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Long-Distance Contributions to theK; — u*u~ Decay Width
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The dispersive two-photon contribution to th&;, — u*u~ decay amplitude is analyzed,
using chiral perturbation theory techniques and la¥ge-considerations. A consistent descrip-
tion of the decayswm’ — e*te™, n — u*u~, and K, — u*u~ is obtained. As a by-product,
one predicts B(y — ete”) = (5.8 +02) X 107° and B(K, — ete”) = (9.0 = 0.4) X 10712,
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The rare decak; — u* u~ has deserved a significant It is convenient to consider the normalized ratios
theoretical interest during the last three decades. It rep- L
resents a potentially important channel to study the WeakR(P ) = B(P —1I"1")

interaction within the standard model (SM), as well as pos- B(P — yy)

sible effects of new physics, mainly in connection with a m\2

flavor-changing neutral currents ag@ violation. = 2,8(— M—’) [F(P — IT17)?, (3)
T Mp

This decay proceeds through two distinct mechanisms: a

long-distance contribution from thy intermediate state where 8 = /I — 4m}/M2. The on-shelly intermedi-

and a short-distance part, which in the SM arises fromye gtate generates the absorptive contribution [6]
one-loop diagramsW boxes, Z penguihsnvolving the

weak gauge bosons. Since the short-distance amplitude is L T 1 -8
sensitive to the presence of a virtual top quark, it could ImlF(P — 1717)] = E |n<1 T ,3>' (4)
be used to improve our present knowledge on the quark-

mixing factorV,,; moreover, it offers a window into new- Using the measured branching ratio [B(K;, — yy) =
physics phenomena. This possibility has renewed thé5.92 + 0.15) X 1074, this implies the so-callednitarity
interest in the study of th&; — u*u~ process in the bound

past years.
The short-distance SM amplitude is well known [1]. In- B(K; — p* ™) = B(Kr — " 17 )abs
cluding QCD corrections at the next-to-leading logarithm o
order [2], it implies [3] = (707 £ 0.18) X 107", (9)
B(K, — pp7)sp = 0.9 X 10%(pg — p)’ Comparing this result with the experimental value in
me(my) N> Ve Eq. (2), we see thaB(K; — u ' u™) is almost saturated
<17O GeV> <0.040> ) by the gbsorp'give contriputiqn.
(1) One immediate question is whether the small room left

for the dispersive contributionB(K; — utu ™ )ais =
where pg =~ 1.2 and p = p(1 — A2/2), with p and A (0.1 £0.5) X 107, can be understood dynamically.
the usual quark-mixing parameters, in the WolfensteidNaively, one would expect a larger value just from the
parametrization [4]. The deviation ¢f, from 1 is due intermediat€y mechanism. This has motivated some re-
to the charm contribution. Using the presently allowedcent speculations [8] about a possible cancellation between
ranges form, and the quark-mixing factors, one gets [3] the long- and short-distance dispersive amplitudes, which
B(K;, — ptu)sp = (1.2 = 0.6) X 107%. If this num-  could allow for additional new-physics contributions at
ber is compared with the measured rate [5] short distances. .
The obvious theoretical framework to perform a

BK, — pu u™)=(72%0.5) x 107, (2)  well-defined analysis of the long-distance part is chiral
. ) , perturbation theory (ChPT). Unfortunately, the chiral sym-
it is seen that the decay process is strongly dominated By,etry constraints are not powerful enough to make an ac-
the long-distance amplitude. curate determination of the dispersive contribution [9—11].

Clearly, in order to extract useful information aboutthg prohlem can easily be understood by looking at the
the short-distance dynamics it is first necessary to hang — yy amplitude

an accurate (and reliable) determination of tkig —
y*y* — " u~ contribution. AKL — yy) = c(q}, D) e" 7 €14€2091p920 »  (6)
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which, at lowest order in momenta, proceeds througttorrections are more efficiently taken into account within
the chaink; — 7% n,n»’ — 2y. The lowest-order— theU(3); ® U(3); framework [19].

