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Stabilization, Selection, and Tracking of Unstable Patterns by Weak Spatial Perturbations
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A spatial perturbation method for the stabilization of an unstable state of a pattern forming system
is presented. The perturbation, as a weak driving signal, mimics the target pattern. Stabilization,
selection, and tracking of unstable rolls, squares, hexagons, and honeycombs are demonstrated by
numerical simulations through the example of an optical system. The application of an external spatial
perturbation also results in critical slowing down and resonant phenomenon. [S0031-9007(98)06218-8]

PACS numbers: 47.54.+r, 05.45.+b, 42.65.Sf

Since the pioneering work of Ott, Grebogi, and Yorkeextended systems. For example, in an optical system both
(OGY) [1], considerable efforts have been made tothe amplitude and the phase of the field can be spatially
suppress temporal disorder in chaotic regimes. In th@erturbed with an absorptive or a dispersive optical mask.
past few years several methods have been propose@n the other hand, spatial pertubations widely and natu-
The main technique (OGY method) is to stabilize onerally exist in the dynamics of some growth, diffusion, and
of the unstable periodic orbits embedded in the chaoticonvection processes, such as pattern formation in epitax-
attractor based on the determination of the stable anihl growth on surfaces [22] and formation of quasicrystal
unstable directions in the Poincaré section [1-5]. Anotheby physical vapor deposition [23]. Therefore, our spatial
procedure is to introduce a self-controlling feedback [6,7]disturbance method of control of pattern formation is of
The third important and effective method is to modulate ageneral relevance.
system parameter with a small periodic perturbation or We consider a general two-dimensional model in op-
to add a weak periodic forcing to the system [8—14].tics [19],

The OGY method is rigorously proved to be valid for _ 2

every system in generaglJ cases),/ vF\)/hiIe the self-controlling %4 = Nig,p) +iDV.q, (1)
feedback method and the perturbation method are mon&hereq is the vector variableN is a nonlinear function,
suitable for experiments in practical systems, although thé is time, D is the matrix of diffractive coefficients, and
underlying dynamics is not so clear. V1 is the transverse Laplacianu is the control parameter

Early efforts toward control of spatiotemporal dynam- Of the system, to which, in our stabilizing algorithm, the
ics have been made by using the extension of the OG'gpatial perturbation is exerted, i.e.,
algorith_m [15,1_6]. Sinc_e ther_1 suppressions of spati_otem— w = woll + af(x,y)], )
poral disorder in chaotic regimes have been investigated i .
in different systems [17,18]. Recently, lai al. [19] ex- Wher_e Mo is the unperturbgd control parameter.is th_e
tended the Pyragas method [6] to perform spatiotemporgMPplitude of the perturbation, anflx,y) is the spatial
control in an optical model which displays Iohenomem‘,perturbat|on funct|on._ Herex should be much_ smaller
such as pattern formation [20], common to many spatiallyfi@n one. The functiorf(x,y) should be designed to
extended systems. Stabilizing and manipulating unstablgflect the signature of the target pattern. The most natu_ral
spatial states is closely related to the control of spatiotemi@™M Of f(x,y) is, therefore, chosen as that of the basic
poral instabilities. Most recently Martiet al.[21] de- harmonics of the target pattern, which is the reminiscence

veloped a Fourier space technique to stabilize and tracRf e widely used modulational control of temporal chaos
unstable patterns in a mean-field model for a two-leve[8—14]- For ademonstration of our technique, we consider
medium in an optical cavity. In this Letter, we presentthe mean-field model for a two-level atomic medium in an

a nonfeedback technique which allows us to stabilize, se2Ptical cavity [24,25],

lect, and track such unstable spatial patterns. Our method 0 E = —E|l (1+i6)+ 2C(1 — iA)
is based on weak perturbations to the system in the spatial = ( i6) |E]2 + 1 + A2
dimensions. The perturbation, as a weak spatial drivin

P P g + E; + i(9x + 9yy)E, 3

signal, mimics the target pattern, which is similar to the
approaches in controlling temporal chaos by modulatingvhere E is the intracavity electric fieldg is the cavity
a system parameter or adding a weak periodic forcing taletuning, A is the atomic detuningC is the optical
the system [8—14]. It is important that our nonfeedbackabsorptivity, andE; is the pump field. For simplicity we
technique can be very easily realized in practical spatiallyestrict ourselves to the atomic resonafse= 0) and the
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plane-wave pump case and fix the cavity detuning te (@)
—1[21]. Inthis case, Eq. (3) has stationary, homogeneous S .. e
solutionsEs given by [25] ———————— & &
E; : 2C A ©
—=14+i0 + —.
PR N 4) . &
We choose the pump fielg, and the optical absorptivit§ [———— .
as two control parameters. Considering the experimental R e &4
feasibility we apply the spatial perturbation to the pump
field. Corresponding to Eq. (2), the perturbed pump field - @
E; can be written as TETETEES 'ttt
PEBERENE sSesetel
E; = Ep[l + af(r)], 5)  *5%0%2 %, p‘&‘t“‘j
. , . . E e b DY & _&§_&_@_
whereE is the unperturbed pump field. Previous analyti- Pa B B i F*i*i‘ , 'i
cal and numerical works [21,25] have shown that in TSNS i*i‘ﬂ . i‘!
this system the steady state consists of two (roll), four '5% %%, 5‘@"‘1‘!
(square), or six (hexagon) equally spaced spatial modes. PAPLIL L 8,

