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What is a Gauge Transformation in Quantum Mechanics?
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In classical theory, a physical state is an equivalence class under gauge transformations. Is the
true in quantum theory? The physical quantum states are the solutions of Dirac’s quantum cons
equation. They cannot be constructed as equivalence classes under the “simple” gauge transform
generated by the Dirac constraints. However, we show here that they can be constructed as equiv
classes under suitably defined “complete” gauge transformations. The complete gauge transform
are generated by the action of the quantum constraints on arbitrary individual components of the
[S0031-9007(98)06161-4]
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In classical mechanics, a gauge invariant state can
seen as an equivalence class of gauge-non-invariant sta
Two gauge-non-invariant states are equivalent if there
a gauge transformation sending one into the other. In t
canonical theory, the gauge transformations are genera
by the first-class constraints. The same fails to be tru
in quantum mechanics: Dirac’s quantum constraintsC
generate the gauge transformationc ! eitCc on the
quantum states, but physical states cannot be seen
equivalence classes under the equivalence relation

c , eitCc . (1)

Rather, physical states are the states which are annihila
by the Dirac constraints [1].

We show in this Letter that one can see physical stat
as equivalence classes of gauge-non-invariant states in
quantum theory as well. But the equivalence relation
more complicated than (1). We call this alternative equiva
lence relation a “complete” quantum gauge transformatio
Roughly, a complete quantum gauge transformation
defined as follows.f , c if and only if there are states
ri and real numbersti such that

c ­
X

i

ri ,

f ­
X

i

eitiCri .

(2)

That is, a complete gauge transformation is obtained
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gauge transforming linear components independently.
show below that the space of the solutions of Dirac
constraints is (naturally identified with) the space of t
equivalence classes defined by the equivalence relation

Quantum gauge transformations in a finite dimension
Hilbert space.—Let us assume that we have a unitary re
resentationU of a (gauge) groupG in a Hilbert space
H . In this section we disregard all complications due
the infinite dimensionality ofH . The generators of the
representation are the Dirac constraints, and the spac
physical statesHPh is defined as the kernel of the Dira
constraints [1], namely, as the trivial representation ofG
in H . Vectors inHPh are gauge invariant, and represe
physical states. A gauge-non-invariant state can roug
be seen as a state in a particular gauge. Physical
dictions of a classical gauge theory are given by gau
invariant quantities; but in concrete calculations, we us
ally employ a gauge-non-invariant description—leavin
the task of extracting the physical quantities at the end.
would be nice to be able to do the same in the quant
theory, namely, to work onH without recurring toHPh,
keeping track of gauge equivalence. Therefore, the pr
lem we pose here is to see ifHPh can be viewed as (is
naturally isomorphic to) a space of equivalence classe
H , under suitable gauge transformations generated byG.

SinceHPh is a linear subspace ofH, the orthogonal
projection p on HPh provides a natural definition of
quantum gauge equivalence inH : f , c if and only if
© 1998 The American Physical Society 4613
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psfd ­ pscd . (3)

We haveHPh ­
H
, . Thus, our problem is to under-

stand the precise relation between this equivalence
the transformations generated byU in H . Can we in-
terpret this equivalence as the possibility of being gau
transformed, as we do for the classical theory? More p
cisely, can we construct the equivalence relations,d di-
rectly from U without having to solve for the invariant
states first? Clearly, if there exists ag [ G such that

f ­ Ufggc , (4)

then f , c. However, the converse is not true i
general. Namely,f and c can be equivalent under (3
even if there is noUfgg that maps one into the other
Therefore, the equivalence relation (3) is different tha
the equivalence relation (1).

To get some intuition on how this may come abou
consider the following simple example. Let the grou
Us1d act on R3 by generating rotations around thez
axis. (We consider here a real, rather than comple
Hilbert space, for simplicity.) The invariant subspace
the one-dimensionalz axis. The equivalence classes und
(3) are the planesz ­ const. On the other hand, the
equivalence classes under (1) are the orbits of the actio
the group, which are the circles (z ­ const,x2 1 y2 ­
const), parallel to thez ­ 0 plane and centered on the
z axis.

Clearly, it is the linear structure of quantum mechani
that differentiates gauge equivalence (being on the samz
plane) from the fact of belonging to the same orbit (bein
on the same circle): Two distinct orbits on the samez
plane are in the same gauge equivalence class.

