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Short Wave Instability on Vortex Filaments

Hongyun Wang*

Department of Mathematics, University of California, Berkeley, California 94720
and Lawrence Berkeley National Laboratory, Berkeley, California 94720
(Received 8 December 19p7

The short wave instability on corotating vortex filaments is investigated. It is shown that the short
wave instability always occurs on corotating vortex filaments of fixed core structure. Moreover, when
the interfilament distance is smaller than or comparable to the core size, vortex filaments produce short
wave unstable modes which lead to wild stretching and folding; when vortex filaments are far apart
from each other, unstable modes are bounded by a fraction of the core size and the vortex stretching
remains bounded. These findings may be used to explain the smooth behavior of superfluid vortices.
They also explain the stretching seen in numerical calculations. [S0031-9007(98)06172-9]

PACS numbers: 47.32.Cc

The instability of vortex pairs or vortex rings has by many overlapping vortex filaments of fixed core
been investigated by many authors. Crow [1] studiedstructure. Result (c) explains the wild stretching and
the long wave and short wave instability on antiparallelthe exponential growth of numerical vortex elements
vortex pairs arising in jet wakes. With a slightly different observed in numerical calculations.
model and a more accurate calculation of the self-induced We first construct a linear stability analysis of short
rotation of the short wave modes, Widnall, Bliss, and Tsawaves on corotating vortex pairs with fixed core structure.
[2] investigated the instability of antiparallel vortex pairs We then extend our analysis to the case of a single
and vortex rings. Recently Klein, Majda, and Damodararvortex filament immersed in a corotating vorticity field.
[3] studied the instability of long wave modes on bothlIf the growth rate of a mode is positive, the amplitude
antiparallel and corotating vortex pairs. It was foundof the mode will grow exponentially, not bounded by
that certain long wave modes are unstable on antiparalleny constant multiple of its initial amplitude. We call
vortex pairs but long wave modes are always stable osuch modes unstable. In this Letter, “long wave” means
corotating vortex pairs. However, the study in [3] is the wavelength is large compared to the core size; “short
based on a simplified model equation derived from arwave” means the wavelength is comparable to or smaller
asymptotic analysis, in which one of the assumptionghan the core size. The linear analysis will show that short
is that the wavelength is large in comparison with thewave unstable modes always exist on corotating vortex
core size. Because of this assumption, short wave moddaments. When unstable modes grow to an amplitude
are excluded from the model equation. In this Lettercomparable to the wavelength, their motion is no longer
we present the first study of short wave instability ongoverned by the linear analysis. Numerical simulations
corotating vortex filaments. We show that (a) thereand a refined analysis will reveal the long time evolution
always exist short wave unstable modes on corotatingf unstable modes: Neighboring vortices induce short
vortex pairs; (b) if the distance between filaments iswave unstable modes that lead to stretching and folding,
large compared with the core size, the amplitude obut an isolated vortex filament does not create hairpins or
unstable modes is bounded by the core size; and (c) if theild stretching.
filaments are close together, the growth of the unstable A corotating vortex pair consists of two parallel vortex
modes leads to wild stretching and folding. These result§laments of the same circulation. The unperturbed pair
suggest a plausible explanation for the different behaviorotates around its axis of symmetry with an angular
of classical and superfluid vortices, which has puzzledrelocity ()y. To illustrate the evolution of the perturbation
physicists for quite a long time. Classical vortex filamentswave relative to the unperturbed filaments, we put she
stretch and fold wildly, and form small scale structuresaxis parallel to the unperturbed pair and let ihe plane
while superfluid vortex filaments remain smooth [4-rotate with the pair.

7]. It has been found that superfluid vortex filaments Now we perturb the vortex pair by a sinusoidal wave
have a very small core siZe~O(A)] and a fixed core of small amplitude. The stability calculation can be per-
structure [5—7]. Result (b) implies that the short waveformed by considering the motion of the vortex filaments
instability is insignificant for superfluid vortex filaments that results from the perturbation. Let us focus on one
since the interfilament distance far exceeds the cor@lament of the pair. The vortex filament moves with a
size. This suggests that it is the tiny core size rathewelocity that is a combination of the self-induced rotation
than the quantization of circulation that is responsibleof the sinusoidally perturbed filament and the velocity in-
for the smooth behavior of superfluid vortices. In theduced by the other filament. For short wave perturbations,
vortex methods [8—12], the vorticity field is representedthe velocity induced at the vortex by the second filament
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y @ Expanding u(x,y) around (0,0), the position of the
unperturbed vortex, one has

= —— + +
we) = 5255 ]+ o6t )
o utf + o(x? +y?), 4
wherec, = f(b/8) andcy = 3f(b/8) — (b/8)f'(b/F).
In the neighborhood af, 0), the velocity fieldu(x, y) can
be approximated by the linear flow (denoted as ufjy.
This linear flow is a special case of the stagnation-point

