical model which displays phenomen
such as pattern formation [20], common to many spatia
extended systems. Stabilizing and manipulating unsta
spatial states is closely related to the control of spatiote
poral instabilities. Most recently Martinet al. [21] de-
veloped a Fourier space technique to stabilize and tra
unstable patterns in a mean-field model for a two-lev
medium in an optical cavity. In this Letter, we prese
a nonfeedback technique which allows us to stabilize,
lect, and track such unstable spatial patterns. Our met
is based on weak perturbations to the system in the spa
dimensions. The perturbation, as a weak spatial drivi
signal, mimics the target pattern, which is similar to th
approaches in controlling temporal chaos by modulati
a system parameter or adding a weak periodic forcing
the system [8–14]. It is important that our nonfeedba
technique can be very easily realized in practical spatia
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extended systems. For example, in an optical system b
the amplitude and the phase of the field can be spati
perturbed with an absorptive or a dispersive optical ma
On the other hand, spatial pertubations widely and na
rally exist in the dynamics of some growth, diffusion, an
convection processes, such as pattern formation in epi
ial growth on surfaces [22] and formation of quasicrys
by physical vapor deposition [23]. Therefore, our spat
disturbance method of control of pattern formation is
general relevance.

We consider a general two-dimensional model in o
tics [19],

≠tq  Nsq, md 1 iD=2
'q , (1)

whereq is the vector variable,N is a nonlinear function,
t is time, D is the matrix of diffractive coefficients, and
=

2
' is the transverse Laplacian.m is the control parameter

of the system, to which, in our stabilizing algorithm, th
spatial perturbation is exerted, i.e.,

m  m0f1 1 afsx, ydg , (2)

wherem0 is the unperturbed control parameter,a is the
amplitude of the perturbation, andfsx, yd is the spatial
perturbation function. Herea should be much smaller
than one. The functionfsx, yd should be designed to
reflect the signature of the target pattern. The most natu
form of fsx, yd is, therefore, chosen as that of the bas
harmonics of the target pattern, which is the reminiscen
of the widely used modulational control of temporal cha
[8–14]. For a demonstration of our technique, we consid
the mean-field model for a two-level atomic medium in a
optical cavity [24,25],

≠tE  2E

"
s1 1 iud 1

2Cs1 2 iDd
jEj2 1 1 1 D2

#
1 EI 1 is≠xx 1 ≠yydE , (3)

where E is the intracavity electric field,u is the cavity
detuning, D is the atomic detuning,C is the optical
absorptivity, andEI is the pump field. For simplicity we
restrict ourselves to the atomic resonancesD  0d and the
© 1998 The American Physical Society 4669
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plane-wave pump case and fix the cavity detuning tou 
21 [21]. In this case, Eq. (3) has stationary, homogeneo
solutionsES given by [25]

EI

ES
 1 1 iu 1

2C
jESj2 1 1

. (4)

We choose the pump fieldEI and the optical absorptivityC
as two control parameters. Considering the experimen
feasibility we apply the spatial perturbation to the pum
field. Corresponding to Eq. (2), the perturbed pump fie
EI can be written as

EI  EI0f1 1 afsrdg , (5)

whereEI0 is the unperturbed pump field. Previous analyt
cal and numerical works [21,25] have shown that
this system the steady state consists of two (roll), fo
(square), or six (hexagon) equally spaced spatial mod
All the unstable patterns we will stabilize with our contro
can be constructed using eight wave vectorsKi si 
1, 2, . . . , 8d with the same magnitude and arbitrary absolu
orientations [21]. Therefore, for the case of rolls, th
perturbation control functionfsrd can be written as

fsrd 
1
2 feisK1?r1f1d 1 c.c.g , (6)

wheref1 is an arbitrary phase. For the case of squares
can be written as

fsrd 
1
2 feisK1?r1f1d 1 eisK3?r1f3d 1 c.c.g , (7)

where the wave vectorsK1 andK3 are mutually perpen-
dicular and the phasesf1 andf3 are arbitrary. And for
the two types of hexagonal patterns,H1 andH2, it can be
written as

fsrd 
1
2 feisK1?r1f1d 1 eisK4?r1f4d 1 eisK6?r1f6d 1 c.c.g ,

(8)

whereK1, K4, andK6 make an angle of2py3 with each
other. ForH1 hexagons with intensity peaks we hav
f1 1 f4 1 f6  2np. For H2 hexagons or honey-
combs consisting of intensity dips we havef1 1 f4 1

f6  s2n 1 1dp.
The results which we will present were obtaine

by numerically integrating Eq. (3) with the spatially
perturbed pump defined in Eq. (5). The integrations we
performed using a split step spectral method on a64 3 64
grid with a box size of16pyKc unless otherwise noted.
HereKc 

