
VOLUME 80, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 18 MAY 1998

t 4,

ique
hastic
sign.

rated
in gap

4558
Green Function Monte Carlo with Stochastic Reconfiguration
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A new method for the stabilization of the sign problem in the Green function Monte Carlo techn
is proposed. The method is devised for real lattice Hamiltonians and is based on an iterative “stoc
reconfiguration” scheme which introduces some bias but allows a stable simulation with constant
The systematic reduction of this bias is possible in principle. The method is applied to the frust
J1 2 J2 Heisenberg model, and tested against exact diagonalization data. Evidence of a finite sp
for J2yJ1 . ,0.4 is found in the thermodynamic limit. [S0031-9007(98)06070-0]

PACS numbers: 75.10.Jm, 02.70.Lq, 75.40.Mg
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As is well known the Green function Monte Carlo
method (GFMC) allows one to obtain the exact groun
state properties of a many body Hamiltonian with a st
tistical method. One of the most severe restrictions is th
only positive definite Green function (GF) can be sample
otherwise, the method is facing the well known “sig
problem.” Approximate techniques like the fixed nod
approximation (FN) have been developed to circumve
the sign problem but at the very least they cannot be sy
tematically improved to achieve the exact answer with
statistical errors. This property has severely limited th
applications of GFMC to fermions and frustrated boso
models. In this Letter I propose a new approach to sta
lize the sign problem, the GFMC with stochastic reconfigu
ration (GFMCSR), which will be shortly described below
revisiting also the basic steps of the standard GFMC on
lattice [1,2].

In order to filter out the ground state of a given lattic
HamiltonianH the standard power method may be applie
iteratively:

cn11sx0d 
X

x
sLdx0,x 2 Hx0,xdcnsxd , (1)

wherex represents conventionally the index of a comple
basisjxl, Hx0,x being the corresponding matrix elements o
the Hamiltonian which in the following are assumed rea
andL is a positive constant that allows the convergence
cn to the ground statec0sxd, for largen. In numerical cal-
culations of interesting lattice Hamiltonians the dimensio
of the basis grows exponentially with the size and the pa
ticle number, though the matrix itself is very sparse and a
its elementsHx0,x , for givenx, can be generally computed
even for a large system size. In this case an exact ap
cation of (1) is impossible unless for few steps. A wa
out is to use a stochastic approach, like GFMC, which
particularly simple on a lattice.

In order to implement stochastically the iteration (1) th
corresponding lattice GF

Gx0 ,x  Ldx0,x 2 Hx0,x (2)

may be decomposed in the following way:
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Gx0 ,x  sx0,xpx0,xbx , (3)

wherepx0 ,x is a normalized stochastic matrix,bx $ 0 is a
normalization constant, and the matrixs takes into account
the sign of the GF. The typical choice is to takepx0,x 
jGx0 ,xjybx , bx 

P
x0 jGx0,x j, and sx0,x  sgnGx0,x , which

is identically one if there is no sign problem.
In the GFMC method the so called “walker” is define

by a weightw and a configurationx. At a given iterationn
the walker is assumed to sample statistically the statecnsxd
in Eq. (1), in the sense that the probabilityPnsw, xd to have
the walker with weightw (not restricted to be positive) in
a given configurationx satisfies

R
dw Pnsw, xdw  cnsxd.

Then the matrix multiplication (1) can be implemente
statistically, in the precise sense that

R
dw Pn11sw, xdw 

cn11sxd, by the following three steps: (i) scale the walke
weight by bx : w0  bxw. (ii) Select randomly a new
configurationx0 according to the stochastic matrixpx0,x .
(iii) Finally multiply the weight of the walker by the sign
factor sx0,x : w0 ! w0sx0,x (MI). In principle the previous
Markov process determines, for largen, the ground state
of H even with a single walker. In practice it is convenien
to use a large numberM of walkers, which I indicate by
swj , xjdj  1, . . . , M shorthand in the following also by
vector notationsw, x.

If there is a sign problem the average walker signksln 
k
P

j wjlnyk
P

j jwjjln decreases exponentially to zero as th
Markov iteration (MI) is repeatedly applied and it is bas
cally impossible to reach a reasonably large value ofn.

