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Composite Fermions in Modulated Structures: Transport and Surface Acoustic Waves
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Motivated by a recent experiment of Willettet al. [Phys. Rev. Lett.78, 4478 (1997)], we employ
semiclassical composite-fermion theory to study the effect of a periodic density modulation on
a quantum Hall system near Landau level filling factorn ­ 1y2. We show that even a weak
density modulation leads to dramatic changes in surface-acoustic-wave (SAW) propagation, and
propose an explanation for several key features of the experimental observations. We predict that
properly arranged dc transport measurements would show a structure similar to that seen in SAW
measurements. [S0031-9007(98)06095-5]
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Experiments on surface acoustic waves (SAW) prop
gation above a two-dimensional electron gas (2DEG) [1
provided strong support for the composite-fermion a
proach to the compressible quantum Hall state near filli
factor n ­ 1y2 [3,4]. Measurements of both absorptio
and velocity shift of SAW’s probe the conductivity o
the 2DEG at finite wave vector and frequency [1]. I
this way, Willett et al. [2] observed that the absorption
(velocity shift) of the SAW as a function of filling fac-
tor exhibits a maximum (minimum) atn ­ 1y2, imply-
ing a maximum in the conductivity. Exactly atn ­ 1y2,
the conductivity is found to be linear in the wave vecto
for wavelengths smaller than the composite-fermion me
free path, in agreement with composite-fermion theory.

Recently, Willett et al. observed a striking effect in
SAW measurements nearn ­ 1y2 on samples whose
electronic density nsrd ­ n̄ 1 dnsxd is periodically
modulated inone direction, sayx̂ [5]. When the SAW
propagates in thêy direction, a rather weak density modu
lation (dnyn # 0.05) turns the minimum in the velocity
shift at n ­ 1y2 into a surprisingly robust maximum:
Unlike the former, the magnitude and width of the latte
are almost independent of the SAW wave vectorq and
the modulation perioda (for sufficiently small a). In
contrast, the modulation has no significant effect wh
the SAW propagates in thêx direction.

In this Letter, we analyze dc transport, SAW velocit
shift, and SAW absorption in modulated systems nearn ­
1y2. We employ semiclassical composite-fermion theo
[3,6], which allows one to derive a Boltzmann equatio
for composite fermions (CF’s). Within this theory, on
attaches two Chern-Simons flux quanta to each electr
The resulting quasiparticles—CF’s—experience an effe
tively reduced magnetic field,B srd ­ B 2 s2hyednsrd so
that a density modulation leads to a modulated magne
field Bsrd. Thus, experiments on modulated structures t
a fundamental aspect of the theory.

We first consider dc transport in modulated systems w
very large modulation perioda. For such systems the cur
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rent Jsrd is related to the electric fieldEsrd by a local re-
sistivity tensorrsxd. The measurable quantity, howeve
is the macroscopic resistivityrmac, relating thespatially
averagedcurrent and field. We now show that the modu
lation makesrmac anisotropic although locallyrxx ­ ryy .
The local resistivity is a function of the local densitynsxd
and can be written asrsxd ; r̄ 1 drsxd, wheredr has
zero spatial average. (Here and below, bars denote qu
tities in the unmodulated system.) We assume a stro
magnetic field so thatrxy ¿ rxx , ryy, and neglect the di-
agonal elements ofdr. Since the density depends onl
on x, the current, electric field, andr are all independent
of y. Conservation of current then implies thatJx is uni-
form in space. From Maxwell’s equations, we have= 3

E ­ 0, which impliesdryxJx 1 ryydJy ­ 0. Here,dJy

is the modulated part of the current in they direction,
whose spatial average is zero. Thus [7], whilermac

yy ­ r̄yy ,

rmac

xx ­ r̄xxs1 1 b2dn2
rmsyn̄2d , (1)

where dnrms is the root-mean-square value ofdn, the
deviation of the local electron density from its mean valu
n̄, and we have definedb by

drxy ; brxxdnyn̄ . (2)

In a naive Drude pictureb ­ rxyyrxx ¿ 1. In the
quantum Hall regime, empirical observations [8] thatrxx

is proportional to the derivative ofrxy with respect to the
logarithm of the magnetic field (“resistivity law”), togethe
with the observation thatrxy is primarily determined by the
filling factor n, suggest that the coefficientb is in fact a
constant, independent of the applied magnetic field, a
weakly temperature dependent, of order 20 or more
high-mobility samples. Thus,a weak density modulation,
while having no effect onrmac

yy , strongly enhancesrmac
xx .

