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Small Superconducting Grain in the Canonical Ensemble
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By means of the Lanczos method we analyze superconducting correlations in ultrasmall grains at
fixed particle number. We compute the ground-state properties and the excitation gap of the pairing
Hamiltonian as a function of the level spacingd. Both quantities turn out to beparity dependentand
universal functions of the ratiodyD (D is the BCS gap). We then characterize superconductivity
in the canonical ensemble from the scaling behavior of correlation functions in energy space.
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What is the size limit for a metal particle to have
superconducting properties? Anderson [1] posed th
question back in 1959 arguing that when the avera
level spacingd (inversely proportional to volume of
the grain) becomes of the order of the BCS gapD

superconductivity should disappear. A related question
how to characterize “superconductivity” in small systems
The transition is washed out, for instance, by therm
fluctuations of the order parameter [2]. Moreover, th
hallmarks of Cooper pair condensation like the zer
resistance and the Meissner effect are absent when
grains are of submicron size.

In a series of recent experiments Ralph, Black, an
Tinkham [3,4] studied the transport through nanomete
scale Al grains. These experiments revealed the existen
of a spectroscopic gap larger than the average lev
spacing which could be driven to zero by applying
suitable magnetic field. This was convincingly interprete
as the reminiscence of superconductivity. As the gra
size was further reduced (,5 nm) no trace of the gap
in the spectrum was detected. The experimental resu
were found to beparity dependent,i.e., to depend on the
electron number in the grain being even or odd.In the lig
of these experiments von Delftet al. [5] reconsidered the
question posed by Anderson. They included the effe
of a uniform finite level spacing in a parity dependen
mean field theory [6], and found that the breakdown o
superconductivity (in the BCS sense) occurs at a value
dyD which is indeed parity dependent. In grains with a
even number of electrons superconductivity persists dow
to smaller grain sizes as compared with the odd one
This parity effect gets enhanced when the effect of lev
statistics [7] is included.

Because of the spontaneous breaking of the gauge sy
metry, the BCS theory is most transparently formulated
the grand canonical ensemble [8] since it is easy to d
fine the order parameter as the amplitude to create (or d
stroy) a Cooper pair in the condensate. In the canonic
ensemble this quantity vanishes and the characterizat
of coherence is more difficult. Fortunately the use of th
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grand canonical ensemble is appropriate for many system
which are large enough to give small relative fluctuation
of the electron number. This condition is not strictly me
in the experiments of Refs. [3,4] where charging effect
allow one to fix the number of electrons in the grain [9]
For these systems moreover quantum fluctuations of th
pairing field may become so large to invalidate the mea
field approach. In order to characterize the ground-sta
pair correlations, Matveev and Larkin [10] then propose
to use the parity gapDP , an experimentally accessible
quantity related to the extra ground-state energy of a sy
tem with an unpaired electron. Even the limit of very
small grainsDP is very sensitive to superconducting fluc-
tuations (for large grains it reduces toD).

Superconductivity in ultrasmall grains requires one to
study the effect of finite level spacing atfixed particle
number. We tackle this problem by Lanczos exac
diagonalization. The purpose of this Letter is twofold
In the first part we characterize the superconductin
correlations by studying the parity effect in the ground
state (Figs. 1 and 2) and the spectroscopic gap (Fig. 3
The central question of defining superconductivity at fixe
particle number is addressed in the second part whe
we discuss the scaling properties,in energy space,of the
pairing model (Figs. 4 and 5).

The BCS pairing Hamiltonian for the small grain is

H ­
VX

n­1
s­6

ency
n,scn,s 2 ad

VX
m,n­1

c
y
m,1cy

m,2cn,2cn,1 . (1)

The indicesm and n label the single particle energy
levels with energyem and annihilation operatorcm,s. The
quantum numbers ­ 6 labels time reversed electron
states. The number of (doubly degenerate) levels is fixe
to V which is twice the Debye frequencyvD in units
of d. Finally a is the dimensionless BCS coupling
constant andd , 1yNs0dV [Ns0d being the density of
states at the Fermi energy andV the volume of the grain].
Since the Hamiltonian contains only pairing terms, a
electron in a singly occupied level cannot interact with th
other electrons (the unpaired electron is frozen). In th
© 1998 The American Physical Society
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FIG. 1. The parity gap is plotted as a function ofdyD for
systems with odd electron number. All the sets are evalua
at half filling (V ­ N). In the inset the region of very large
level spacing is plotted to compare with the asymptotic res
of Matveev and Larkin. The parity gap is centered arou
N ­ 17 (±), N ­ 19 (e), N ­ 21 (h), and N ­ 23 (n).
In the limit of very small grains we obtained a quantitativ
agreement by usingDP , dy2 lnsadyDd with a , 1.35.

following we will use the simplified model with equally
spaced single particle levelsem ­ dm [5,10]. We will
comment later about the effect of level statistics [11]. W
study systems up toV ­ 25 at half filling (V ­ N) which
corresponds to the usual case of attractive interaction i
shell jej , vD centered at the Fermi energy.

