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Green Function Monte Carlo with Stochastic Reconfiguration
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A new method for the stabilization of the sign problem in the Green function Monte Carlo technique
is proposed. The method is devised for real lattice Hamiltonians and is based on an iterative “stochastic
reconfiguration” scheme which introduces some bias but allows a stable simulation with constant sign.
The systematic reduction of this bias is possible in principle. The method is applied to the frustrated
J1 — J, Heisenberg model, and tested against exact diagonalization data. Evidence of a finite spin gap
for J,/J; > ~0.4 is found in the thermodynamic limit. [S0031-9007(98)06070-0]

PACS numbers: 75.10.Jm, 02.70.Lq, 75.40.Mg

As is well known the Green function Monte Carlo Gyx = SyixPrxby, 3)

method (GFMC) allows one to obtain the exact grounc{,\,herepf’)C is a normalized stochastic matrix, = 0 is a

state properties of a many body Hamiltonian with & stay,5malization constant, and the matsitakes into account

tistical method. One of the most severe restrictions is thaj,q sign of the GF. The typical choice is to take , =
only positive definite Green function (GF) can be sampled]G b b =3 1G], and s, , = sgnG. Wﬁich

otherwise, the method is facing the well known “sign g identically one if there is no sign problem.

problem." _Approximate techniques like the fix_ed node |4 the GEMC method the so called “walker” is defined
approximation (FN) have been developed to circumvent o weighty and a configuration. At a given iteration:
the sign problem but at the very least they cannot be Sy§pe \alker is assumed to sample statistically the state)
tematically improved to achieve the exact answer within, Eq. (1), in the sense that the probability(w, x) to have

statistical errors. This property has severely limited th§nqa \walker with weightw (not restricted to be positive) in
applications of GFMC to fermions and frustrated boson, given configuration satisfies/ dw P,(w, x)w = i, (x).

models. In this Letter | propose a new approach {0 stabirhep the matrix multiplication (1) can be implemented
lize the sign problem, the GFMC with stochastic reconf'gu'statistically in the precise sense thfatw Pp+1(w, x)w =
ration (GFMCSR), which will be shortly described below, & ' enala

» , by the following three steps: (i) scale the walker
revisiting also the basic steps of the standard GFMC on e?gl;ﬁ;) byyb Wl = b Wg (ii) Selgct (r;ndomly a new
lattice [1,2]. o p

configurationx’ according to the stochastic matrjx. .

In _orde_r to filter out the ground state of a given Iattipe(iii) Finally multiply the weight of the walker by the sign
HamiltonianH the standard power method may be appl'edfactorsx/x: w' — w'su . (MI). In principle the previous

iteratively: Markov process determines, for largethe ground state
, of H even with a single walker. In practice it is convenient
Pn1(x') = Z(A‘Sxﬁx — Ho)gn(x), (1) tousea large numbe of walkers, which | indicate by
X

) . (wj,x;)j = 1,...,M shorthand in the following also by
wherex represents conventionally the index of a completg,ector notationsy, x.
basis|x), Hyx being_the_correspondi_ng matrix elements of |finereisa sig_nBrobIem the average walker sign =
the Ha_lmlltonlqr_l which in the following are assumed real, > wiha/(3; Iw;l), decreases exponentially to zero as the
andA is a positive constant that allows the convergence Ofarkov iteration (MI) is repeatedly applied and it is basi-
¢ to the ground statgs(x), for largen. In numerical cal-  ¢4)ly impossible to reach a reasonably large value.of
culations of interesting lattice Hamiltonians the dimension Recently remarkable progress in GFMC on a lattice was
of the basis grows exponentially with the size and the pare extension of the FN to this case. The method is based
ticle number, though the matrix itself is very sparse and aly, 5 definition of an effective GE,{’x which is always
its elementd,. ., for givenx, can be generally computed positive definite but yields a goodariational estimate of
even for a large system size. In this case an exact appline energy. For later purposes we define this effective GF
cathn of (1) is |mp033|ple unless for_few steps. A_Wayin a slightly different way, by introducing a parameter
out is to use a stochastic approach, like GFMC, which isyhich allows one to sample also the negative elements of

particularly simple on a lattice. the GF:
In order to implement stochastically the iteration (1) the ., it B, =0
corresponding lattice GF ¥ A Lo
Gx/,x = ')/Hx/’x |f Hx/’x > 0,
Gx’,x = Aaxl’x o Hx’,x (2) A — Hx,x - (1 + Y)Mf(x) if x = xl’
may be decomposed in the following way: 4)
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where the diagonadign-flip contribution is given by [3,4] I will show that this reconfiguration is well defined and
indeed possible. The set &f walkers(w, x ) is defined
Vi (x) = Z Hyy . (5) via their probability functionP,(w,x) which in turn

