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What is a Gauge Transformation in Quantum Mechanics?
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In classical theory, a physical state is an equivalence class under gauge transformations. Is the same
true in quantum theory? The physical quantum states are the solutions of Dirac’s quantum constraint
equation. They cannot be constructed as equivalence classes under the “simple” gauge transformations
generated by the Dirac constraints. However, we show here that they can be constructed as equivalence
classes under suitably defined “complete” gauge transformations. The complete gauge transformations
are generated by the action of the quantum constraints on arbitrary individual components of the state.
[S0031-9007(98)06161-4]
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In classical mechanics, a gauge invariant state can bgauge transforming linear components independently. We
seen as an equivalence class of gauge-non-invariant statesow below that the space of the solutions of Dirac’s
Two gauge-non-invariant states are equivalent if there isonstraints is (naturally identified with) the space of the
a gauge transformation sending one into the other. In thequivalence classes defined by the equivalence relation (2).
canonical theory, the gauge transformations are generatedQuantum gauge transformations in a finite dimensional
by the first-class constraints. The same fails to be truélilbert space—Let us assume that we have a unitary rep-
in quantum mechanics: Dirac’s quantum constraifits resentationU of a (gauge) groups in a Hilbert space
generate the gauge transformatign— ¢y on the Z{. In this section we disregard all complications due to
quantum states, but physical states cannot be seen #e infinite dimensionality ofH{. The generators of the
equivalence classes under the equivalence relation representation are the Dirac constraints, and the space of

W~ ey 1) physical statesHp, is defined as the kernel of the Dirac
constraints [1], namely, as the trivial representatiorGof
Rather, physical states are the states which are annihilatqqqlg-[_ Vectors in"]—[Ph are gauge invariant, and represent
by the Dirac constraints [1]. physical states. A gauge-non-invariant state can roughly

We show in this Letter that one can see phySicaI statege seen as a state in a particular gauge. Physical pre-
as equivalence classes of gauge-non-invariant states in tQ:tions of a classical gauge theory are given by gauge
quantum theory as well. But the equivalence relation isnvariant quantities; but in concrete calculations, we usu-
more ComplicatEd than (1) We call this alternative equiva'a”y employ a gauge_non_invariant description_leaving
lence relation a “complete” quantum gauge transformationthe task of extracting the physical quantities at the end. It
Roughly, a complete quantum gauge transformation igyould be nice to be able to do the same in the quantum
defined as follows.¢ ~ ¢ if and only if there are states theory, namely, to work odH without recurring taFpy,
pi and real numberg such that keeping track of gauge equivalence. Therefore, the prob-

v = Z pi lem we pose here is to see fp, can be viewed as (is
- ” naturally isomorphic to) a space of equivalence classes in
' (2) JH , under suitable gauge transformations generated.by
b = Z e"Cp; . Since Hpy, is a linear subspace df, the orthogonal
i projection 7 on Hp, provides a natural definition of
That is, a complete gauge transformation is obtained byuantum gauge equivalence : ¢ ~ i if and only if
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m(p) = 7 (). (3) Let L be the space of all vectors that can be written as in
9 I , (6). L is alinear subspace, it is invariant undérg] and
We have Jipy = <. Thus, our problem is to under- js'contained ink. LetS be the subspace & orthogonal

stand the precise relation between this equivalence and ; = sis a linear subspace, and it is invariant undég |
the transformations generated byin #{. Can we in- 5 \yell, A vectorp in S cannot beU invariant because

terpret this equivalence as the pos.sibility of being gaugg s in K, thereforey = Ulglp — p is different from
transformed, as we do for the classical theory? More presqrq  But sinces is linear andy/ invariant y is also in
cisely, can we construct the equivalence relatien di- ¢ gyt y is also inL, by definition ofL. SinceL and.s

rectly from U without having to solve for the invariant 5. orthogonalp has to be zero. Thereforgis empty
states first? Clearly, if there existga= G such that K = L and all vectors irk can be written as in (6). Now,

¢ = Ulgly, (4) if w(¢) = m(y), then(¢ — ¢) € K; therefore, there are

. . g; andp; such that
then ¢ ~ . However, the converse is not true in & Pi

general. Namelyg and ¢ can be equivalent under (3)
even if there is noU[g] that maps one into the other.
Therefore, the equivalence relation (3) is different than
the equivalence relation (1). It follows that

