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Electron Core-Hole Interaction in the X-Ray Absorption Spectroscopy of3d Transition Metals
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(Received 1 December 1997)

A fully relativistic scheme is presented that allows one to deal with the electronic band structure of a
solid and the influence of the electron core-hole interaction on its x-ray absorption spectra on the same
level. This is achieved in a parameter-free way by working throughout in the framework of the time-
dependent density functional theory and linear response formalism. Application to theL2,3-absorption
spectra of3d transition metals demonstrates that the electron core-hole interaction intermixes theL2

and L3 partial spectra, strongly affecting the so-called branching ratio. The consequences of this for
the magnetic circular x-ray dichroism sum rules are discussed. [S0031-9007(98)06033-5]

PACS numbers: 78.20.Ls, 71.20.Be
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X-ray absorption spectroscopy is an important tool fo
investigating the electronic structure of solids. One of i
attractive features is that one can expect in many cases
absorption coefficient to be proportional to some proper
projected local density of states [1], which makes the i
terpretation of the spectra quite simple. Unfortunately th
direct proportionality holds only as long as the absorptio
process can be described within the independent parti
approximation (IPA), which assumes that the involved e
cited states can be described reasonably well in terms
the single particle energies and orbitals of the correspon
ing ground state.

Fink et al. [2] could demonstrate experimentally tha
the IPA is not sufficient when dealing with the x-ray
absorption spectra of early3d metals. In particular, these
authors found that the so-called branching ratio at th
L2,3 edge, i.e., the ratio of the jumps of the absorptio
coefficient at theL3 andL2 edges, strongly deviates from
the ideal ratio of 2:1.

This breakdown of the IPA was ascribed by Zaane
et al. [3] to the interaction of the excited electron with
the created core hole. A simple way to account for th
situation in anad hocmanner is to use for the description
of the excited state energies and orbitals from a syste
where the absorber atom has one additional positi
charge by increasing its nuclear chargeZ by 1 (Z 1 1
approximation [4,5]). Another approximate approach is
calculate the final state wave functions in the presence
a hole in the core level which is involved in the absorptio
process (final state approximation [6,7]).

Both procedures mentioned are not able to reprodu
the strong deviation from the ideal branching ratio for th
L2,3 edges of the early3d metals [8]. In contrast to this,
Zaanenet al. [3] could achieve fairly good agreement with
experiment by taking the electron core-hole interaction in
account within a model based on atomic consideration
Their approach, however, uses a number of adjusta
parameters and is restricted to the early transition met
where a two-particle picture (electron and core hole)
expected to be sufficient.
4586 0031-9007y98y80(20)y4586(4)$15.00
r
ts
the
ly
n-
is
n
cle
x-
of
d-

t

e
n

n

is

m
ve

to
of
n

ce
e

to
s.

ble
als
is

The aim of the present work is to get rid of these
restrictions by working in the framework of linear re-
sponse theory (LR) on the basis of time-dependent de
sity functional theory (DFT) [9]. The approach presented
below is somewhat similar to that developed by Zangwil
and Soven [10] to calculate the photo absorption spect
of noble-gas atoms. In contrast to this, our approach
meant to deal with x-ray absorption in solids. In addition
because of the crucial role of spin-orbit interaction for the
initial states in the case of theL2,3 spectra of the early3d
metals, it is formulated in a fully relativistic way.

Our starting point for the calculation of the x-ray
absorption coefficientm is its relationship to the current
correlation functionx (h̄ ­ 1):

msv, $qd ­
4pce2

vV
Im

Z
d3r

Z
d3r 0ampe2i $q?$r

3 xmns $r, $r 0; vdei $q?$r 0

an . (1)
Here vy2p is the frequency and$q the wave vector of
the incoming radiation, which is described by the four-
potentialAm ­ amei $q?$r . In the radiation gauge, which we
use,a0 is set to zero andai for i ­ 1, 2, 3 represents the
usual three dimensional polarization vector. Furthermore
we use the dipole approximation, whereei $q $r ø 1 is
assumed. This way the$q dependency of the absorption
coefficient drops out. Within the dipole approximation
an alternative choice for the gauge leads toA0 ­ i

v

c $a ? $r
and $A ­ $0. This gauge is used, e.g., in Ref. [10]. Finally,
V in Eq. (1) is the volume of the unit cell and all other
quantities have there usual meaning.