—e

Axis of symmetry
of the unperturbed

vortex pair flows studied by Criminalet al. [14,15]. The streamlines
of u'F are a family of ellipses [solid lines in Figs. 1(a)
and 1(b)] described by?/c; + y*/cs = a.
(b) In the cylindrical (r, ) coordinate system, the radial
and the tangential componentswff are
I' ¢ —c .
LF _ _
u, ey > sin260 , (5)
r c +c ¢ — ¢
LF _ 1 2 2 1
' ug- = —r 27Tb2< 5 + > COS20>. (6)
uf,Rf:t" In addition tou™F, the perturbed vortex is also subject
H to a self-induced rotation (denoted as SR)
X SR _ r
= > uy. = —r 277620(]{6), (7

wherek is the wave number an@ is the nondimensional

FIG. 1. (a) The coordinate system. (b) Motion of the per-rotation frequency of the perturbation wave mode. The

turbed vortex. streamlines ofi" are a family of circles [dashed lines in
Figs. 1(a) and 1(b)].

can be well approximated by treating the second filament |nstability occurs when the total tangential velocity

as unperturbed. For simplicity, we put the origin of the,&F + 43® is zero and the vortex diverges in the radial
x-y plane at the unperturbed position of the vortex we fo-direction driven byu"F, as shown in Fig. 1(b).

cus on. Figure 1(a) shows a cross section of the perturbed solving co6 from u™ + w5} = 0 and using the fact

vortex pair. The filled circle on the right represents thethat coL6 is between—1 and 1, we obtain the instability
perturbed vortex. The second vortex is shown as unpeigndition

turbed by the filled circle on the left. As far as the motion 52 52
of the right filament is concerned, the contribution from 25 < Qkd) < —c1 . (8)
the perturbation on the left filament is negligible. b b

The induced velocity at the right vortex, y) by the ~When the self-induced rotation does not satisfy (8), the
left vortex observed in the nonrotating reference system igerturbation wave evolves periodically in time and its

given by the Biot-Savart law [13] maximum amplitude is bounded by a constant multiple
T f(d/8)[ —y of the initial amplitude, which means the vortex pair is
up(x,y) = Py [b . } (1)  stable outside the range of (8).

_ . For a vortex filament whose core vorticity distribution
whered = /(b + x)* + y2, b is the separation of the s derived from the second order cutoff functigtr) =
unperturbed pairg is the core sizel is the circulation, | — exp(—r3) [10], the dispersion relation{)(ks), is
and f(r) is a two-dimensional cutoff function determined shown in Fig. 2. The dispersion relations for other core

by the core vorticity distribution [10,11]. vorticity distributions are similar to the one shown here
The angular velocity of the unperturbed pair in theand are discussed in [16]. For each value>g$, an in-
nonrotating reference system is stability interval ofk8 is solved from inequality (8) and
QO = R f<£> 2) the dispersion relation. The shaded area in Fig. 3 marks
O 2/ \s ) the region of instability in théb /5, k8) plane. Figure 3
In the rotating reference system of Fig. 1(a), the in-indicates that for any value df/§, there are always un-
duced velocity is stable wave modes for the corotating vortex pair.
-y We have carried out numerical simulations of the evo-
u(x,y) = up(x,y) = QO[ b/2 + x] () |ution of small sinusoidal perturbations on a corotating
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locity induced by the surrounding vorticity field. The ve-
locity field induced by a second order Gaussian vorticity
distribution, if linearized around a point and viewed in the
reference system attached to that point, is a straining flow
[16]. When the surrounding vorticity field is discretized
and represented by a set of numerical vortex filaments,
our numerical results demonstrate that the streamlines of
the linearized flow are ellipses. As the vorticity field is
approximated by more numerical vortex filaments, these
ellipses become flatter, and the linearized flow is approxi-
mately a straining flow [16]. The minimum tangential
velocity of a straining flow is zero. From Fig. 2, we see
that there are short wave modes whose rotation frequency
is negative (opposing the straining flow) and close to zero.
Therefore there are always short wave modes whose self-
induced rotation can balance the straining flow in the tan-

o _ . gential direction. Whem§® + u3® = 0, the perturbation
vortex pair using the thin-tube vortex filament methodmode stops rotating and diverges along the radial direc-
[17]. The instability condition (8) is verified in numerical tjon, driven by the radial component of the straining flow

simulations [16]. Furthermore, the numerical simulations
reveal the long time behavior of the unstable mode for

1

different values ofb /5. Whenb/§ is above 5, the am- (a)
plitude of the unstable mode grows to a maximum, falls
back, then starts growing and repeats the pattern. Thi 08¢
vortex filaments stretch and contract alternately. No wild -3
stretching is observed [Fig. 4(a)]. Whéry/s is below gos_
2, the unstable mode grows without bound [Fig. 4(b)]. O™
The vortex filaments stretch catastrophically and develof o
hairpin-shaped small scale structures [Fig. 4(b) inset]. At 50.4.
the early stage of instability, the unstable mode grows ex- EL
ponentially forming hairpins on corotating filaments. Af- <
ter that, the vortex stretching and folding are more fueled 0.2} /
by the pairing of antiparallel parts of each hairpin. Siggia L
and Pumir [18,19] showed that pairing of two antiparallel 0
pieces leads to the collapse of a vortex filament. 0
Similarly, one can study the short wave instability on a
single vortex filament with fixed core structure immersed 4
in a corotating vorticity field. The motion of the filament
is the combination of the self-induced rotation and the ve- 55|
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FIG. 3. Region of instability in théb /8, k5) plane.

FIG. 4. Time evolution of unstable modes in the coordinate
system of Fig. 1. Dashed line: amplitude in thedirection.
Solid line: amplitude in they direction. (a)b/8 = 10. (b)
b/8 = 2. The inset shows the configuration of the vortex pair.
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