An SAW transmitted above a 2DEG gives rise t
a “bare” electric fieldESAW

q,v, parallel to q, due to the
piezoelectric effect in GaAs. In unmodulated system
the screening response of the 2DEG leads to an absorp
and a velocity shift of the SAW, proportional to the imag
nary and real parts, respectively, ofs1 1 isaaysmd21,
© 1998 The American Physical Society
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wheres is the electronic conductivity at wave vectorq
and frequencyv ­ ysq (ys being the sound velocity),
a is the direction of q, and sm ­ eysy2p , with e

the appropriate background dielectric constant [1,9]. A
customary, the velocity shift is given relative to its valu
for saa ­ `. One may naively conjecture that in a
modulated systems should be replaced bysmac. Since
smac

yy ø rmac
xx ysr̄xyd2, such a conjecture (to be partially

verified below) predicts a modulation-induced suppressi
of velocity shift whenq k ŷ, and no effect whenq k x̂.
In strong magnetic fieldssm is large compared tosaa ,
so that a decrease in the velocity shift corresponds to
increase in the absorption and vice versa.

The local approximation obviously applies when th
modulation perioda is much larger than the compos
ite fermion scattering length,tr . Even when this con-
dition does not hold the resistivityr is still local far from
n ­ 1y2, where the composite fermion cyclotron radius
much smaller thana. Thus, away fromn ­ 1y2 we still
expect the modulation to enhance the dc resistivity fo
lowing Eq. (1) and similarly to enhance SAW absorptio
and suppress the velocity shift. Nearn ­ 1y2, however,
we expect these effects to be greatly reduced ifa , ,tr ,
leading to a local minimum in the resistivity and SAW ab
sorption (as a function of magnetic field), and a maximu
in the SAW velocity shift[10]. The detailed analysis we
present below confirms these general expectations.

We now proceed to study SAW propagation withou
assuming a local resistivity tensor. The electric fieldESAW

q,v
induces electronic currents and densities in the 2DE
In linear response, the currentJ is related to the SAW
field by ESAW ­ rSAWJ. The matrixrSAW differs from the
electronic resistivity,r, which relates the current to the
s
e

on

an

e
-

is

l-
n

-
m

t

G.

total electric fieldESAW 1 Eind acting on the electrons.
The fieldEind due to the induced electronic charge densi
can be linearly related to the current byEind ­ UJ
(with U given below). Clearly,rSAW ­ r 2 U . In
modulated systems, bothr and rSAW are nondiagonal in
momentum: an electric field of wave vectorq induces
currents and densities of wave vectorsq 1 lp, where
l is an integer andp ­ 2p x̂ya. We use the notation
sssrSAWsqddddkl

ab for the ratio of the fieldESAW
a of wave vector

q 1 kp to an applied currentJb of wave vectorq 1 lp.
The v dependence is left implicit since all quantitie
are diagonal inv. Without modulation,r, rSAW , and
their inverses are diagonal in the modulation indicesj, l.
By Coulomb’s law and the continuity equation,U

jl
ab ­

2idjl
sqa1lpad sqb1lpbd

v

2p

ejq1lpj .
The rate of energy absorption by the electrons,P, is

P ­ RefJp ? sESAW 1 Einddg ­ RessSAW d00
aa jESAW j2 (3)

with sSAW ­ r21
SAW . The SAW velocity shift is propor-

tional to ImssSAW d00
aa 1 sm [2,9]. A related formalism

was independently developed in Ref. [11].
Our starting point for calculatingsSAW is a Boltzmann

equation describing the semiclassical dynamics of CF’s
a modulated potential [6]. This equation incorporates t
coupling of the CF’s to the Chern-Simons fields descri
ing the interactions of the charges with the attached fl
quanta. It is valid close ton ­ 1y2 where the quantum
mechanics of CF’s can be neglected. (All relevant leng
scales are assumed large compared to1ykF .) The Boltz-
mann equation is an equation fordnpsr, td, the deviation
of the composite-fermion phase-space distribution functi
from its equilibrium value. Within linear response,
h≠t 1 vp ? =r 2 s=rV scd ? =p 1 efvp 3 ẑB g ? =pjdnp 1 eE ? =pns0d
p 2 I

"
dnp 2

X
p0

dnp0

#
­ 0 . (4)
r.

r

t

,

ts
HereV scsxd is the self-consistent equilibrium electrostati
potential creating the modulation,vp is the velocity of a
composite fermion of momentump, andI is the impurity
scattering collision integral. The equilibrium value of th
phase-space distribution function is the Fermi-Dirac di
tribution n

s0d
p srd ­ fmsssp2y2m 1 V scsxdddd with a chemi-

cal potential m. The composite fermions are subjec
to a spatially modulated effective magnetic fieldB sxd.
The effective electric fieldE ­ ESAW 1 Eind 1 ECS is
composed of the physical fieldESAW 1 Eind, and the
Chern-Simons electric fieldECS ­ s2hye2dJ 3 ẑ. The
modulation enters Eq. (4) throughV scsxd, B sxd, and the
Fermi velocity. The electronic current induced byE is
Jsr, td ­

P
p vpdnsp, r, td. We emphasize that while we

use composite-fermion theory, we present here only m
surableelectronicresponse functions.