As the double integral in Eq. (1) is the expression fo
the forward scattering amplitude of a photon, the whole
expression represents nothing but the optical theorem
which connects the imaginary part of the forward scat
tering amplitude to the total cross section.

Application of the independent particle approximation
consists in approximating the correlation functionx in
Eq. (1) by that of a suitable noninteracting system (x0),
that is described, for example, within the framework
of DFT (Kohn-Sham system). Using the relativistic
© 1998 The American Physical Society
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Korringa-Kohn-Rostoker (RKKR) band structure formalismx0 is given for high energies by [8]

x0
ijs$r , $r 0; vd ­

1
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for i, j [ h1, 2, 3j. If one of these indices is zero, the
corresponding Dirac matrixai has to be replaced by
the unit matrix. The indexk labels the involved initial
core states with wave functionsck . The final band
states above the Fermi energyEF are represented by the
wave functionsZL and the scattering path operatortL,L0

with L ­ sk, md standing for the spin-orbit and magnetic
quantum numbers [1]. Inserting this expression forx0

into Eq. (1) results in the usual formula for the absorptio
coefficientmsvd [1].

To go beyond this approximation, one has obviously
find a more accurate expression forx. This is achieved
by using the linear response formalism together wi
time-dependent DFT [9]. Within this framework the
correlation functionsx and x0 are connected by the
following integral equation:

xmns$r, $r 0; vd ­ x0
mns$r , $r 0; vd

Z
d3 $r 00

Z
d3 $r 000

3 x0
mm0s$r , $r 00; vdKm0n0

s$r 00, $r 000; vd

3 xn0ns$r 000, $r 0; vd . (3)
The integral kernelK describing the electron core-hole
interaction, can be split into a Coulomb and an exchang
correlation part:

Kmns$r, $r 0; vd ­ dm0dn0

(
e2

j$r 2 $r 0j
1 fxcs$r , $r 0, vd

)
.

(4)
For the exchange-correlation partfxc we use the local
approximation

fxcs$r , $r 0; vd ø ds$r 2 $r 0dfhom
xc sq ­ 0, v, rdjr­r0s$rd

(5)
in the limit v ! ` as proposed by Gross and Kohn [11]

To solve the integral equation (3) we assume that t
normalized wave function

ẐLs $r; Ed ­
ZLs$r; Ed
kZLsEdk

(6)

varies only slowly with energy aroundE ­ v 1 Ek .
This is well justified and allows one to factorx0 in the
following way:
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Assuming that the corresponding representation is a
suitable for the full correlation functionx ,
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with a matrix x̂svd, one ends up with a simple matrix
equation:

x̂svd ­ x̂0svd 1 x̂0svdK̂svdx̂svd , (10)

where the matrixK̂svd has the elements

K̂k,L;k,L0svd ­
Z

d3r
Z

d3r 0c
y
k s$rdẐLs$r; v 1 Ekd

3 Ks$r , $r 0; vdẐ3
L0s$r 0; v 1 Ek0dck0s$r 0d .

(11)

The resulting final expression for the absorption coef
cient is now found to be

msvd ~ Im
X

L,k;L0 ,k0

Mlp
Lkx̂kL;k0L0svdMl

L0k0 , (12)

with Ml
Lk denoting the appropriate dipole matrix elemen

for a given polarizationl [1]. In the following we
are interested only in the absorption of unpolarize
radiation and a corresponding average with respect to
polarization will be implied.