To get some intuition on how this may come about,
consider the following simple example. Let the group b =D Ulglpi=v - pi=p. (8)
U(1) act on R by generating rotations around the i i
axis. (We consider here a real, rather than complexBy adding p to both sums (with a corresponding=
Hilbert space, for simplicity.) The invariant subspace isidentity), we have (5), Q.E.D.
the one-dimensionalaxis. The equivalence classes under Thus, we cardefinethe equivalence relationip ~ ¢
(3) are the planeg = const. On the other hand, the if and only if there exisip; € H andg; € G such that
equivalence classes under (1) are the orbits of the action ¢5) holds. And we have

¢ — ¢ = (WUlsiloi = pi). @

the group, which are the circles & const,x?> + y? = N
const), parallel to the = 0 plane and centered on the Hpp, = . Q)
z axis. ~

Clearly, it is the linear structure of quantum mechanicdntuitively, a quantum state is a linear quantum superpo-
that differentiates gauge equivalence (being on the samesition of classical configurations (a wave function over
plane) from the fact of belonging to the same orbit (beingconfiguration space). It is therefore reasonable that we
on the same circle): Two distinct orbits on the same may gauge transform each individual component of the
plane are in the same gauge equivalence class. superposition independently, without changing the gauge

This example suggests that two quantum states are quaimvariant quantum state.
tum gauge equivalent not only if they can be transformed We call the transformationy — U[g]y a “simple”
into each other by a finite rotation, but also if they canquantum gauge transformation, and the transformation
be decomposed into a linear combination of vectors which
can be independently rotated into each other (it is easy to g => pi—¢=> Ulglpi (10)
see that by rotating components independently, any two i i
vectors on the sameplane can be transformed into each 4 complete quantum gauge transformation. We have

other). We make this intuition concrete as_follows. proven that physical quantum states cannot be viewed as
_ Theorem—¢ and ¢ are equivalent [that is, (3) holds] eqyivalence classes under simple quantum gauge transfor-
if and only if there exist vectorp; € H and group mations, but they can be viewed as equivalence classes
elements; € G such that under complete quantum gauge transformations.
Infinite-dimensional issues-Let us sketch how
¢ = Z Pi, the above is realized in a simple example of infinite-
' (5)  dimensional Hilbert space. Lé be the spacé,[T?] of
b = Z Ulgipi - functionsy («, ,B)aon a two-torus, and let us have a single
i constraintC = ¢ 7z. We know what goes on in this case:
Demonstration—To prove that (5) implies (3) is im- The « variable is physical, th@ variable is gauge. The
mediate: It suffices to notice thatU[g] = . To prove physical information is contained in the dependence of
the converse, we begin by proving that any vegtan the the state, while thg8 dependence is arbitrary. Two states

kernelK of 7 can be written as must be gauge equivalent if they have, in a suitable sense,
the sameax dependence. Thus, arbitrarily “moving pieces
p = Z(U[g,»]p,- - pi). (6) of ¢(a, B) around ing” is a gauge transformation. The

group G, however, acts orf{ by rotating statesigidly
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in the B direction: U(y)y(a, B) = ¢ (a, B + y). This we can define the equivalence relation by (7) instead of

is only a small fraction of the physical gauge equivalenceby (5). This is done as shown below.

Simple gauge transformations are rigid displacements Given an infinite-dimensional Hilbert spacd and a

of the state inB; complete gauge transformations areunitary representatioti of a groupG over it, we defineL

arbitrary deformations of the state in tifedirection. It  as the closed linear subspacef formed by the vectors

is easy to see that, in this cadejs formed by all of the that can be written as

states such thaf (a, 8)dB = 0, namely, by all of the ©

B harmonics higher than zero. Indeed, harmonics higher p = Z (Ulgilpi — pi). (11)

than zero can all be set to zero with a complete gauge i=1

transformation of the form (5): It is sufficient to write the h I ival it their diff

harmonic as the sum of two equal terms, and rotate on\é\/e then call two states gauge equivaient It their ditter-
eénce is inL, and define

of the two by half a wavelength.

