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Collisionless magnetic reconnection in a two dimensional plasma is analyzed, using a two-fluid model

where electron mass and pressure effects are important. Numerical simulations show the formation of
current and vorticity layers along two branches crossing at the stagnation point of the plasma flow.

These structures are interpreted on the basis of the Hamiltonian Casimirs (conserved fields) of the fluid
plasma model. [S0031-9007(98)06155-9]

PACS numbers: 52.35.Py, 47.65.+a, 52.65.Kj, 94.30.Gm

The problem of magnetic reconnection in collisionlesswith equilibrium pressure gradients, a valid approximation
regimes was originally motivated by applications to spaces long as the electron diamagnetic frequency is small
plasma processes, such as reconnection events occurriogmpared with the characteristic growth rate of the
in the Earth magnetotail [1]. Renewed interest in thisreconnection process. On the other hand, we retain
problem was prompted by the observation of fast relaxathe divergence of the electron stress tensor (electron
tions in high temperature laboratory plasmas of thermonugyroviscosity) in the generalized Ohm’s law. The parallel
clear interest. One well known example is the so calledtlectron compressibility introduces the characteristic scale
“sawtooth crash” of the central temperature of a tokamakength, o, = +/T./m;/w;, related to the ion inertia and
plasma, which may occur on a time scale short comparetb the electron temperaturg,. The cold electron regime
to the average electron-ion collision time [2]. Recently itis defined by the limito,/d. — 0. We also consider the
was shown [3,4] that electron inertia may account for thdimit where the ion Larmor radiu; = +/T;/m;/w.i, is
fast time scales observed in the experiments. neglected. In linear theoryy; enters on equal footing

The first aim of this Letter is to extend this analysiswith o, in determining the growth rate [10,11]. In
to finite temperature regimes, where electron pressurgddition, the Hamiltonian structure is preserved even with
effects are important. We find that in the early nonlinearp; terms retained [6]. Thus we may expect tigatterms
phase the growth of the magnetic island is even fastewill not change the qualitative behavior obtained here
than in the cold electron limit of Ref. [4]. The fast below in the limitg; — 0.
collisionless evolution in this early nonlinear regime is The 2D model equations we consider are [8]

a non-steady-state process, characterized by the formation

of increasingly narrower microscales below the electron aF _ 02U, ], 1)
skin depth. The long term behavior is likely to require dt *

kinetic considerations outside the scope of the fluid model dU

adopted in this paper. e J, ], 2

The second aim is the investigation of the role played
by the Casimir invariants. Indeed, it can be shown that thélere the time is normalized on the Alfvén timey,
adopted collisionless model admits a Hamiltonian structurel, = d./L, and ¢, = ¢,/L,, where L, is the charac-
[5,6]. While magnetic flux is reconnected in the courseteristic macroscopic length. The magnetic fieldBs=
of plasma evolution, the conserved fields associated witBpe, + Vi X e,, with By constant and; the ignorable
the Casimirs preserve their initial topology. The naturecoordinate. Th& X B drift on the normal plane is; =
of collisionless reconnection under these circumstances is. X Vo, whereg is a stream function/ = V¢ is the
entirely different from that of resistive reconnection. corresponding vorticity] = —V?y is the current density,
The model we consider is an extension of reducednd F = ¢ + d2J is the z component of the velocity-
magnetohydrodynamic [7] to a two-fluid description, space averaged canonical momentum. The Poisson brack-
where electron inertia, associated with the inertial skinets are defined asA, B] = e, - VA X VB and the total
depth,d, = c¢/w,., and the electron pressure terms aretime derivative is defined aé/dt = a/dt + [¢, ]. The
retained in the generalized Ohm’s law [8] (a morefirst equation corresponds to Ohm’s law in which elec-
general model is the four field model of Ref. [9]). More tron inertia, the electron pressure gradient, and the elec-
specifically, we adopt an isothermal equation of state fotron stress tensor are considered. The second equation is
the electrons and disregard diamagnetic effects associatéte vorticity equation.
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These equations can be written in the following consertheory, one can see an enhancement of the reconnection

vative form: rate, by a factofp, /d,)*3 compared with the growth rate
d.G obtained forg; < d,.
— =0, (3) In this paper, we present the numerical solution of the
dt

i i nonlinear Egs. (1) and (2) obtained by means of the finite
where we have defined the fields difference method on a nonuniform grid. The numerical
G- =F *=d,oU. (4) integration strategy is such that the discretization error

