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Small Superconducting Grain in the Canonical Ensemble
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By means of the Lanczos method we analyze superconducting correlations in ultrasmall grains at
fixed particle number. We compute the ground-state properties and the excitation gap of the pairing
Hamiltonian as a function of the level spacidg Both quantities turn out to bparity dependenand
universal functions of the ratio§/A (A is the BCS gap). We then characterize superconductivity
in the canonical ensemble from the scaling behavior of correlation functions in energy space.
[S0031-9007(98)06059-1]
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What is the size limit for a metal particle to have grand canonical ensemble is appropriate for many systems
superconducting properties? Anderson [1] posed thisvhich are large enough to give small relative fluctuations
guestion back in 1959 arguing that when the averagef the electron number. This condition is not strictly met
level spacingé (inversely proportional to volume of in the experiments of Refs. [3,4] where charging effects
the grain) becomes of the order of the BCS gAp allow one to fix the number of electrons in the grain [9].
superconductivity should disappear. A related question i§or these systems moreover quantum fluctuations of the
how to characterize “superconductivity” in small systems pairing field may become so large to invalidate the mean
The transition is washed out, for instance, by thermafield approach. In order to characterize the ground-state
fluctuations of the order parameter [2]. Moreover, thepair correlations, Matveev and Larkin [10] then proposed
hallmarks of Cooper pair condensation like the zerdo use the parity gap\p, an experimentally accessible
resistance and the Meissner effect are absent when tlggiantity related to the extra ground-state energy of a sys-
grains are of submicron size. tem with an unpaired electron. Even the limit of very

In a series of recent experiments Ralph, Black, andmall grainsAp is very sensitive to superconducting fluc-
Tinkham [3,4] studied the transport through nanometertuations (for large grains it reduces A9.
scale Al grains. These experiments revealed the existence Superconductivity in ultrasmall grains requires one to
of a spectroscopic gap larger than the average levedtudy the effect of finite level spacing &iked particle
spacing which could be driven to zero by applying anumber. We tackle this problem by Lanczos exact
suitable magnetic field. This was convincingly interpreteddiagonalization. The purpose of this Letter is twofold.
as the reminiscence of superconductivity. As the grairin the first part we characterize the superconducting
size was further reduced<¢ nm) no trace of the gap correlations by studying the parity effect in the ground
in the spectrum was detected. The experimental resulstate (Figs. 1 and 2) and the spectroscopic gap (Fig. 3).
were found to beparity dependenti.e., to depend on the The central question of defining superconductivity at fixed
electron number in the grain being even or odd.In the lighparticle number is addressed in the second part where
of these experiments von Dekt al. [5] reconsidered the we discuss the scaling properti@s,energy spaceof the
guestion posed by Anderson. They included the effecpairing model (Figs. 4 and 5).
of a uniform finite level spacing in a parity dependent The BCS palrlng Hamlltoman for the small grain is

mean field theory [6], and found that the breakdown of
superconductivity (in the BCS sense) occurs at a value off Z €nCoCno — @b Z_ Cmﬁcm,fcn,—cni - (D)
&/A which is indeed parity dependent. In grains with an i =l

even number of electrons superconductivity persists dowiihe indicesm and n label the single particle energy
to smaller grain sizes as compared with the odd onedevels with energy,, and annihilation operatat, ,. The
This parity effect gets enhanced when the effect of leveuantum numberr = = labels time reversed electron
statistics [7] is included. states. The number of (doubly degenerate) levels is fixed
Because of the spontaneous breaking of the gauge syrte () which is twice the Debye frequencyp in units
metry, the BCS theory is most transparently formulated irof 6. Finally « is the dimensionless BCS coupling
the grand canonical ensemble [8] since it is easy to desonstant andd ~ 1/N(0)V [N(0) being the density of
fine the order parameter as the amplitude to create (or datates at the Fermi energy aldthe volume of the grain].
stroy) a Cooper pair in the condensate. In the canonicdbince the Hamiltonian contains only pairing terms, an
ensemble this quantity vanishes and the characterizatioglectron in a singly occupied level cannot interact with the
of coherence is more difficult. Fortunately the use of theother electrons (the unpaired electron is frozen). In the
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FIG. 1. The parity gap is plotted as a function &f A for
systems with odd electron number.

at half filing (Q = N).

FIG. 3. The spectroscopic gap; is plotted as a function
All the sets are evaluatedf §/A for even and odd particle systems at half filling.

In the inset the region of very large [($) Q = 9,10; (A) Q = 11,12; (<) Q = 13,14; (>) Q =

level spacing is plotted to compare with the asymptotic resultl5, 16; (V) Q = 17,18; (+) Q = 19,20; (X) Q = 21,22;

of Matveev and Larkin.

N=17 (o), N =19 (&), N =21 (0), and N = 23 (A).

In the limit of very small grains we obtained a quantitative
agreement by using, ~ 6/2In(aé/A) with a ~ 1.35.

following we will use the simplified model with equally
spaced single particle levels, = ém [5,10].
comment later about the effect of level statistics [11]. We
study systems up tQ = 25 at half filling (2 = N) which

Ap = Ean+i

Ap

We will

electrons.

The parity gap is centered around(x) ) = 23,24; (o) ) = 25].

1
- E(EZN + Ean2),

1
—Ew + E(E2N+1 + Eon-1).