Recently remarkable progress in GFMC on a lattice w
the extension of the FN to this case. The method is ba
on a definition of an effective GFG

f
x0,x which is always

positive definite but yields a goodvariational estimate of
the energy. For later purposes we define this effective
in a slightly different way, by introducing a parameterg,
which allows one to sample also the negative elements
the GF:

G
f
x0,x 

8><>:
2Hx0,x if Hx0,x # 0 ,
gHx0 ,x if Hx0,x . 0 ,
L 2 Hx,x 2 s1 1 gdVsfsxd if x  x0,

(4)
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where the diagonalsign-flipcontribution is given by [3,4]

Vsfsxd 
X

Hx0 ,x.0,x0fix

Hx0,x . (5)

For g  0 the usual formulation [4] is recovered, wherea
for g . 0 [5] the crossing to the negative sign region i
allowed so that the exact GF can be written asGx0,x 
sx0 ,xG

f
x0 ,x, wheresx0,x is finite and nonzero and is deter

mined by the ratioGx0,xyG
f
x0,x with G and Gf given by

Eqs. (2) and (4), respectively. The value of the constang

necessary to cross the “nodal surface” was chosen to
1
2 in all forthcoming applications.

In the basic decomposition (3) the stochastic matr
px0,x  G

f
x0 ,xybx and the normalization coefficientbx P

x0 G
f
x0,x are instead determined only byGf .

By omitting the last stepw0 ! wsx0 ,x in the Markov
iteration process MI, the statecn is indeed propagated
through the positive GFGf . The main property used
in the following is that at any Markov iterationn we
can have a statistic knowledge of both the statecnsxd
obtained with the exact GF and ofc

f
n sxd obtained instead

with the approximate but positive definite oneGf . To
this purpose thejth walker is defined by two weightsw

f
j

and wj corresponding to the propagation of the walke
by Gf and G, respectively. These weights act onthe
sameconfigurationxj . Hereafter the vectorw represents
therefore a shorthand notation for the2M components
wj , w

f
j for j  1, . . . , M.

The walker vectorw, x allows one to determine statisti-
cally the state

cnsxd 
Z

df x g
X

x
Pns w, x d

X
j

dx,xj
wjyM (6)

and analogouslyc
f
n sxd by replacing the weightswj with

the positive onesw
f
j in the previous equation. In this

way the configurations generated by the described Mark
process MI, if weighted with the constantsw

f
j , are dis-

tributed for largen, according to the variational state cor
responding toGf . This is a reasonable variational wav
function (WF), which will be the initial approximation to
which systematic corrections will be applied, as describ
later on.

Apart for the previous technical definitions, we can e
plain in a few words the basic idea used for the stabiliz
tion of the sign problem. The iteration MI converges t
the ground state, but due to the sign problem, only a fe
iterations can be performed with a reasonable statistical
curacy. However, the representation of the statecnsxd in
terms of the walker populationxj , wj is not unique. In fact,
it is perfectly possible to represent the same statecnsxd ei-
ther with a walker population with very small average sig
or with a one with a very large average sign. If such r
configurations are possible each fewkp steps, the average
sign may be stabilized to a large value during the iterati
(1) and there will be no difficulty to sample the groun
state forn ! `, with no sign problem.
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I will show that this reconfiguration is well defined and
indeed possible. The set ofM walkerss w, x d is defined
via their probability functionPns w, x d which in turn
defines the statecnsxd by Eq. (6). The task is to change
Pn onto a new probability distributionP0

n corresponding
to a steadily high sign for the walker population, and thi
without changing the information content,the statecnsxd.

Let us define the new statec 0
nsxd as the one obtained by

averaging overP0
n in Eq. (6), then the reconfiguration is

exact ifP0
n is such that

c 0
nsxd  cnsxd for all x . (7)

In general it is difficult or impractical to realize all these
conditions (7) as their number equals the dimension o
the Hilbert space. I consider therefore a set of operato
Ok , k  1, . . . , p ø M and require onlyp 1 1 stochastic
reconfiguration conditions:X

x0 ,x

Ok
x0xc 0

nsxd 
X
x0,x

Ok
x0,xcnsxd (8)

for k  1, . . . , p, beyond the normalization oneP
x c 0sxd 

P
x cnsxd.

The previous equations (8) mean that the so calle
“mixed averages” of the operatorsOk coincide before and
after the reconfiguration [6].

The main idea of this Letter is that thesep 1 1 con-
ditions can be fulfilledexactly(for chosen operators) by
defining the reconfiguration in the following form:

P0
nsw0, x0d 

Z
df w g

X
x

MY
i1

3

(P
j jpxj jdx0

i ,xjP
j jpxj j

d

√
w0

i 2

P
j wj

bM
sgnpx0

i

!

