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Short Wave Instability on Vortex Filaments
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The short wave instability on corotating vortex filaments is investigated. It is shown that the
wave instability always occurs on corotating vortex filaments of fixed core structure. Moreover,
the interfilament distance is smaller than or comparable to the core size, vortex filaments produc
wave unstable modes which lead to wild stretching and folding; when vortex filaments are far
from each other, unstable modes are bounded by a fraction of the core size and the vortex str
remains bounded. These findings may be used to explain the smooth behavior of superfluid vo
They also explain the stretching seen in numerical calculations. [S0031-9007(98)06172-9]

PACS numbers: 47.32.Cc
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The instability of vortex pairs or vortex rings has
been investigated by many authors. Crow [1] studie
the long wave and short wave instability on antiparalle
vortex pairs arising in jet wakes. With a slightly differen
model and a more accurate calculation of the self-induc
rotation of the short wave modes, Widnall, Bliss, and Ts
[2] investigated the instability of antiparallel vortex pairs
and vortex rings. Recently Klein, Majda, and Damodara
[3] studied the instability of long wave modes on bot
antiparallel and corotating vortex pairs. It was foun
that certain long wave modes are unstable on antipara
vortex pairs but long wave modes are always stable
corotating vortex pairs. However, the study in [3] is
based on a simplified model equation derived from a
asymptotic analysis, in which one of the assumption
is that the wavelength is large in comparison with th
core size. Because of this assumption, short wave mod
are excluded from the model equation. In this Lette
we present the first study of short wave instability o
corotating vortex filaments. We show that (a) ther
always exist short wave unstable modes on corotati
vortex pairs; (b) if the distance between filaments
large compared with the core size, the amplitude
unstable modes is bounded by the core size; and (c) if t
filaments are close together, the growth of the unstab
modes leads to wild stretching and folding. These resu
suggest a plausible explanation for the different behav
of classical and superfluid vortices, which has puzzle
physicists for quite a long time. Classical vortex filamen
stretch and fold wildly, and form small scale structure
while superfluid vortex filaments remain smooth [4
7]. It has been found that superfluid vortex filamen
have a very small core sizef,OsÅdg and a fixed core
structure [5–7]. Result (b) implies that the short wav
instability is insignificant for superfluid vortex filaments
since the interfilament distance far exceeds the co
size. This suggests that it is the tiny core size rath
than the quantization of circulation that is responsib
for the smooth behavior of superfluid vortices. In th
vortex methods [8–12], the vorticity field is represente
0031-9007y98y80(21)y4665(4)$15.00
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by many overlapping vortex filaments of fixed co
structure. Result (c) explains the wild stretching a
the exponential growth of numerical vortex elemen
observed in numerical calculations.

We first construct a linear stability analysis of sho
waves on corotating vortex pairs with fixed core structu
We then extend our analysis to the case of a sin
vortex filament immersed in a corotating vorticity field
If the growth rate of a mode is positive, the amplitud
of the mode will grow exponentially, not bounded b
any constant multiple of its initial amplitude. We ca
such modes unstable. In this Letter, “long wave” mea
the wavelength is large compared to the core size; “sh
wave” means the wavelength is comparable to or sma
than the core size. The linear analysis will show that sh
wave unstable modes always exist on corotating vor
filaments. When unstable modes grow to an amplitu
comparable to the wavelength, their motion is no long
governed by the linear analysis. Numerical simulatio
and a refined analysis will reveal the long time evoluti
of unstable modes: Neighboring vortices induce sh
wave unstable modes that lead to stretching and fold
but an isolated vortex filament does not create hairpins
wild stretching.

A corotating vortex pair consists of two parallel vorte
filaments of the same circulation. The unperturbed p
rotates around its axis of symmetry with an angu
velocityV0. To illustrate the evolution of the perturbatio
wave relative to the unperturbed filaments, we put thez
axis parallel to the unperturbed pair and let thex-y plane
rotate with the pair.

Now we perturb the vortex pair by a sinusoidal wa
of small amplitude. The stability calculation can be pe
formed by considering the motion of the vortex filamen
that results from the perturbation. Let us focus on o
filament of the pair. The vortex filament moves with
velocity that is a combination of the self-induced rotatio
of the sinusoidally perturbed filament and the velocity i
duced by the other filament. For short wave perturbatio
the velocity induced at the vortex by the second filame
© 1998 The American Physical Society 4665
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FIG. 1. (a) The coordinate system. (b) Motion of the pe
turbed vortex.

can be well approximated by treating the second filame
as unperturbed. For simplicity, we put the origin of th
x-y plane at the unperturbed position of the vortex we f
cus on. Figure 1(a) shows a cross section of the perturb
vortex pair. The filled circle on the right represents th
perturbed vortex. The second vortex is shown as unp
turbed by the filled circle on the left. As far as the motio
of the right filament is concerned, the contribution from
the perturbation on the left filament is negligible.

The induced velocity at the right vortexsx, yd by the
left vortex observed in the nonrotating reference system
given by the Biot-Savart law [13]

u0sx, yd ­
G

2p

fsdydd
d2

∑
2y

b 1 x

∏
, (1)

where d ­
p

sb 1 xd2 1 y2, b is the separation of the
unperturbed pair,d is the core size,G is the circulation,
andfsrd is a two-dimensional cutoff function determined
by the core vorticity distribution [10,11].