The total time derivative isds/dt = /ot + [@=. ] for the space operators can be assumed asymptotically of

where the generalized stream functions are defined as | :: CZZ? gt?oeer'zvxe /iss:r:de gom?edm;ﬁgjignsl)jﬁbarw h
o+ = ¢ * (0,/d.)y. Since the field€; - are conserved b Y P y

X o conditions, equilibrium fieldgy., = cosx, ¢, = 0, and
as they are advected by the generalized velocities= ... . o cd iky
e, X Vygo:, their topology)// rema?ins frozen during the time 1'6a perturbationd(p, 8¢) = Rell¢(x), dy(x)Je* ™.

evolution of the systemv({- are smooth functions of, y, Qur results for the case, — 0 were first repqrted
and1). in Ref. [14]. These results confirm the formation of

a current layer along the neutral line with a sublayer

The mathematical madel can also be cast in n0nCanon%:'haracterized by a microscale, which shrinks with time
cal Hamiltonian form with the Hamiltonian functional y !

; " - ) as 6(t) ~ d,exd—w(t)/2d,], wherew is the magnetic
given by (modulo addition of Casimirs [6]): island width, in agreement with the analysis of Ref. [4].
1 N ical solutions obtained for parameter values
H=— Px (VU2 + d27% + 02U2 + [Vol?). ew numerical : para
2 f x (vl ¢ O Vel os = 3d, andp; = d./2, at fixed aspect ratie = 1/2
(5) and inertial skin depthi, = 0.08 are shown in Figs. 1
and 2. In particular, Fig. 1 shows the contour plots of
the fields ¢, ¢, J, U, F, G4+, and ¢ for the case
_ 2 os = 3d, at a time such that the ratio of the magnetic
Cz f d'x h=(G*) ©)  island width over the inertial skin depth #83.5. (Note

with k- arbitrary functions. The Casimirs are constantsinat the contour lines o6, are very close to those of

of motion of our system of equations. In the limit of fOF this case, where, > d,.) Figure 2 shows the profiles
vanishingo;, upon expandingi- to first order, we find Of the quantitiesiys = ¢ — g, ¢, J, andG-. across the
the Casimirs of the cold electron cas®, = [ d*x h,(F) neutral _Ilne at different simulation times f@, = d,/2.
and C, = [d?x Uhy(F). In this case, the canonical From' Figs. 2(a) and 2(b) we see thay and the stream
momentumF is conserved and its topological structure lUnction ¢ vary over a region of ordeg, ~ d.. On the
is preserved in time. We point out that the topologicalcontrary, the profiles of the current densify and of
transition of F requires both finiteo, and finite electron the conserved fields., develop a narrow sublayer below

inertia. This can be seen by rewriting Eq. (1) as the skin depth, similarly to the cagg = 0.
oF The amount of reconnected flux, as measured by