O(p*)—chiral prediction, can only generate a constant Taking sy = —1/3 (§ = —19.5°), the n-pole contri-
form factorc(q?, ¢3); it thus corresponds to the decay into bution in Eq. (7) is proportional tol — p,) and vanishes
on-shell photongg = ¢3 = 0) [12], in the nonet-symmetry limit; the large and positivg
contribution results then in.g = 1.80 for p, = 1. With
2Ggafy 0 = p, = 1, then andn’ contributions interfere destruc-
c(0,0) = (1 = r2) Creds (7)  tively andc,eq is dominated by the pion pole. One would

getcreq = 1 for p, = 3/4.
. The measure&; — yy decay rate [7] corresponds to
Crea = 1= 302 - )( 0 = 2250 (co + 292 pasy) lc(0,0)] = (3 51 = 0.05) X 1079 GeV 1. With |Gg| =
-r2 ) 9.1 X 1076 GeVv 2, obtalned from theo (p?) analysis of
(2\/§c0 + 59) (V2 pncy — s9), K — 2 [13], this impliescrg = (0.84 = 0.11). How-
ever, the fitted value ofGg| gets reduced by about 30%
) S _ when O(p*) corrections to thek — 27 amplitudes are
where rp = Mp/Mk,, cy = cosflp, and s = sinfp,  taken into account [21]. This sizable shift results mainly

(1 -2

3(r,, —

with 6p =~ —20° tt;ez n-n’ mjxing angle. The global from the constructiver 7 rescattering contribution, which
parameteiGg = 27!/ GrVuaV,s8s characterizes [13] the is obviously absent ik, — yy. Thus, we should rather
strength of the weal S = 1 transitionk;, — 7°, 7, n’. use the corrected (smallefl5s| determination, which

In Eq. (7) we have factored out the contribution of theleads tociq = (1.19 * 0.16).

. . . . . red
pion pole, which normalizes the dimensionless reduced [ eaving aside numerical details, we can safely conclude

amplitudec,q. The second and third terms i.q corre-  that the physicalk, — yy amplitude, with on-shell
spond to thep andn’ contributions, respectively. Nonet photons, is indeed dominated by the pion pale; ~ 1).
symmetry (which is exact in the largéc limit) has been  Although the exact numerical prediction is sensitive to
assumed in the electromagnelig vertices; this is known several small corrections [22pk # 1, fr # fy # fu's

to provide a quite 900d description of the anomalBus> 5, + —1/3) and therefore is quite uncertain, the needed
2y decayP = 7°,n,n'). Possible deviations of nonet cancellation between thg and 5’ contributions arises in
symmetry in the nonleptonlc weak vertex are parametrizeg natural way and can be fitted easily with a reasonable

throughp, # 1. choice of symmetry-breaking parameters.

In the standard SB), ® SU(3)z ChPT, then' contri- The description of thek; — yy transition with off-
bution is absent and, = 0; therefore,c.q = 3M; + sheII photons isa priori more complicated because the
M: — 4M3%), which vanishes owing to the Gell-Mann— q12 dependence of the form factor originates from higher-
Okubo mass relation. The physic&l, — yy ampli- order terms in the chiral Lagrangian. This is the reason

tude is then a higher-order@{ p%)—effect in the chiral why only model-dependent estimates of the dispersive
counting, which makes it difficult to perform a reliable K; — [*/~ transition amplitude have been obtained so
calculation. far. Atlowestorderin momenta(q?, g3) = ¢(0,0); thus,
The situation is very different if one uses instead athe (divergent) photon loop can be explicitly calculated
U(3), ® U(3)y effective theory [14], including the singlet up to a global normalization, which is determined by the
7, field. The large mass of the’ originates in the known absorptive contribution [i.e., by the experimental
U(1)4 anomaly which, although formally ad(1/N¢), is  value ofc¢(0,0)]. The model dependence appears in the
numerically important. Thus, it makes sense to performocal contributions from direck; /* [~ terms in the chiral
a combined chiral expansion [15] in powers of momenta_agrangian [9,11] (allowed by symmetry considerations),
and 1/N¢, around the nonet-symmetry limit, but keeping which reabsorb the loop divergence.
the anomaly contribution (i.e., the; mass) together It would be useful to have a reliable determination in
with the lowest-order term. In fact, the usual successfusome symmetry limit. The largd¢ description ofK;, —
description of thep /n’ — 2y decays [16] corresponds to y*y™* provides such a possibility. At leading order, this
the lowest-order contribution within this framework, plus process occurs through the?, , n’ poles, as represented
some amount of symmetry breaking througth# f,» #  inFig. 1. Therefore, the problematic electromagnetic loop
f=- The mixing between theyg and n, states provides in Fig. 1(a) is actually the same governing the decays
a large enhancement of the— 2y amplitude, which is 7% — e*e™ and » — u* ™, and the unknown local
clearly needed to understand the data. In the standabntribution [Fig. 1(b)] can be fixed from the measured
SU3);, ® SUQ3)r framework, then’ is integrated out, rates for these transitions [23,24]. In fact, the same
and its effects are hidden in higher-order local couplingombination of local chiral couplings shows up in both
[17]; since then; and ng fields share the same isospin decays [23], leading to a relation that is well satisfied by
and charge, the singlet pseudoscalar does affectythe the data.
dynamics in a significant way, which is reflected in the Although the »’ — [~ transition introduces addi-
presence of important higher-order corrections [18]. Thes&onal chiral couplings, they are suppressed by at least
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FIG. 1. (a) Photon loop and (b) associated counterter

contributions to thek; — u™ u~ process.