Here Ey is the ground-state energy for a system with
By increasing the level spacidy; and Ap

corresponds to the usual case of attractive interaction in Behave in a different way. The cage< A has been

shell|e| < wp centered at the Fermi energy.

discussed in [5,10,12\p/A = 1 — §/2A andAp/A ~

The parity gaps—We first consider the properties of 1 — /8/Aexp(—275/A). Inthe opposite limitd > A
the ground state by measuring the parity gaps introducethe behavior of the parity effect is dominated by strong su-

perconducting fluctuations [10] which give logarithmic

in Ref. [10]
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FIG. 4. Data for the pair mixing parametdf, as a function
FIG. 2. The same as in Fig. 1 for an even number of particlesof « = g/6 andQ) = N = even, which show clearly a phase

(V)8

transition [V =8 (o), N =12 (), N = 16 (<),
The inset shows the data collapse.

N =20
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even cases and roughly agree with the mean field criti-

cal values of Ref. [5],6/A ~ 4 (even) and§/A ~ 1

(odd). It is interesting to notice that the BCS regime

is reached at (parity dependent) valuessgfA <« 1 so

there is an intermediate region of valu@sA = 1 where

BCS theory describes well enough only the ground-state

properties.

To summarize this first part we have shown the full

] crossover between a “weak coupling” regime (very small

grains, where fluctuational superconductivity manifests

itself via logarithmic renormalizations) and a “strong
coupling” regime (very large grains). This situation is
reminiscent of the antiferromagnetic Kondo problem. The

0.07 ‘ ‘ ‘ ‘ level spacingé is the low energy cutoff which tunes

030 0.32 0.34 0.36 0.38 040  the system through the two regimes. The breakdown of

a the logarithmic renormalization marks the crossover to the

FIG. 5. The same as in Fig. 4 for odd system&+ 9 (o), ~ Superconducting phase. This provideguantitativean-

N =13 ($), N = 17 (O), andN = 21 (A)]. swer to Anderson’s question [1] despite the fact that we
have bypassed the very problem of defining superconduc-
tivity. We discuss this issue in the next section.

corrections to the noninteracting result, i.eAp = The order parameter—Following the conventional

8/21In(6/A) (much larger than the BCS gap at the saméyisdom up to now we meant by superconductivity a

level spacing). In Fig. 1 the results of the numericalregime in which BCS results are qualitatively valid. This

diagonalization forAp are presented as a function of s not satisfactory in the canonical ensemble since the cen-

8/A. The two asymptotic behaviors discussed above argal quantity, the BCS order parameter, is always zero. In

plotted for comparison. In Fig. 2 we pl&»/A which  order to characterize superconductivity one has to con-

monotonically increases when the grain size is reduced, agder higher order correlators. However, they will be
expected [10]. Given the maximum number of levels wenonzero for generic interaction, even for repulsive ones,
can account for, in the limi6 << A we need to consider so it is not straightforward to extract from them a quantity
couplings up tae = 0.5. In this regime we use the rela- which plays the role of the “order parameter.” Neverthe-
tion A = wp/2sink(1/a). Notice that our data, which less a characterization of superconductivity in the canoni-
refer to systems with a different number of electronscal ensemble can be achieved by studying the scaling

(from N = 10 to N = 25) collapse on a single curve for of correlations in the energy spaca: superconducting

all valuesof the ratio5/A. This suggests thakp/A is  system displays long range energy correlatioriBo this

auniversal functiorof §/A. One consequence of that is end we consider the pseudospin representation [13] of the

the systems we consider, although small compared withlamiltonian Eq. (1)

the superconducting grains used in the experiments where

N ~ 10°-10°, may capture all the relevant features of a Q

the model, in particular in the interesting crossover region H = Z en(l + 28%) — abd Z Sts-, )

n=1
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The spectroscopic gap-Next we study the spectro-
scopic gapEs between the ground state and the first ex-
cited many body level [3,4]. In the noninteracting casewhere S, = c;,+c:§,7 and S; = (1/2) (C}:]l-,+cn,+ +
Es = 6 whereas in the BCS limit it either coincides with c):,,cn,, — 1). Each energy level is represented by a site
2A (evend grains) or it vanishestg ~ 8%/2A (odd-N  of a fictitious lattice and Eq. (2) is the Hamiltonian of
grains). In the first excited state for evahgrains two a one dimensional spinf2 XY model with long range
unpaired electrons occupy two single-particle levels closénteraction in a nonuniform transverse field [14]. The
to the Fermi energy. In the odd- grains the first ex- number of pairs fixes the tots#l* and for odd electron
cited state is obtained by moving the unpaired electromumbers one should simply remove the “site” occupied by
to the next single-particle level. In Fig. B is plotted the unpaired electron. In the absenceXdf interaction
as function of the grain size. For small grains the effecthe spins point in the direction with a domain wall at the
of pairing correlations in the even case is still observ-Fermi energy separating up and down spin regions. In
able in a rather large range é6f/A for which odd grains the opposite limit (vanishing transverse field) the system
have already reached the asymptotic beha¥igr= 6.  possesses long range order in tki& plane [15]. The
The crossover to the “strong coupling” regime occurs asuperconducting properties can be studied by defining
values of /A which are different in the odd and in the the appropriate correlation functions (see also Ref. [16]).

mn=1
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Following Refs. [5,17] we consider the quantity interplay between kinetic energy and pairing interaction.
Q A more detailed account including the role of level
v = Z UV, , (3) statistics and of an applied magnetic field [17-19] will

n=1 be the subject of a forthcoming publication [20].

where v, = (S*S)/2 and u, = (S"SH)V2. In the We thank L. Amico, F. Braun, J. von Delft, K.A.
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