This example suggests that two quantum states are qu
tum gauge equivalent not only if they can be transform
into each other by a finite rotation, but also if they ca
be decomposed into a linear combination of vectors wh
can be independently rotated into each other (it is easy
see that by rotating components independently, any t
vectors on the samez plane can be transformed into eac
other). We make this intuition concrete as follows.

Theorem.—c andf are equivalent [that is, (3) holds]
if and only if there exist vectorsri [ H and group
elementsgi [ G such that

c ­
X

i

ri ,

f ­
X

i

Ufgigri .

(5)

Demonstration.—To prove that (5) implies (3) is im-
mediate: It suffices to notice thatpUfgg ­ p . To prove
the converse, we begin by proving that any vectorr in the
kernelK of p can be written as

r ­
X

i

sUfgigri 2 rid . (6)
4614
and

ge
re-

n
)
.
n

t,
p

x,
is
er

n of

cs
e
g

an-
ed
n

ich
to

wo
h

Let L be the space of all vectors that can be written as
(6). L is a linear subspace, it is invariant underUfgg and
is contained inK. Let S be the subspace ofK orthogonal
to L. S is a linear subspace, and it is invariant underUfgg
as well. A vectorr in S cannot beU invariant because
it is in K, thereforex ­ Ufggr 2 r is different from
zero. But sinceS is linear andU invariant,x is also in
S. But x is also inL, by definition ofL. SinceL andS
are orthogonal,r has to be zero. ThereforeS is empty,
K ­ L and all vectors inK can be written as in (6). Now,
if psfd ­ pscd, thensf 2 cd [ K; therefore, there are
gi andri such that

f 2 c ­
X

i

sUfgigri 2 rid . (7)

It follows that

f 2
X

i

Ufgigri ­ c 2
X

i

ri ; r . (8)

By adding r to both sums (with a correspondingg ­
identity), we have (5), Q.E.D.

Thus, we candefinethe equivalence relation:f , c

if and only if there existri [ H andgi [ G such that
(5) holds. And we have

HPh ­
H

,
. (9)

Intuitively, a quantum state is a linear quantum superp
sition of classical configurations (a wave function ove
configuration space). It is therefore reasonable that
may gauge transform each individual component of t
superposition independently, without changing the gau
invariant quantum state.

We call the transformationc ! Ufggc a “simple”
quantum gauge transformation, and the transformation

c ­
X

i

ri ! f ­
X

i

Ufgigri (10)

a complete quantum gauge transformation. We ha
proven that physical quantum states cannot be viewed
equivalence classes under simple quantum gauge trans
mations, but they can be viewed as equivalence clas
under complete quantum gauge transformations.

Infinite-dimensional issues.—Let us sketch how
the above is realized in a simple example of infinite
dimensional Hilbert space. LetH be the spaceL2fT2g of
functionscsa, bd on a two-torus, and let us have a singl
constraintC ­ i

≠

≠b . We know what goes on in this case
The a variable is physical, theb variable is gauge. The
physical information is contained in thea dependence of
the state, while theb dependence is arbitrary. Two state
must be gauge equivalent if they have, in a suitable sen
the samea dependence. Thus, arbitrarily “moving piece
of csa, bd around inb” is a gauge transformation. The
group G, however, acts onH by rotating statesrigidly
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in the b direction: Usgdcsa, bd ­ csa, b 1 gd. This
is only a small fraction of the physical gauge equivalenc
Simple gauge transformations are rigid displacemen
of the state inb; complete gauge transformations ar
arbitrary deformations of the state in theb direction. It
is easy to see that, in this case,L is formed by all of the
states such that

R
csa, bddb ­ 0, namely, by all of the

b harmonics higher than zero. Indeed, harmonics high
than zero can all be set to zero with a complete gau
transformation of the form (5): It is sufficient to write the
harmonic as the sum of two equal terms, and rotate o
of the two by half a wavelength.

In infinite-dimensional spaces the well-known infinit
subtleties of quantum mechanics may also appear. Z
can be in the continuum spectrum of the Dirac constrain
and therefore physical states appear as generalized st
This happens, for instance, if in the example above w
replace the two-torus withR2. We have then to use
continuum-spectrum techniques, such as Gel’fand trip
[2] or something similar. In particular,HPh is not a linear
subspace ofH , but a linear subspace of a suitable closu
H of H , which can be defined as the dual of a suitab
dense subspace ofH .