Hy >0.x'#x defines the staté¢,(x) by Eqg. (6). The task is to change

P, onto a new probability distributio®’, corresponding
to a steadily high sign for the walker population, and this
without changing the information contetite statey,(x).

Let us define the new stafe (x) as the one obtained by
averaging overP! in Eq. (6), then the reconfiguration is
exact if P! is such that

Fory = 0 the usual formulation [4] is recovered, whereas
for v > 0 [5] the crossing to the negative sign region is
allowed so that the exact GF can be written@s, =

Sy xGyx, Wheres, . is f|n|te and nonzero and is deter-
mined by the ratioG,, x/GX . with G and G/ given by
Egs. (2) and (4), respectively. The value of the consfant
necessary to cross the “nodal surface” was chosen to be I(vy —

1 in all forthcoming applications. Yalx) = ynlx) forall x. %

In the basic decomposition (3) the stochastic matrlxln general it is difficult or impractical to realize all these
pxx = Gu./by and the normalization coefficiet, =  conditions (7) as their number equals the dimension of
>« Gy, are instead determined only Igy/ . the Hilbert space. | consider therefore a set of operators

By omitting the last stepv’ — ws,, in the Markov ok k = 1,..., p < M and require only + 1 stochastic
iteration process MI, the statg, is indeed propagated reconfiguration conditions:
through the positive GRG/. The main property used
in the following is that at any Markov iteration we kK g k
can have a statistic knowledge of both the stétgx) Zox/xlp”(x) B ZO «¥n () (8)
obtained with the exact GF and ¢f’: (x) obtained instead
with the approximate but positive definite o To for k=1,...,p, beyond the normalization one
this purpose thgth walker is defined by two Welghﬁs S Y(x) =3 ax).
and w; corresponding to the propagation of the walker The previous equations (8) mean that the so called
by Gf/ and G, respectively. These weights act ¢ime  “mixed averages” of the operato@' coincide before and
sameconfigurationr;. Hereafter the vectow represents after the reconfiguration [6].
therefore a shorthand notation for tR@/ components The main idea of this Letter is that thege+ 1 con-
w]-,wf forj=1,...,M. ditions can be fulfilledexactly (for chosen operators) by

The walker vecto, x allows one to determine statisti- defining the reconfiguration in the following form:
cally the state

M
00 = [ Puwn) T oy @ T fd[w1§ﬂ
X J

and analogouslyyi (x) by replacing the weights; with o 2 1P 182, 5

the positive onesy; in the previous equation. In this 2 lpyl

way the conflgurat|ons generated by the described Markov

process M, if weighted with the constanﬁg[, are dis- f1 ,

tributed for largen, according to the variational state cor- X 8(wi = Iwilp Pulw,x), (©)

responding taG/. This is a reasonable variational wave

function (WF), which will be the initial approximation to where = 3>, p.. /> |p. | is the average sign after the

which systematic corrections will be applied, as descrlbedeconflguratlon which is supposed to be much higher to

later on. stabilize the process. The new configuratishare taken
Apart for the previous technical definitions, we can ex-randomly among the old onds;}, according to the table

plain in a few words the basic idea used for the stabilizap,,, defined below. The positive weights; represent a

tion of the sign problem. The iteration MI converges togood starting point for the definition of a reconfiguration

the ground state, but due to the sign problem, only a fewvith large 8. Though there is some arbitrariness in the

iterations can be performed with a reasonable statistical adefinition of the coefficientg, , a simple and convenient

curacy. However, the representation of the statec) in  choice is

terms of the walker populatiory, w; is not unique. In fact,

itis pe_rfectly possible to represent the same sfate) ei- _ Py = W) { + Zak(() — 01)}

ther with a walker population with very small average sign ’

or with a one with a very large average sign. If such re- o

configurations are possible each féwsteps, the average Where Of 2iwi05/%,; W, are the averages over

sigh may be stabilized to a large value during the iteratiorthe posmve WelghISW of the mixed est|mate$?