All the unstable patterns we Wi|| stabilize with our gontrol FIG. 1. Stabilized patterns withe = 0.01: (a) Rolls and
can be constructed using eight wave vectds (i = (b) squares for the case of coexistence of unstable rolls,
1,2,...,8) with the same magnitude and arbitrary absolutesquares, and?~ hexagons with stablé/ ™ hexagons forl =
orientations [21]. Therefore, for the case of rolls, the22, (c) H" hexagons for the case of coexistence of unstable

; ; ; H™* hexagons and squares with staltle hexagons and rolls
perturbation control flun(.:tlogf(r) can be written as for I = 4.5, (d) H~ hexagons for the case of coexistence of
f(r) = i[e’(K"”‘ﬁ') + c.c], (6) unstableH~ hexagons and squares with stalllé hexagons

. . and rolls for/ = 3.2.
whereg is an arbitrary phase. For the case of squares, it

can be written as
— lr (K, r+e) i(Ksr+¢s) field and in Fig. 2(b) only the central circular region (with
r) = + + c.c], 7 ; .
) = 3le ¢ ] O the diameter ofl677/K.) is controlled. We can see that
where the wave vectorK, andK3 are mutually perpen-  the unstable rolls inside the controlled region are extracted
dicular and the phases, and ¢; are arbitrary. And for  from the uncontrolled hexagonal background.

the two types of hexagonal patterds; andH ~, it can be The dynamics of the control process can be seen from
written as the temporal evolution of the Fourier spectra, as shown
fr) = %[eiﬂ(r”qﬁl) + elKarte) o piKertde) 4 ¢ ] in Fig. 3, where the perturbation function of Eq. (6) for

(8) stabilizing the rolls is exerted to the system at time 0

i after the stable uncontrolled hexagonal pattern is attained.
whereK, K4, andK make an angle atr/3 with each  \ye can see that the control process is accompanied

other. ForH™ hexagons with intensity peaks we have it the suppression of the undesired modes and the
$1 + b4+ b = 2nm. For H— hexagons or honey- ennancement of the desired modes. In order to present
combs consisting of intensity dips we hage + ¢4 + 5 quantitative description for the transient process, we

b6 = 2n + ). , , . calculated the decay time of the suppressed modes in the
The results which we will present were obtained

by numerically integrating Eq. (3) with the spatially
perturbed pump defined in Eq. (5). The integrations were (a)
performed using a split step spectral method od &< 64
grid with a box size ofl67 /K. unless otherwise noted.
HereK. = /—6. We fix the control paramete? = 4.4
(the minimum of the pattern forming threshold is at
C = 4). For different values of = |Es|?, the unstable
patterns of roll, square, and hexagondg*( and H ")
[21] are stabilized with the control function defined in
Egs. (6), (7), and (8), respectively, as shown in Fig. 1.
It can be seen that the control is very successful with
the perturbation amplitude as small as= 0.01. With

our control technique it is Very easy to select the unstabIEIG 2. Locally stabilized rolls for the case of coexistence
pattern from some local regions of the whole field. Two ¢\ \nstable rolis squares, ard~ hexagons with stablél*

examples are shown in Fig. 2 where in Fig. 2(a) thenexagons for = 2.2 with @ = 0.01, where al128 x 128 grid
perturbation is exerted to the left-hand half of the pumpwith a box size of327 /K. is used.
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FIG. 3. Fourier spectrum at time (&)= 0, (b) r = 100,
and (c) + = 500 for stabilizing the rolls for/ = 2.2 with

a = 0.005. The large component at the center is removed for
clarity.

to 1073 of its initial value is defined as the characteristic
transient timery. It is straightforward to imagine that the
larger the perturbation amplitude is, the shorter the
transient time¢, will be, and, on the contrary, when
the perturbation amplituder is smaller than a critical
value a., the control will fail; in other words, atv,
the transient time, becomes infinity. This assertion is
confirmed by the calculation ofy versusa as shown
in Fig. 4. By fitting the result with the critical slowing
down relationzy, = (« — a,)"#, we obtain the critical
perturbation amplituder, = 0.004 7025 and the critical
exponentB = 0.3541182. The excellent fit, as shown
in Fig. 4, implies a perfect critical behavior. The small
value of @, means that even a very weak perturbation is
enough to control the formation of the pattern.

Up to now, all the simulations are performed with
the spatial perturbations with a fixed magnitude of the
wave vectorK, i.e.,|K| = K¢ = +/—6. In order to see
whether there exits a resonance phenomenon with the
perturbation, we slightly change the magnitude of the
perturbation wave vector arouri-. The phase diagram
for tracking the rolls in theK-a plane is shown in
Fig. 5. It is clear that the spatially resonant interactions
play an important role, which is a reminiscence of the
temporal parametric resonance phenomenon [26] where
the resonant regions form Arnold tongues.

In addition to the perturbations applied to the amplitude
of the pump field, we also realized the control by applying
a spatial perturbation to the phase of the pump field, i.e.,

using

E; = Epge'®/™ 9)
instead of Eq. (5). For example, we successfully stabi-
lized the rolls forl = 2.2 anda = 0.02 with Eq. (9).
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case of selecting rolls from the unperturbed hexagonssiG. 4. Decay timer, of the undesired modes versus for
The time when the intensity of the undesired modes decastabilizing the rolls forr = 2.2.
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