3 dswf0
i 2 jw0

ijd

)
Pns w, x d , (9)

whereb 
P

j pxj y
P

j jpxj j is the average sign after the
reconfiguration, which is supposed to be much higher t
stabilize the process. The new configurationsx0

i are taken
randomly among the old oneshxjj, according to the table
pxj , defined below. The positive weightsw

f
j represent a

good starting point for the definition of a reconfiguration
with large b. Though there is some arbitrariness in the
definition of the coefficientspxj , a simple and convenient
choice is

pxj  w
f
j

"
1 1

P
k

aksOk
j 2 O

k
f d

#
,

where O
k
f 

P
j w

f
j Ok

j y
P

j w
f
j are the averages over

the positive weightsw
f
j of the mixed estimatesOk

j P
x0 Ok

x0,xj
corresponding to the operatorOk and the

configurationxj.
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Then, in order to satisfy the WF conditions (8), by usin
the definition (9), it issufficientthat the coefficientspxj

satisfy the following Markovian conditions:P
j

pxj O
k
JP

j
pxj



P
j

wjOk
jP

j
wj

, (10)

which in turn determine the unknown variablesak , for
k  1, . . . , p, for givenw, x.

For Hamiltonian not affected by the sign problemsGf 
G ak  0 and b  1) this reconfiguration was alread
used to control the walker population size without intr
ducing any source of systematic error [7]. The pres
more general reconfiguration (9) can be easily and e
ciently implemented in a similar way.

Obviously the reconfiguration conditions (8) are equiv
lent to theexactones (7), when the numberp of linearly in-
dependent operators considered in (8) is equal to the la
dimension of the Hilbert space. An important applicati
issue is whether GFMCSR converges, within a reasona
accuracy, even with a small numberp of meaningful op-
eratorsOk.

We consider the frustratedJ1 2 J2 Heisenberg spin1
2

model on a finite square lattice withL sites and periodic
boundary conditions (tilted by45± for the L  32 size
only). The model Hamiltonian is determined by an a
tiferromagnetic couplingJ1 . 0 between nearest neigh
bor spins and a frustrating couplingJ2 . 0 between next
neighbor ones [8–10]. In all forthcoming examples t
stochastic reconfigurations were applied frequently eno
to maintain the average sign before reconfiguration,0.8, a
condition that minimizes the statistical fluctuations. Mor
over in each simulation it is important to work with a fairl
large number of walkers, since in theM ! ` limit, the
GFMCSR results are practically independent of the f
quency of reconfigurations, as well as the overall const
energy shiftL.
TABLE I. Percentage error of the energy (square antiferromagnetic order parameter$m2 as in [7]) for the various methods:
variational (VMC), fixed node (FN),p  1 GFMCSR (SRe) with the energy alone andp  5, 8, 9 GFMCSR estimate (SR) with
the energy, andSz

q for L  16, 32, and36. The statistical errors are about one place in the last digit.

J2yJ1 L h % VMC % FN % SRe % SR

0.1 16 1.2 2.84 (2.2) 0.17 (0.1) 20.03 (0.0) 0.02 (0.0)
0.2 16 1.15 2.80 (2.5) 0.41 (0.4) 0.00 (0.2) 0.03 (0.0)
0.3 16 1.1 3.25 (2.5) 0.87 (0.7) 0.12 (0.8) 0.05 (0.1)
0.4 16 0.8 3.38 (2.4) 1.76 (3.2) 0.56 (4.5) 0.26 (0.2)
0.5 16 0.85 5.65 (10.9) 3.84 (8.9) 2.08 (8.9) 0.66 (1.1)
0.1 32 1 1.55 (2.5) 0.22 (0.3) 0.05 (0.1) 0.02 (0.0)
0.2 32 1 1.78 (2.5) 0.48 (0.6) 0.15 (0.6) 0.05 (0.1)
0.3 32 1 2.23 (2.1) 0.85 (0.9) 0.30 (1.4) 0.10 (0.0)
0.4 32 0.8 3.07 (4.0) 1.61 (3.1) 0.26 (5.6) 0.21 (0.1)
0.5 32 0.9 4.51 (10.0) 2.92 (7.2) 1.52 (7.7) 0.46 (0.9)
0.1 36 1.1 1.86 (2.8) 0.21 (0.2) 0.10 (0.1) 0.02 (0.1)
0.2 36 1.1 2.22 (2.8) 0.47 (0.5) 0.16 (0.5) 0.07 (0.1)
0.3 36 1 2.31 (2.8) 0.91 (1.4) 0.35 (2.0) 0.11 (0.1)
0.4 36 0.8 3.34 (5.5) 1.74 (4.5) 0.51 (6.8) 0.26 (0.3)
0.5 36 0.9 5.09 (14.4) 3.34 (11.1) 1.83 (11.8) 0.62 (2.1)
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The accuracy of GFMCSR for the ground state is
displayed in Table I, and compared with other methods
The variational WF (used also for GFMC importance
sampling [6]) contains a Jastrow-like factor

exp

√
h

2

X
R,R0

ysR 2 R0dSz
RSz

R0

!