The essential physics is captured by a perturbati
calculation ofsSAW to second order in the density modu
lation dn. In this calculation we consider long SAW
c
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wavelengthsq,tr ø 1, weak disorderkF,tr ¿ 1, and
p ¿ q. We first consider the SAW wave vector to be
q ­ qŷ, i.e., perpendicular to the modulation wave vecto
We write rSAW ­ r̄SAW 1 dr and sSAW ­ s̄SAW 1 ds.
Since the Boltzmann equation is a convenient tool fo
calculatingdr in powers ofdn, we write

sdsSAWd00
yy . fs̄SAW s2dr 1 drs̄SAW drds̄SAW g00

yy . (5)

Sinces̄ is diagonal in its superscripts, both the rightmos
and leftmost matrices aress̄SAW d00. We findss̄SAW d00 using
s̄SAW ­ sr̄ 2 Ud21. Thexx element does not contribute
to (5). The off-diagonal elements are larger than theyy
element by a factor ofkF,tr , and are given by6

s̄xysqd
11is̄yyysm

.
Sinceq,tr ø 1, we may approximatēsxysqd by itsq ­ 0
value. The biggest contribution to the first term in (5)
then, is proportional todr00

xx , which is precisely what
is measured in Weiss-oscillation measurements [7]. I
contribution here is smaller by a factor ofkF,tr than that
of the second term in (5).
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For the second term of (5) we use the Boltzman
equation (4) to calculatedr to first order indn. We find
that as long askFa ¿ 1 (a condition well satisfied by the
experimental system), the Hall components ofdrl0 are

drl0
xy ­ 2drl0

yx ­ r̄xy
dnl

n
(6)

with dnl ­ s1yad
Ra

0 dx dnsxd expsi2plxyad. The diag-
onal componentsdrl0

xx , drl0
yy are smaller by a factor of

kF,tr . By the Onsager symmetry,r0l
absBd ­ r

l0
bas2Bd

[12]. These expressions, which are obvious in the loc
limit a ¿ ,tr , hold irrespective of the ratio ofa to ,tr .

Equations (5) and (6) and the expression fors̄00
xy suggest

that the second term in (5) can be approximated by

sdsSAWd00
yy .

X
lfi0

ss̄SAW d00
yxdr0l

xyss̄SAW dll
yydrl0

yxss̄SAW d00
xy .

(7)
This is indeed the case, since we now show thatss̄SAW dll is
dominated by itsyy element.

The response functionss̄SAW dll relates an externally
applied electric field of wave vectorq 1 lp to a current
of the same wave vectorin an unmodulated system. With
the expression forU , one finds for the inverse ofss̄SAW dll,

sr̄SAW dll ­

24 r̄xxslpd 1 i
lp

qsm
r̄xyslpd 1

i
sm

r̄yxslpd 1
i

sm
r̄yyslpd 1 i

q
lpsm

35 . (8)

Here we approximatedq 1 lp . lp. Sincep ¿ q and
sm ø e2yh, the biggest element insr̄SAW dll is the xx
component, and, consequently, its inverse is dominat
by the yy component. Ifq is small enough such that
s4hye2dsm ø p2yqkF and spysdysqyFd ¿ 1 (with yF

the composite fermion Fermi velocity), thenss̄SAW dll
yy ø

1yr̄yyslpd ø se2y2hd2ys̄xxslpd. The largeness of theyy
element,ss̄SAW dll

yy , which plays an important role in our
calculation, is in marked contrast to the conductivit
matrix s̄ll, whose largest elements are the off-diagon
ones, due to the strong magnetic field. This contra
reflects the fact that in the modulated system, the SA
field ESAW in the ŷ direction is accompanied by a large
induced field in thex̂ direction. The current is almost
perpendicular to thetotal electric field and hence has a
sizable component in thêy direction.

Finally, using (7) and (8), we find

sdsSAWd00
yy .

X
lfi0

√
dnl

n
e2y2h

1 1 is̄yyysm

!2
1

s̄xxslpd
. (9)

This is the central result of our analytical calculation. I
the local limit,p ø 1y,tr , this expression can be obtained
from the analysis described above Eq. (1). An analogo
calculation shows that the effect for SAW propagatio
parallel to the modulation direction,q ­ qx̂, is smaller
by a factor of orderskF,tr d2 , 103 104. Experimentally,
indeed, the modulation has no observable effect in th
case. The modulation contribution to the macroscop
conductivity is given by (9) withsm ­ `.