one more power ofl /Nc. Thus, in the largeVe limit
the different electromagneti® — [*/~ decays get re-
lated through the same counterterms [23],

3ia? -
3;‘72 (y*ysl)
X {x1 Tr(Q*{UT,a,U})
+ x2Tr(QU'Qa, U — Qa,UTQU)}, (8)

where 0 = diag2/3, —1/3,—1/3) is the quark electro-
magnetic charge matrix arld = exp(iv/2 ®/f) the usual

Lc‘t. =

U(3), ® U(3)x matrix describing the pseudoscalar nonet.
Nonet symmetry should provide a good estimate of the

ratio R(K; — [717). SinceK; — vyvy is dominated by

the pion pole, we can reasonably expect that symmetr
In -
any case, this symmetry limit allows us to investigate® A -
whether the tiny dispersive contribution allowed by the

breaking corrections would play a rather small role.

data is what should be expected from theintermediate
state.

In this limit, all R(P — ["17) ratios are governed by

the same dispersive amplitude [25],

RIF(P — 1T17)] = ﬁ |n2<%>
~ g tlGT)
2

w ny

where y(u) = —[xi(n) + x3(n) + 14]/4 is the rele-
vant local contribution, withy/(w) (i = 1,2) the cor-
responding chiral couplings renormalized in théS
scheme. Theu dependence of thg(w) and Inim;/u)

terms compensate each other, so that the total amplltuq& -t

is u independent.

Table | shows the fitted values of (M,) from the
three measured ratioRB(7° — e*e™), R(p — u u™),
andR(K; — u*u™). Subtracting the known absorptive
contribution, the experimental data provide two possible
solutions for each ratio; they correspond to a total posi-
tive (solution 1) or negative (solution 2) dispersive ampli-
tude. We see from the table that the second solution from
the decayr® — e¢*e™ is clearly ruled out; owing to the
smallness of the electron mass, the logarithmic loop con-
tribution dominates the dispersive amplitude, which has
then a definite positive sign [an unnaturally large and nega-
tive value of y(M,) is needed to make it negative]. The
large experimental errors do not allow one to discard at
this point any of the other solutions: the remaining value
from 79 — e*e™ is consistent with the results from the
n— wu andkK; — u* u~ decays, and these are also
in agreement with each other if the same solution (either

rT;[he first or the second) is taken for both. We see that,
In any case, the three experimental ratios are well de-
scribed by a common value ¢f(M,). In this way, the
experimentally observed small dispersive contribution to
the K, — w* u~ decay rate fits perfectly well within the
largeV description of this process.

We have not considered up to now the short-distance
contribution to thek; — u*u~ decay amplitude [3].
This can be done through a shift of the effectiyéM,)
value [27],

X(Mp)eff = /\/(Mp) - ‘SXSD (10)
i (m,) >1~56<|Vch|>2
170 GeV 0.040/ °

or the allowed rangép| = 0.3, one hasd ysp = 1.8 *
0.6, which allows one to exclude solution 2 for(M),)
}pbtained frommp — u* . Solution 1, on the contrary,
is found to be compatible with the results froky —
and can be used to get a constraint &ysp.
Indeed, taking as the best determination

Sxsp = 1.7(py — m(

x(M,) = 55708, (11)
the first solution fork; — u* u~ leads to
Sxsp = 22711, (12)

in agreement with thé ysp value quoted above. The sec-
ond solution fork; — u™ u~ appears to be less favored,
yielding é ysp = 3.6 = 1.2; this shows a discrepancy
of about 1.40- with the short-distance estimate. Notice

TABLE |. Fitted values of y(M,) from different R(P —
[*17) ratios. The numbers quoted f&f, — u*u~ refer to
the differencey(M,) — 6 xsp.

x(M,) [Solution 1] x(M,) [Solution 2]

70— eTe” 4%t —24 £ 5
n—ptu 55710 —0.8%4%
33759 1.9797
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