to mimic the interaction between the spinsSz
R  61y2

at sitesR, R0, whereh is a variational parameter and the
two-spin interactiony can be derived by using the method
described in [11], yielding an explicit Fourier transform
for y:

2 2 2

s
2 2 ss1 2 cosqx cosqyd 1 cosqx 1 cosqy

2 2 ss1 2 cosqx cosqyd 2 cosqx 2 cosqy

with s  2J2yJ1. This potential is not defined for
J2yJ1  1y2, and in such a case I have chosen to wor
with s  0.8. Restriction to any subspace of total spin
projectionSz

tot 
P

R Sz
R allows one to evaluate the spin

gap by performing two simulations forSz
tot  0 and

Sz
tot  1. Henceforth I will use the same potentialy in

both subspaces, by optimizingh for theSz
tot  0 energy.

As shown in Table I the accuracy of the variational WF
is rather poor, and is considerably improved by the FN
at least for smallJ2. This kind of accuracy is however
not enough to determine the rapid increase of the spin g
as J2yJ1 approaches the value12 of the classical transi-
tion. Instead, as shown in Fig. 1 the GFMCSR allows on
to achieve a good accuracy also on this delicate quanti
by considering in the reconfigurations only the energy an
the spin structure factorSz

q 
P

R,R0 eiqsR2R0dSz
RSz

R0 sym-
metrized over all directions and for all nonequivalent wav
vectorsq. Remarkably also mixed averages of correlatio
functions that are not included in such reconfiguration con
ditions (8) are also significantly improved (see Table I).
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FIG. 1. Estimate of the spin gap for several methods: var
tional (empty triangles), FN (empty squares), GFMCSRp  1
(empty dots), GFMCSR (full dots) as in Table I forL  16
(upper points) andL  32 (lower points). The exact results
are connected by continuous lines.

The way GFMCSR reaches the largen limit (at fixed
number of operatorsp) is displayed in Fig. 2 where the
initial n  0 distribution was obtained by the FN forg 
0. For fixed p the algorithm is Markovian and reache
an equilibrium distribution forn ! `, independent of the
initial one (see example in Fig. 2 wherep was changed
at the iteration indicated by the arrow); this in turn wi
converge to the ground state distribution for largep. A
comparison with the standard “release nodes” estimate
also shown in the picture. It is clear that there is n
hope to obtain meaningful results in this case by the dir
sampling of the sign.

On the contrary this method looks very stable an
though approximate, a convergence to a reasonable a
racy is obtained even with a very small number of oper
tors, compared to the dimension of the Hilbert space.

The data shown in Table I and Fig. 2 indicate that th
accuracy of GFMCSR may become rather size indep
dent with a relatively small increase of the operator num

FIG. 2. Energy per site vsn for GFMCSR withp  1 (upper
curve to the left of the arrow) andp  9 (remaining curves).
The triangles represent the standard method with sign probl
i.e., with large error bars already forn . 15.
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FIG. 3. Size scaling of the spin gap. The dashed lines a
linear fits of the GFMCSR data withp  9, 14, and 20 for
L  36, 64, and 100, respectively. Lower curves are the
variational estimates and the continuous lines are guides
the eye.

ber p. The error to work at finite smallp is systematic.
Thus there is a considerable cancellation of this error f
the determination of the spin gap displayed in Fig. 1.

The calculation was therefore extended to the large s
system up toL  100 where exact diagonalization is no
possible. The spin gap as a function of the system s
is displayed in Fig. 3. This figure is consistent with th
opening of a finite spin gap forJ2yJ1 $ ,0.4. This gap
is certainly not an artifact of the variational WF, which
is obviously gapless, as also confirmed numerically in t
same figure. The present numerical results confirm that
transition to a spin liquid state with a finite spin gap bu
no classical order parameter should be close toJ2yJ1 
0.4 [10].
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