The angular velocity of the unperturbed pair in th
nonrotating reference system is

V0 ­
G

pb2 f

µ
b
d

∂
. (2)

In the rotating reference system of Fig. 1(a), the in
duced velocity is

usx, yd ­ u0sx, yd 2 V0

∑
2y

by2 1 x

∏
. (3)
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Expanding usx, yd around s0, 0d, the position of the
unperturbed vortex, one has

usx, yd ­
G

2pb2

∑
c1y

2c2x

∏
1 Osx2 1 y2d

def
­ uLF 1 Osx2 1 y2d , (4)

wherec1 ­ fsbydd andc2 ­ 3fsbydd 2 sbyddf0sbydd.
In the neighborhood ofs0, 0d, the velocity fieldusx, yd can
be approximated by the linear flow (denoted as LF)uLF .
This linear flow is a special case of the stagnation-po
flows studied by Criminaleet al. [14,15]. The streamlines
of uLF are a family of ellipses [solid lines in Figs. 1(a
and 1(b)] described byx2yc1 1 y2yc2 ­ a.

In the cylindrical sr , ud coordinate system, the radia
and the tangential components ofuLF are

uLF
r ­ 2r

G

2pb2

c2 2 c1

2
sin2u , (5)

uLF
u ­ 2r

G

2pb2

µ
c1 1 c2

2
1

c2 2 c1

2
cos2u

∂
. (6)

In addition touLF , the perturbed vortex is also subjec
to a self-induced rotation (denoted as SR)

uSR
u ­ 2r

G

2pd2
Vskdd , (7)

wherek is the wave number andV is the nondimensional
rotation frequency of the perturbation wave mode. T
streamlines ofuSR

u are a family of circles [dashed lines in
Figs. 1(a) and 1(b)].

Instability occurs when the total tangential velocit
uLF

u 1 uSR
u is zero and the vortex diverges in the radi

direction driven byuLF
r , as shown in Fig. 1(b).

Solving cos2u from uLF
u 1 uSR

u ­ 0 and using the fact
that cos2u is between21 and 1, we obtain the instability
condition

2c2
d2

b2 , Vskdd , 2c1
d2

b2 . (8)

When the self-induced rotation does not satisfy (8), t
perturbation wave evolves periodically in time and i
maximum amplitude is bounded by a constant multip
of the initial amplitude, which means the vortex pair
stable outside the range of (8).

For a vortex filament whose core vorticity distributio
is derived from the second order cutoff functionfsrd ­
1 2 exps2r3d [10], the dispersion relation,Vskdd, is
shown in Fig. 2. The dispersion relations for other co
vorticity distributions are similar to the one shown he
and are discussed in [16]. For each value ofbyd, an in-
stability interval ofkd is solved from inequality (8) and
the dispersion relation. The shaded area in Fig. 3 ma
the region of instability in thesbyd, kdd plane. Figure 3
indicates that for any value ofbyd, there are always un-
stable wave modes for the corotating vortex pair.

We have carried out numerical simulations of the ev
lution of small sinusoidal perturbations on a corotatin
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FIG. 2. Dispersion relationVskdd.

vortex pair using the thin-tube vortex filament metho
[17]. The instability condition (8) is verified in numerica
simulations [16]. Furthermore, the numerical simulation
reveal the long time behavior of the unstable mode f
different values ofbyd. Whenbyd is above 5, the am-
plitude of the unstable mode grows to a maximum, fa
back, then starts growing and repeats the pattern. T
vortex filaments stretch and contract alternately. No wi
stretching is observed [Fig. 4(a)]. Whenbyd is below
2, the unstable mode grows without bound [Fig. 4(b)
The vortex filaments stretch catastrophically and devel
hairpin-shaped small scale structures [Fig. 4(b) inset].
the early stage of instability, the unstable mode grows e
ponentially forming hairpins on corotating filaments. Af
ter that, the vortex stretching and folding are more fuel
by the pairing of antiparallel parts of each hairpin. Sigg
and Pumir [18,19] showed that pairing of two antiparall
pieces leads to the collapse of a vortex filament.

Similarly, one can study the short wave instability on
single vortex filament with fixed core structure immerse
in a corotating vorticity field. The motion of the filamen
is the combination of the self-induced rotation and the v

FIG. 3. Region of instability in thesbyd, kdd plane.
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locity induced by the surrounding vorticity field. The ve
locity field induced by a second order Gaussian vortic
distribution, if linearized around a point and viewed in th
reference system attached to that point, is a straining fl
[16]. When the surrounding vorticity field is discretize
and represented by a set of numerical vortex filamen
our numerical results demonstrate that the streamlines
the linearized flow are ellipses. As the vorticity field
approximated by more numerical vortex filaments, the
ellipses become flatter, and the linearized flow is appro
mately a straining flow [16]. The minimum tangentia
velocity of a straining flow is zero. From Fig. 2, we se
that there are short wave modes whose rotation freque
is negative (opposing the straining flow) and close to ze
Therefore there are always short wave modes whose s
induced rotation can balance the straining flow in the ta
gential direction. WhenuLF

u 1 uSR
u ­ 0, the perturbation

mode stops rotating and diverges along the radial dir
tion, driven by the radial component of the straining flo

FIG. 4. Time evolution of unstable modes in the coordina
system of Fig. 1. Dashed line: amplitude in thex direction.
Solid line: amplitude in they direction. (a)byd ­ 10. (b)
byd ­ 2. The inset shows the configuration of the vortex pa
4667
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[see Fig. 1(b)]. Thus the short wave instability alway
occurs on a vortex filament immersed in a corotating vo
ticity field.

As a direct application, our study of short wave
instability can be used to explain the smooth behavi
of superfluid vortices. For superfluid vortex filaments
the interfilament distance is usually much larger than th
core size. Hence the short wave instability does not cau
the catastrophic stretching and folding. This implies tha
the tiny core size of superfluid vortex filaments is mor
important in accounting for their nonclassical dynamic
than the quantization of circulation. An explanation fo
the different behavior of superfluid and classical vortice
has been proposed by Chorin using statistical theori
[4]. Our study of the short wave instability provides an
explanation from vortex dynamics.
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