In this case, the analysis of the previous section can
repeated with minor modifications, usingH . U acts on
H by duality. HPh is theU-invariant subspace ofH .
Let L be the subspace ofH formed by the vectors that can
be written in the form (6), where now the sum may conta
an infinite numbers of terms, and the required convergen

is in H , not in H . ConsiderS ­ H
HPh©L . As before, it

is easy to see thatS is linear andU invariant. If r is a
nonvanishing vector inS, it cannot beU invariant (because
it would be in HPh) and x ­ Ufggr 2 r is different
from zero. ButS is left invariant as well; therefore,x [ S
and not in L, but x is also in L, by definition of L;
therefore,S is empty andH ­ HPh © L.

Notice that even ifc and f are in H , in general
the ri ’s are in H and not inH . More precisely, the
right-hand side of (7) is obviously inH if c andf are;
but when we split the sum into the two sums in (8), th
individual sums need not converge inH . Thus, r in
(8) may be a generalized vector. Therefore we can s
define HPh as the space of the equivalence classes
vectors inH under the equivalence relation (5), but w
must allow for decompositions in generalized vectorsri

as well.
However, the analysis above suggests that we c

avoid the cumbersome introduction ofH and generalized
vectors altogether. This follows from the fact that spa
L of the vectors that can be written in the form (6) i
a proper subspace ofH . Thus, we can defineL first,
and construct the linear spaceHPh as the space of the
equivalence classes of vectors inH , equivalent under the

addition of vectors inL, namely, asH

L . In other words,
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we can define the equivalence relation by (7) instead
by (5). This is done as shown below.

Given an infinite-dimensional Hilbert spaceH and a
unitary representationU of a groupG over it, we defineL
as the closed linear subspace ofH formed by the vectors
that can be written as

r ­
X̀
i­1

sUfgigri 2 rid . (11)

We then call two states gauge equivalent if their diffe
ence is inL, and define

HPh ­
H

L
. (12)

The spaceHPh is defined in this way without recurring to
generalized vectors or other extensions ofH . This space
is naturally isomorphic to the space of generalized vecto
that solve the Dirac constraints.

To clarify how this may happen, consider the following
In finite dimensions, ifL is a proper subspace ofH , then
L' the orthogonal complement ofL (that is, the set of
vectors orthogonal toL) is nontrivial, and

H ­ L' © L . (13)

We can thus identifyL' with H

L . In infinite dimensions,
the orthogonal complementL' of a subspaceL may
be trivial (contain only the zero vector) even ifL is
smaller thatH . But H

L exists nevertheless, and it is
naturally identifiable with the space ofgeneralizedvectors
perpendicular toL. Gauge invariance of a generalize
vector means being perpendicular toL. Therefore, if we
constructHPh by requiring gauge invariance (solving the
Dirac constraints), we need generalized vectors. But
we constructHPh as the space of the gauge equivalen
classes, we may not need to introduce generalized sta
We leave the analysis of this possibility for further work

In conclusion, we have introduced the notion of “com
plete quantum gauge transformation.” A complete gau
transformation is obtained by arbitrarily decomposing
vector in components and acting with the exponentiat
constraints on each component independently. Name
two vectors are gauge equivalent if Eq. (5) holds. We ha
shown that Dirac’s physical state spaceHPh can be ob-
tained as the space of the equivalence classes of states
der complete quantum gauge transformations. Therefo
we suggest that the natural answer to the question in
title is provided by the complete gauge transformations.

In the classical Hamiltonian theory of constraine
systems, one has to take two steps in order to reduce
full phase spaceG to the physical phase spaceGPh. First,
solve the constraint; that is, find the constraint surfa
C in G. Second, factor away the gauge transformatio
that is, defineGPh as the space of the gauge orbits i
C . Dirac showed that in the quantum theory a sing
4615



VOLUME 80, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 25 MAY 1998

e
step is sufficient: The physical states are the ones th
solve the quantum constraints. Here we have show
that one can take this single step also by factoring aw
(complete) quantum gauge transformations. Thus, in t
classical theory we find the physical states by solving th
constraintsand factoring away the gauge transformations
In the quantum theory we find the physical states b
solving the constraintsor factoring away the gauge
transformations.
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