p
2u. We fix the control parameterC  4.4

(the minimum of the pattern forming threshold is a
C  4). For different values ofI  jESj2, the unstable
patterns of roll, square, and hexagons (H1 and H2)
[21] are stabilized with the control function defined in
Eqs. (6), (7), and (8), respectively, as shown in Fig.
It can be seen that the control is very successful w
the perturbation amplitude as small asa  0.01. With
our control technique it is very easy to select the unstab
pattern from some local regions of the whole field. Tw
examples are shown in Fig. 2 where in Fig. 2(a) th
perturbation is exerted to the left-hand half of the pum
4670
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FIG. 1. Stabilized patterns witha  0.01: (a) Rolls and
(b) squares for the case of coexistence of unstable ro
squares, andH2 hexagons with stableH1 hexagons forI 
2.2, (c) H1 hexagons for the case of coexistence of unsta
H1 hexagons and squares with stableH2 hexagons and rolls
for I  4.5, (d) H2 hexagons for the case of coexistence
unstableH2 hexagons and squares with stableH1 hexagons
and rolls forI  3.2.

field and in Fig. 2(b) only the central circular region (wit
the diameter of16pyKc) is controlled. We can see tha
the unstable rolls inside the controlled region are extrac
from the uncontrolled hexagonal background.

The dynamics of the control process can be seen fr
the temporal evolution of the Fourier spectra, as sho
in Fig. 3, where the perturbation function of Eq. (6) fo
stabilizing the rolls is exerted to the system at timet  0
after the stable uncontrolled hexagonal pattern is attain
We can see that the control process is accompan
with the suppression of the undesired modes and
enhancement of the desired modes. In order to pres
a quantitative description for the transient process,
calculated the decay time of the suppressed modes in

FIG. 2. Locally stabilized rolls for the case of coexistenc
of unstable rolls, squares, andH2 hexagons with stableH1

hexagons forI  2.2 with a  0.01, where a128 3 128 grid
with a box size of32pyKc is used.
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FIG. 3. Fourier spectrum at time (a)t  0, (b) t  100,
and (c) t  500 for stabilizing the rolls for I  2.2 with
a  0.005. The large component at the center is removed f
clarity.

case of selecting rolls from the unperturbed hexago
The time when the intensity of the undesired modes dec
or

ns.
ay

to 1025 of its initial value is defined as the characteristic
transient timet0. It is straightforward to imagine that the
larger the perturbation amplitudea is, the shorter the
transient timet0 will be, and, on the contrary, when
the perturbation amplitudea is smaller than a critical
value ac, the control will fail; in other words, atac

the transient timet0 becomes infinity. This assertion is
confirmed by the calculation oft0 versusa as shown
in Fig. 4. By fitting the result with the critical slowing
down relation t0 ~ sa 2 acd2b, we obtain the critical
perturbation amplitudeac ø 0.004 702 5 and the critical
exponentb ø 0.354 118 2. The excellent fit, as shown
in Fig. 4, implies a perfect critical behavior. The smal
value of ac means that even a very weak perturbation i
enough to control the formation of the pattern.

Up to now, all the simulations are performed with
the spatial perturbations with a fixed magnitude of th
wave vectorK, i.e., jKj  KC 

p
2u. In order to see

whether there exits a resonance phenomenon with t
perturbation, we slightly change the magnitude of th
perturbation wave vector aroundKC . The phase diagram
for tracking the rolls in theK-a plane is shown in
Fig. 5. It is clear that the spatially resonant interaction
play an important role, which is a reminiscence of th
temporal parametric resonance phenomenon [26] whe
the resonant regions form Arnold tongues.

In addition to the perturbations applied to the amplitud
of the pump field, we also realized the control by applyin
a spatial perturbation to the phase of the pump field, i.e
using

EI  EI0eiafsrd (9)

instead of Eq. (5). For example, we successfully stab
lized the rolls forI  2.2 anda  0.02 with Eq. (9).

FIG. 4. Decay timet0 of the undesired modes versusa for
stabilizing the rolls forI  2.2.
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FIG. 5. K-a phase diagram for stabilizing the rolls forI 
2.2, where the shaded and blank areas are controllable a
uncontrollable regions, respectively.

In summary, we have presented a spatial perturbati
method to select, stabilize, and track unstable patter
The perturbation, as a weak driving signal, mimics th
target pattern. The method has been applied successf
to a nonlinear optical system. The application of th
weak spatial perturbation results in the suppression of t
undesired modes in the formation process of the targ
pattern. Detailed simulations reveal critical slowing dow
and resonant phenomenon.
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