The parity gaps.—We first consider the properties o
the ground state by measuring the parity gaps introduc
in Ref. [10]

0.0 2.0 4.0 6.0 8.0
δ/∆

0.0

1.0

2.0

3.0

4.0

5.0

6.0

∆∼   P
/∆

FIG. 2. The same as in Fig. 1 for an even number of particl
The parity gap is centered aroundN ­ 18 (±), N ­ 20 (h),
andN ­ 22 (e).
ted

ult
nd

e

e

n a

f
ed

es.

0.0 5.0 10.0 15.0 20.0
δ/∆

0.00

1.00

2.00

3.00

4.00

E
G
/δ

FIG. 3. The spectroscopic gapEG is plotted as a function
of dyD for even and odd particle systems at half filling.
[(e) V ­ 9, 10; (n) V ­ 11, 12; (v) V ­ 13, 14; (x) V ­
15, 16; (,) V ­ 17, 18; (1) V ­ 19, 20; (3) V ­ 21, 22;
(?) V ­ 23, 24; (±) V ­ 25].

DP ­ E2N11 2
1
2

sE2N 1 E2N12d ,

eDP ­ 2E2N 1
1
2

sE2N11 1 E2N21d .

Here EN is the ground-state energy for a system withN

electrons. By increasing the level spacing,eDP and DP

behave in a different way. The cased ø D has been
discussed in [5,10,12],DPyD ø 1 2 dy2D and eDPyD ø
1 2

p
dyD exps22pdyDd. In the opposite limit,d ¿ D

the behavior of the parity effect is dominated by strong su
perconducting fluctuations [10] which give logarithmic
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FIG. 4. Data for the pair mixing parameterC, as a function
of a ­ gyd andV ­ N ­ even, which show clearly a phase
transition [N ­ 8 (±), N ­ 12 (h), N ­ 16 (e), N ­ 20
(n)]. The inset shows the data collapse.
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FIG. 5. The same as in Fig. 4 for odd systems [N ­ 9 (±),
N ­ 13 (e), N ­ 17 (h), andN ­ 21 (n)].

corrections to the noninteracting result, i.e.,DP ­
dy2 lnsdyDd (much larger than the BCS gap at the sam
level spacing). In Fig. 1 the results of the numeric
diagonalization forDP are presented as a function o
dyD. The two asymptotic behaviors discussed above a
plotted for comparison. In Fig. 2 we ploteDPyD which
monotonically increases when the grain size is reduced
expected [10]. Given the maximum number of levels w
can account for, in the limitd ø D we need to consider
couplings up toa ­ 0.5. In this regime we use the rela-
tion D ­ vDy2 sinhs1yad. Notice that our data, which
refer to systems with a different number of electron
(from N ­ 10 to N ­ 25) collapse on a single curve for
all valuesof the ratiodyD. This suggests thatDPyD is
a universal functionof dyD. One consequence of that is
the systems we consider, although small compared w
the superconducting grains used in the experiments wh
N , 103 105, may capture all the relevant features o
the model, in particular in the interesting crossover regi
d , D.

The spectroscopic gap.—Next we study the spectro-
scopic gapEG between the ground state and the first e
cited many body level [3,4]. In the noninteracting cas
EG ­ d whereas in the BCS limit it either coincides with
2D (even-N grains) or it vanishes,EG , d2y2D (odd-N
grains). In the first excited state for even-N grains two
unpaired electrons occupy two single-particle levels clo
to the Fermi energy. In the odd-N grains the first ex-
cited state is obtained by moving the unpaired electr
to the next single-particle level. In Fig. 3EG is plotted
as function of the grain size. For small grains the effe
of pairing correlations in the even case is still obser
able in a rather large range ofdyD for which odd grains
have already reached the asymptotic behaviorEG ­ d.
The crossover to the “strong coupling” regime occurs
values ofdyD which are different in the odd and in the
4544
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even cases and roughly agree with the mean field cr
cal values of Ref. [5],dyD , 4 (even) anddyD , 1
(odd). It is interesting to notice that the BCS regim
is reached at (parity dependent) values ofdyD ø 1 so
there is an intermediate region of valuesdyD # 1 where
BCS theory describes well enough only the ground-st
properties.

To summarize this first part we have shown the fu
crossover between a “weak coupling” regime (very sm
grains, where fluctuational superconductivity manifes
itself via logarithmic renormalizations) and a “stron
coupling” regime (very large grains). This situation i
reminiscent of the antiferromagnetic Kondo problem. Th
level spacingd is the low energy cutoff which tunes
the system through the two regimes. The breakdown
the logarithmic renormalization marks the crossover to t
superconducting phase. This provides aquantitativean-
swer to Anderson’s question [1] despite the fact that w
have bypassed the very problem of defining supercond
tivity. We discuss this issue in the next section.