We now show that the predictions of Eq. (9) are i
qualitative agreement with key experimental results. Th
4496
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influence of the modulation is essentially determined by
s̄xxslpd. This quantity is known, both from previous ex-
periments [2] and from theory [3,4], to exhibit a maxi-
mum as a function of magnetic field atn ­ 1y2 when
ljpj ¿ 1y,tr . Thus Eq. (9) predicts that the modulation-
dependent contribution to the absorption (velocity shift)
has a minimum (maximum) aroundn ­ 1y2, once the
modulation perioda is smaller than,tr . The trends
of the modulation-independent contribution,s̄00

yy , around
n ­ 1y2 are just the opposite. For strong enough modu-
lation, it is the modulation-dependent contribution which
determines the type of extremum points atn ­ 1y2, in
agreement with the new effect observed by Willett et al.

The analytical results are well supported by our numeri-
cal solutions of the Boltzmann equation, which are not re-
stricted to weak modulation or to the regimeq ø p, ,21

tr .
Numerically, we directly compute the response to the ap-
plied SAW field. We restrict ourselves to a modulated
magnetic field with a single Fourier component, and em-
ploy the isotropic relaxation-time approximation [13] to
account for impurity scattering. Representative results
for the SAW velocity shift as a function of filling factor
aroundn ­ 1y2 are shown in Fig. 1. At zero modulation,
the velocity shift exhibits the usual minimum atn ­ 1y2.
As the modulation is increased, the minimum disappears
and a maximum develops in accord with the analytical
conclusions above. The effect of the modulation gets
stronger as one gets farther fromn ­ 1y2. As seen
in Fig. 1, the modulation-induced peak in the velocity
shift is more pronounced than the minimum observed a
zero modulation, in agreement with the experiment. We

FIG. 1. SAW velocity shift vs filling factor for different
modulation strengths. The SAW wave vector isq,tr ­ 1.2
and the modulation wave vectorp,tr ­ 6. With increasing
modulation, the minimum in velocity shift changes into a
maximum, consistent with the experimental results of Ref. [5].
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emphasize that we found similar behavior over a wid
range of the parametersq andp.

Experimentally, the modulation-induced peak in veloc
ity shift was strikingly insensitive to the SAW wave vec-
tor q and the modulation wave vectorp. Figure 2 shows
our results for that peak for realistic values ofq and p.
Clearly, the width and magnitude of the peak are rath
stable over a substantial parameter range—a factor of 2
modulation period and a factor of 3 in SAW wavelength
in good qualitative agreement with the experiment.

There is a point of disagreement between our theo
and the experiment. Theoretically, the maximum in th
velocity shift is primarily due to a decrease in the velocit
shift away fromn ­ 1y2, rather than to an increase in
its value atn ­ 1y2. Experimentally, there seems also
to be a sharp increase ins00

yy at n ­ 1y2. This may be
caused by unknown physical effects that were omitted fro
our model. However, another conceivable explanation f
this difference within our model might be that the materia
parametersm increases with the voltage applying the
modulation, leading to an absolute increase in the veloc
shift atn ­ 1y2.

In fact, the values ofsm which were used to relate SAW
propagation tos in unmodulated samples have been muc
larger than the theoretical values, for reasons which are n
understood [3]. Thus a dependence on the gate volta
and perhaps on the direction of SAW propagation, is n
inconceivable. An increase in the mean free path,tr for
increasing gate voltage in the modulated samples wou
also give qualitatively similar effects.

FIG. 2. Modulation-induced maximum in the SAW velocity
shift vs filling factor for different SAW and modulation wave
vectorsq and p. The parameters (q,tr , p,tr , dnyn) are for
the full line (0.6, 6, 0.06), short-dotted line (0.6, 10, 0.07)
short-dashed line (1.2, 6, 0.07), wide-dotted line (1.2, 10, 0.08
long-dashed line (2, 6, 0.08), and dash-dotted line (2, 10, 0.1
e
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Our calculation for dc transport, whose result was state
below Eq. (9), predicts anisotropies in the macroscopic
conductivity and resistivity tensors. Specifically, we find
that bothrmac

xx andsmac
yy exhibit minima nearn ­ 1y2 (with

the modulation in thex direction), observable in Hall-bar
and Corbino geometry, respectively. Transport expe
ments reported in Ref. [5] have not shown these effec
However, it is not clear what are the actual current paths
this experiment. Very recent experimental results of Sm
et al. [14] are in qualitative agreement with our theory.

In conclusion, we find within a semiclassical composite
fermion approach that a weak density modulation ca
dramatically affect both dc transport properties and SAW
propagation nearn ­ 1y2. Our results are in agreement
with many key features of the experimental results. Deta
of the calculation will be published elsewhere.
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