(1) and there will be no difficulty to sample the ground Y, 0% " correspondmg to the operataP* and the

state forn — oo, with no sign problem conﬂguratlonx]

Zisz np.!
BM gnpy|
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Then, in order to satisfy the WF conditions (8), by using The accuracy of GFMCSR for the ground state is
the definition (9), it issufficientthat the coefficientg,, displayed in Table I, and compared with other methods.
satisfy the following Markovian conditions: The variational WF (used also for GFMC importance

sampling [6]) contains a Jastrow-like factor
'/ —

Jj
Yy Xw (0 eXP(% > uR - R’)S§S§,>
J J

R.R’

which in turn determine the unknown variableg, for

; to mimic the interaction between the spifs = =1/2
k=1,...,p, for givenw, x. Pifig /

SENe . - at sitesk, R, wheren is a variational parameter and the
For Hamiltonian not affected by the sign probleai = two-spin interactiorv can be derived by using the method

G a; = 0 and B = 1) this reconfiguration was already . ; L . .
used to control the walker population size without intro—ijescrlbe<j in [11], yielding an explicit Fourier transform

ducing any source of systematic error [7]. The presen
more general reconfiguration (9) can be easily and effi- \/
2-2

2 — o(1 — cosg, cosqy) + COSg, + COSqy
2 — o(1 — cosg, C0Sqy) — COSg, — COSqy

ciently implemented in a similar way.

Obviously the reconfiguration conditions (8) are equiva-
lent to theexactones (7), when the numbgrof linearly in- ] ] o .
dependent operators considered in (8) is equal to the largéith o = 2/5/J;. ~ This potential is not defined for
dimension of the Hilbert space. An important applicative/2//1 = 1/2, and in such a case | have chosen to work
issue is whether GFMCSR converges, within a reasonabith o = 0.8. Restriction to any subspace of total spin
accuracy, even with a small numbgrof meaningful op-  ProjectionSg, = > ¢ Sk allows one to evaluate the spin
eratorsOk. gap by performing two simulations fo§:, = 0 and

We consider the frustratei — J, Heisenberg spir% S = 1. Henceforth I will use the same potentialin
model on a finite square lattice with sites and periodic both subspaces, by optimizingfor the S7;, = 0 energy.
boundary conditions (tilted by5° for the L = 32 size As shown in Table | the accuracy of the variational WF
only). The model Hamiltonian is determined by an an-is rather poor, and is considerably improved by the FN,
tiferromagnetic coupling/; > 0 between nearest neigh- at least for small/;. This kind of accuracy is however
bor spins and a frustrating coupling > 0 between next not enough to determine the rapid increase of the spin gap
neighbor ones [8—10]. In all forthcoming examples theas J,/J, approaches the vaIu§ of the classical transi-
stochastic reconfigurations were applied frequently enougtion. Instead, as shown in Fig. 1 the GFMCSR allows one
to maintain the average sign before reconfigurati®®,a to achieve a good accuracy also on this delicate quantity
condition that minimizes the statistical fluctuations. More-by considering in the reconfigurations only the energy and
over in each simulation it is important to work with a fairly the spin structure factof; = DRR e R=R) g% %, sym-
large number of walkers, since in thi¢ — oo limit, the  metrized over all directions and for all nonequivalent wave
GFMCSR results are practically independent of the frevectorsq. Remarkably also mixed averages of correlation
quency of reconfigurations, as well as the overall constarfunctions that are not included in such reconfiguration con-
energy shiftA. ditions (8) are also significantly improved (see Table I).

TABLE |. Percentage error of the energy (square antiferromagnetic order parainetas in [7]) for the various methods:
variational (VMC), fixed node (FN)p = 1 GFMCSR (SRe) with the energy alone apd= 5,8,9 GFMCSR estimate (SR) with
the energy, and;, for L = 16, 32, and36. The statistical errors are about one place in the last digit.