Using x̂0 instead ofx̂ in Eq. (12) results in the usua
single particle expression formsvd obtained with the
IPA [1]. In contrast to this approach, usinĝx requires
the imaginary and real part of̂x0 to be available [see
Eqs. (3) and (10)]. For the applications presented belo
the imaginary part of̂x0 is calculated the usual way [1]
and the real part is obtained using a Kramers-Kron
transformation. For theL2,3 spectra investigated with
initial p states the dimension of the matrices in Eq. (1
is 11 when ignoring the very smallp-s contribution [1].
This can be seen by simply counting the pairs ofp andd
states which are allowed by the dipole selection rules
left or right circular polarized radiation.

The presence of the kernel in Eq. (10) has two effec
One is the mixing of the real and the imaginary pa
of x0 which leads to a shift of the absorption peaks
higher energies and a suppression of their height. T
second effect is a mixing of the contributing absorptio
channels. This effect plays an important role at theL2
peak, where theL2 channels mix with the background
resulting from theL3 peak and is responsible for the
change of the branching ratio. This second effect clea
becomes weaker, when the distance ofL3 and L2 peak,
i.e., the spin-orbit splitting of the core states becom
larger. Therefore one can expect that the change of
branching ratio becomes smaller when going to high
elements in the3d series.
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Finally it should be mentioned that approximating th
matrix K̂ by energy independent Coulomb matrix elemen
taken from atomic Hartree-Fock calculations and perform
ing a suitable basis transformation recovers from Eq. (1
the expression formsvd derived by Zaanenet al. [3].
However, in contrast to the approach of these authors
matrix elements ofK are energy dependent and conta
explicitly an exchange-correlation contribution. Furthe
more, the restrictions mentioned above for the approach
these authors do not apply to Eq. (12).

To demonstrate the consequences of the electron co
hole interaction results for theL2,3 spectra of Ca are
shown in Fig. 1 that were obtained within the IPA
(m0) and the formalism presented above (m). As a
consequence of the IPA the spectrumm0 based onx0

is just a superposition of the independentL2 and L3

spectra that are shifted against one another by the sp
orbit splitting of the 2p1y2 and 2p3y2 subshells (upper
panel of Fig. 1). These partial spectra directly refle
the structure of thed-like DOS aboveEF because of the
dipole selection rules and the negligiblep-s contribution
to m0. Because of the weak spin-orbit interaction for th
final d states in the case of Ca, the resulting branchi
ratio is very close to 2:1. When going fromm0 to m;
i.e., when taking the electron core-hole interaction in
account, the structure ofm0 essentially survives (lower
panel of Fig. 1). However, for the main features of th
spectrum a pronounced shift in energy occurs. In additi
the amplitudes change—especially for the main peak
the formerL3 spectrum. As it is obvious from Eq. (10)

0.0 5.0 10.0
energy(eV)

0

20

40

60

80

µ 
(a

rb
. u

ni
ts

)

0

20

40

60

80 Ca

FIG. 1. TheoreticalL2,3-absorption spectra of Ca. The uppe
panel gives the spectrumm0 based on the IPA together with
its decomposition into theL3 and L2 partial spectra. For the
lower panel, the full and dotted curves give the absorptio
coefficient m obtained by inclusion of the full electron core
hole interaction and only its Coulomb part, respectively [se
Eq. (4)]. For comparisonm0 has been added (dashed curve
The energy zero coincides with the edge of theL3 spectrum
and the vertical line indicates the spin-orbit splitting of th
2p states.
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the electron core-hole interaction leads to a coupling
the partial absorption channels of the2p1y2 and 2p3y2
subshells. For that reason it is no more possible to s
m into L2 and L3 spectra. Accordingly, the branching
ratio is no more well defined (see below). Neverthele
one obviously notes from Fig. 1 that the amplitude rat
for the two main peaks at 4.5 and 8.5 eV—original
belonging to theL3 andL2 spectra, respectively—is now
roughly 1:1 instead of 2:1.