In infinite-dimensional spaces the well-known infinite H

subtleties of quantum mechanics may also appear. Zero Hen = AR (12)

can be in the continuum spectrum of the Dirac constraints

and therefore physical states appear as generalized statébe spaceHpy is defined in this way without recurring to

This happens, for instance, if in the example above weeneralized vectors or other extensionsféf. This space

replace the two-torus wittlR?. We have then to use is naturally isomorphic to the space of generalized vectors

continuum-spectrum techniques, such as Gel'fand triplethat solve the Dirac constraints.

[2] or something similar. In particulatHpy, is notalinear ~ To clarify how this may happen, consider the following.

subspace ofH, but a linear subspace of a suitable closuren finite dimensions, if_ is a proper subspace ¢, then

H of H, which can be defined as the dual of a suitableL . the orthogonal complement df (that is, the set of
dense subspace . vectors orthogonal td) is nontrivial, and

In this case, the analysis of the previous section can be -1 el (13)
repeated with minor modifications, usisy. U acts on + '

FH by duality. Hepy is the U-invariant subspace o . we can thus identify. , with % In infinite dimensions,
Let L be the subspace 6 formed by the vectors that can the orthogonal complement ; of a subspace. may
be written in the form (6), where now the sum may containbe trivial (contain only the zero vector) even If is

an infinite numbers of terms, and the required convergencgmailer that#{. But % exists nevertheless. and it is

isin H, notin . ConsiderS = ﬁ As before, it  naturally identifiable with the space géneralizedsectors
is easy to see that is linear andU invariant. If p is a Perpendicular toL. Gauge invariance of a generalized
nonvanishing vector if, it cannot bel/ invariant (because Vector means being perpendicularto Therefore, if we

it would be in Hpy) and y = Ulglp — p is different cqnstruct.?'—[ph_by requiring gauge invariance (solving the_
from zero. Buts is leftinvariant as well; thereforg, € §  Dirac constraints), we need generalized vectors. But if
and not inL, but y is also inL, by definiton of L; ~We constructHpy, as the space of the gauge equivalence
therefore,S is empty andH = Hpp @ L. classes, we may not need to introduce generalized states.

Notice that even ify and ¢ are in #, in general We leave the analysis of this possibility for further work.

the p;’s are in A and not in#. More precisely, the In conclusion, we have introduged the notion of “com-
right-hand side of (7) is obviously i if ¢ and ¢ are; plete qguantum gauge transformation.” A complete gauge

but when we split the sum into the two sums in (8), thetransformanon is obtained by _arb|tr_ar|ly decomposw_\g a
S ; vector in components and acting with the exponentiated
individual sums need not converge i . Thus, p in

(8) may be a generalized vector. Therefore we can stil onstraints on each component _independently. Namely,
define Hp, as the space of the equivalence classes o 0 vectors are gauge equivalentif Eg. (5) holds. We have

vectors inZ{ under the equivalence relation (5), but we hpwn that Dirac's physical state spagée; can be ob-
0 ; . tained as the space of the equivalence classes of states, un-
must allow for decompositions in generalized vectprs

as well der complete quantum gauge transformations. Therefore,
: . we suggest that the natural answer to the question in the
However, the analysis above suggests that we capl : .

) ) = . itle is provided by the complete gauge transformations.
avoid the cumbersome_lntroductlonﬁf and generalized In the classical Hamiltonian theory of constrained
vectors altogether. This follows from Fhe fact that Spa_cesystems, one has to take two steps in order to reduce the
L of the vectors that can be written in the'form_ (6) is 1 phase spacé to the physical phase spabe,. First,

a proper subspace'di-[. Thus, we can definé first, gy the constraint: that is, find the constraint surface
and construct the linear spacHpy as the space of the ¢ i, . Second, factor away the gauge transformation;
equivalence classes of vectorsii, equivalent under the that is, definel’p, as the space of the gauge orbits in

addition of vectors inL, namely, as%. In other words, C. Dirac showed that in the quantum theory a single
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step is sufficient: The physical states are the ones thaeveral useful comments. Support for this work came
solve the quantum constraints. Here we have showfrom NSF Grant No. PHY-95-15506.

that one can take this single step also by factoring away

(complete) quantum gauge transformations. Thus, in the

classical theory we find the physical states by solving the

constraintsand factoring away the gauge transformations.

In the quantum theory we find the physical states by «gjectronic address: rovelli@pitt.edu

solving the constraintor factoring away the gauge (1] p. A.M. Dirac, Lectures in Quantum Mechani¢¥eshiva

transformations. _ . _ _ University Press, New York, 1964).
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