Ja/ Ty L n % VMC % FN % SRe % SR
0.1 16 1.2 2.84 (2.2) 0.17 (0.1) —0.03 (0.0) 0.02 (0.0)

0.2 16 1.15 2.80 (2.5) 0.41 (0.4) 0.00 (0.2) 0.03 (0.0)
0.3 16 1.1 3.25 (2.5) 0.87 (0.7) 0.12 (0.8) 0.05 (0.1)
0.4 16 0.8 3.38 (2.4) 1.76 (3.2) 0.56 (4.5) 0.26 (0.2)
0.5 16 0.85 5.65 (10.9) 3.84 (8.9) 2.08 (8.9) 0.66 (1.1)
0.1 32 1 1.55 (2.5) 0.22 (0.3) 0.05 (0.1) 0.02 (0.0)
0.2 32 1 1.78 (2.5) 0.48 (0.6) 0.15 (0.6) 0.05 (0.1)
0.3 32 1 2.23 (2.1) 0.85 (0.9) 0.30 (1.4) 0.10 (0.0)
0.4 32 0.8 3.07 (4.0) 1.61 (3.1) 0.26 (5.6) 0.21 (0.1)
0.5 32 0.9 4.51 (10.0) 2.92 (7.2) 1.52 (7.7) 0.46 (0.9)
0.1 36 1.1 1.86 (2.8) 0.21 (0.2) 0.10 (0.1) 0.02 (0.1)
0.2 36 1.1 2.22 (2.8) 0.47 (0.5) 0.16 (0.5) 0.07 (0.1)
0.3 36 1 2.31 (2.8) 0.91 (1.4) 0.35 (2.0) 0.11 (0.1)
0.4 36 0.8 3.34 (5.5) 1.74 (4.5) 0.51 (6.8) 0.26 (0.3)
0.5 36 0.9 5.09 (14.4) 3.34 (11.1) 1.83 (11.8) 0.62 (2.1)
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. ) . FIG. 3. Size scaling of the spin gap. The dashed lines are
FIG. 1. Estimate of the spin gap for several methods: variatinear fits of the GFMCSR data witp = 9, 14, and 20 for
tional (empty triangles), FN (empty squares), GFMCBR= 1 | = 36, 64, and 100, respectively. Lower curves are the

(empty dots), GFMCSR (full dots) as in Table | fér= 16  variational estimates and the continuous lines are guides to
(upper points) and. = 32 (lower points). The exact results the eye.

are connected by continuous lines.

ber p. The error to work at finite smajp is systematic.
Thus there is a considerable cancellation of this error for
the determination of the spin gap displayed in Fig. 1.

The calculation was therefore extended to the large size
system up tad. = 100 where exact diagonalization is not
possible. The spin gap as a function of the system size
is displayed in Fig. 3. This figure is consistent with the
opening of a finite spin gap fok/J; = ~0.4. This gap

comparison with the standard “release nodes” estimate fé gg\r/tliﬁsl)ll nc: Enssrggagﬁs(;f c}gﬁfi\r/rirelz?j“ggr?:e\:\ilcglIw?r:Ct?\e
also shown in the picture. It is clear that there is no y gap ' y

hope to obtain meaningful results in this case by the direct2Me f|gure. The_pre_se_nt numerlc_:al res_uIFs con_flrm that the
sampling of the sign. fransition to a spin liquid state with a finite spin gap but
On the contrary this method looks very stable andgj0 <[:Ia?3|cal order parameter should be closé{o/, =
) 4 [10].
though approximate, a convergence to a reasonable accu-_+": .
racy is obtained even with a very small number of opera—l_”-_rshg e\{\;]?jrkcHVXIaESCXuer;?]rtteqrr:gnE?tL t():y é’:\':ngi?gr
tors, compared to the dimension of the Hilbert space. tech .) | hel SGIg o '
The data shown in Table | and Fig. 2 indicate that the-ecnnical help on -origin.
accuracy of GFMCSR may become rather size indepen-
dent with a relatively small increase of the operator num-

The way GFMCSR reaches the largdimit (at fixed
number of operatorp) is displayed in Fig. 2 where the
initial n = 0 distribution was obtained by the FN for =
0. For fixed p the algorithm is Markovian and reaches
an equilibrium distribution for — o, independent of the
initial one (see example in Fig. 2 whepewas changed
at the iteration indicated by the arrow); this in turn will
converge to the ground state distribution for lagge A
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