The order parameter.—Following the conventional
wisdom up to now we meant by superconductivity
regime in which BCS results are qualitatively valid. Th
is not satisfactory in the canonical ensemble since the c
tral quantity, the BCS order parameter, is always zero.
order to characterize superconductivity one has to co
sider higher order correlators. However, they will b
nonzero for generic interaction, even for repulsive one
so it is not straightforward to extract from them a quanti
which plays the role of the “order parameter.” Neverth
less a characterization of superconductivity in the cano
cal ensemble can be achieved by studying the scal
of correlations in the energy space:a superconducting
system displays long range energy correlations. To this
end we consider the pseudospin representation [13] of
Hamiltonian Eq. (1)

H ­
VX

n­1

ens1 1 2Sz
nd 2 ad

VX
m,n­1

S1
m S2

n , (2)

where S1
n ­ c

y
n,1cy

n,2 and Sz
n ­ s1y2d scy

n,1cn,1 1

cy
n,2cn,2 2 1d. Each energy level is represented by a s

of a fictitious lattice and Eq. (2) is the Hamiltonian o
a one dimensional spin-1y2 XY model with long range
interaction in a nonuniform transverse field [14]. Th
number of pairs fixes the totalSz and for odd electron
numbers one should simply remove the “site” occupied
the unpaired electron. In the absence ofXY interaction
the spins point in thez direction with a domain wall at the
Fermi energy separating up and down spin regions.
the opposite limit (vanishing transverse field) the syste
possesses long range order in theXY plane [15]. The
superconducting properties can be studied by defin
the appropriate correlation functions (see also Ref. [16



VOLUME 80, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 18 MAY 1998

.
l
l

-
-
s
al

.
,

.

s
e
r
l.

.

r,
r
7

s-
,

.

Following Refs. [5,17] we consider the quantity

C ­
VX

n­1

unyn , (3)

where yn ­ kS1
n S2

n l1y2 and un ­ kS2
n S1

n l1y2. In the
noninteracting caseC ­ 0 since bothun and yn are
step function symmetric around the Fermi energy a
hence their product is zero. In the limit of very stron
interaction the occupation probability for the pairs, as
function of the level position, is roughly uniform. In this
case an estimate of the energy of this configuration, at h
filling, is ,s2 2 addV2. Note that fora . 2 the system
gains energy, due to pair mixing, from arbitrary hig
energy levels. So if we enlarge the phase space availa
for coherence (by progressively increasingV at fixed
NyV) a “normal” system will not take advantage from
the presence of extra levels whereas a “superconducti
does. In other words correlations are short ranged
energy in normal systems whereas a superconduc
system displays long range energy correlations.

The finite size scaling ansatz forC is

C ­ VhFfsa 2 acr dV1yng , (4)

where acr is the critical point. In Figs. 4 and 5 the
behavior ofC is shown for the even and the odd cas
respectively. A scale invariant point is found whose valu
is parity dependent. By collapsing all the data on a sing
curve, shown for the even and the odd case in the in
of Figs. 4 and 5, respectively, it is possible to determi
the exponentn. We obtainacr ­ 0.315 6 0.002, h ­
0.94, 1yn ­ 0.26 for the even case andacr ­ 0.345 6

0.002, h ­ 1.08, 1yn ­ 0.35 for the odd case. Both the
magnitude ofC and the location of the critical point
(see Figs. 4 and 5) confirm the natural conjecture th
superconducting correlations are destroyed easier in
odd rather than in the even case.

We stress that the value ofacr does not correspond
to a critical grain size below which superconductivit
disappears [2] (note that the scaling in energy is perform
at fixed level spacing). The study of the parity and th
spectroscopic gaps shows thatd determines how far is
a system with given pairing interaction from the BC
fixed point. This is reflected in the behavior of th
correlations studied in this section. We propose that t
finite size scaling in energy space of properly defin
correlation functions [like that defined in Eq. (3)] ca
characterize quantitatively the superconductivity in th
canonical ensemble.

The results presented here for the parity gap and
excitation gap are in good agreement with the analytic
expressions of Refs. [10,12]. If the approximation o
equally spaced levels is relaxed, mesoscopic fluctuatio
are expected to be important in the intermediate reg
d , D [10]. Nevertheless the very existence of th
quantum phase transition and the scaling in energy sp
is not questioned since it does depend only on t
nd
g
a

alf

h
ble

ng”
in

ting

e,
e
le
set
ne

at
the

y
ed
e

S
e
he
ed
n
e

the
al
f
ns

ion
e
ace
he

interplay between kinetic energy and pairing interaction
A more detailed account including the role of leve
statistics and of an applied magnetic field [17–19] wil
be the subject of a forthcoming publication [20].
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