Equation (4) allows one to investigate the origin of th
observed changes in the spectrum caused by inclusion
the electron core-hole interaction in more detail. Su
pressing, for example, the exchange correlation contrib
tion fxc to K leads to a spectrum that is very close to th
of the full calculation (lower panel of Fig. 1). This obvi
ously implies that the Coulomb contribution toK is by far
dominating in full agreement with the finding of Zangwil
and Soven [10] for the photo absorption cross section
noble-gas atoms. Because of this result,fxc has been ig-
nored for the calculations presented below.

Applications of the formalism presented above to th
L2,3 spectra of hcp Ti and bcc Cr are shown in Fig.
together with corresponding experimental data. For
comparison with the latter ones an appropriate broaden
of the theoretical spectra has been performed to acco
for apparative and lifetime broadening effects [1]. A
one can see, inclusion of the electron core-hole interact
considerably improves agreement with experiment. Th
applies in particular to the branching ratio in the case
Ti. Here, one finds an influence of the electron cor
hole interaction on the theoretical spectrum compara
to that found for Ca. Nevertheless, one also notes t
the branching ratio is less affected for Ti than for C
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FIG. 2. TheoreticalL2,3-absorption spectram0 (dashed line)
andm (full line) calculated without and with the electron core
hole interaction, respectively, for hcp Ti and bcc Cr. Th
corresponding experimental spectra (thick line) have been ta
from Ref. [2]. All spectra have been normalized in such a w
that their main peak at theL3 edge coincides.
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FIG. 3. Branching ratio for theL2,3 edge of the3d transi-
tion metals in the paramagnetic state obtained for the the
retical spectram0 (open circles) andm (open squares); i.e.,
calculated without and with the electron core-hole interactio
respectively. Corresponding experimental data (full diamond
have been deduced from the spectra in Ref. [2].

Going to Cr, the influence is even more reduced. A
mentioned above, the branching ratio is not well define
if the electron core-hole interaction is included in th
calculations. For that reason the relative height of th
main peaks at theL3 and L2 edges have been plotted in
Fig. 3 to demonstrate the reduced influence of the electr
core-hole interaction when going along the3d transition
metal series.

Although the experimental data given in Fig. 3 ar
influenced to some extent by the necessary backgrou
subtraction, they nevertheless clearly show a monotono
increase in the relative peak height with increasin
ordering numberZ. Both sets of calculations form0 and
m; i.e., without and with inclusion of the electron core
hole interaction are in line with this. However, form the
variation is much more pronounced and in much bett
agreement with experiment than form0. As expected
from the spectra shown in Figs. 1 and 2 the influenc
of the electron core-hole interaction decreases with t
ordering number.

The scheme and results presented above clearly dem
strate that the electron core-hole interaction has the co
sequence that theL2,3-absorption spectra of3d transition
metals cannot be separated intoL2 andL3 partial spectra in
a strict sense. Of course this applies also for the case t
the absorbing system is spin polarized and exhibits ma
netic circular x-ray dichroism (MCXD) for that reason. As
a consequence of this, the so-called MCXD sum rules, th
have been derived during the last years by various auth
[12–16] and that are meant to deduce the spin and orb
magnetic moments of an absorbing atom from its dichro
spectra is not sensible or at least questionable. Fortunat
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the influence of the electron core-hole interaction decreas
along the3d series with increasing spin-orbit splitting of
the2p levels. For that reason application of the sum rule
seems to be problematic for example for Cr [17] but is rea
sonably well justified for the late3d transition metals Fe,
Co, and Ni. This expectation based on the present resu
could indeed be supported by extending and applying th
scheme described above to magnetic3d transition metal
systems [8]. Nevertheless, all other problems connecte
with the application of the sum rules [1] still remain.

In summary, a scheme has been presented that allo
one to account for the influence of the electron core-ho
interaction on the x-ray absorption spectra of transitio
metals without using any adjustable parameter. Applica
tion to the3d transition metal series clearly demonstrated
that its effect on the so-called branching ratio continu
ously diminishes along the series with the increase of th
spin-orbit splitting of the2p levels. As a consequence,
application of the MCXD sum rules seems to be doubtfu
for the middle of the series but is reasonably well justified
at the end of it.
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