= + e — 02U,F] = d*02[J,U]. (7) O¥x= #(0,0;1) — 4(0) (the magnetic flux function at
at ‘ ‘ the X point,x = y = 0), scales a$yy ~ —w?(t)/8, as
Thus, ford,p, — 0, F is written in Lagrangian conserva- can be shown by simple analytic considerations. The
tive form. The last term in Eq. (7), which is responsibleisland width grows to macroscopic values in the early
for the topological transition of”, is related to the off- nonlinear phase, i.e.L..; > w(t) = d., 0,; hence the
diagonal terms of the electron stress tensor. It expressesnount of reconnected flux tends to become of order
the fact that the magnetic flu¢ and the current density unity. Likewise, the peak value of the current density
J are advected with different velocities: the first with theincreases with the square of the magnetic island width.
particle and the second with the gyrocenter fluid velocity.Note thatU is an odd function ok andy and the origin is
We consider the largd’ regime, defined byA’d, >  a stagnation point of the flow. Hend&,G+)x = S¢x +
(d./es)'?, which allows [4,12] an early nonlinear phase d28Jx = 0, from which8Jy ~ w?(¢)/8d>. Clearly, this
during which fast magnetic reconnection can take placeresult is strictly valid in the absence of dissipation.
The linear system obtained from Egs. (1) and (2) was Figure 1(h) illustrates the time evolution of In(z)/d. ].
solved analytically in Ref. [11]. In the relevant limit This figure compares the casgs = d,/2 and g, =
os > d., the linear growth rate normalized to the Alfvén 3d.. In both cases, the growth of(s) is faster than
time is y. ~ (2d,02/m)"/? (the parametel’ measures exponential and indicative of a quasiexplosive behavior
the logarithmic jump ofyy across the reconnection layer in the early nonlinear phase, as discussed in [4] for the
[13]). In this linear regime, the mode structure exhibitscaseg; = 0. The growth rate is larger at largealues
macroscopic convection cells, with characteristic sizeof ¢;/d.. Although the precise scaling law is difficult to
L..11 ~ L,, the vorticity profile has a width-p,, while  obtain numerically, these results suggest that the magnetic
the current density has a width ofd,, with a tail ex- island attains a macrgscopic amplitude on the time scale
tending over a distance o,. Note that, already in linear 7 ~ y[l ~ Q(zmdf (05 > d.).

Two infinite sets of Casimirs can also be defined:
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(d) U; (e) F; (f) G+ (9) ¢+
lengthL,.

In the finite o, regime, in contrast with the limig, —

0, F changes its topology: on@ point forms at the origin  shows the contour lines ap. .
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Contour plots for the casg, = 3d,, d. = 0.08, ande = 1/2 at a time such thaiv(z)/d, = 3.5: (@) ¢; (b) ¢; (c) J;
(h) Inw(z)/d, for different values ofg,. Thex andy coordinates are normalized on the scale

fields is preserved, as shown in Fig. 1(f). Figure 2(g)
The contour levels of

and four stationary points form symmetrically around it, G- and¢_ are symmetric to those @f. andg- .

as shown in Fig. 1(e). The initial topology of th&-
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FIG. 2. Cross sections at constamt for the casep, =
de/z: (a) 51/’/(&//%:@/2 at y = 0; (b) (p/(gp)x:*LX/Z at
y=1L,/4, (c)J aty =0; (d) G+ aty =0. =50 corre-
sponds tow/d, = 1.7, t = 70 to w/d. = 2.7, andt = 90 to
w/d, = 5.6.
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A cross-shaped configuration in the current density and
vorticity layers is shown in Figs. 1(c) and 1(d). The cur-
rent density layer is split into two branches, while two lay-
ers of vorticity with opposite signs are formed along these
branches. This is a distinctly new feature as compared
with the cold electron case. The formation of the cross
shape can be interpreted in terms of the time evolution of
the conserved fields;+. Initially, these two fields have
vertical contour lines, with a neutral line (i.e., a line where
VG+ = 0) along they axis. As the instability evolves,
the contour lines of5 . and G- rotate in opposite direc-
tions: the neutral lines do not coincide any longer and, if
superimposed, form a cross. The rotation is introduced
by the velocity fieldsyr+ = e, X Ve-+. SinceG- are ad-
vected by, the neutral lines of7 + (on whichaG+/ar =
0) at a nonlinear time (such that > d,) tend to align
along the branches of the separatricespef. Using the
ansatz near the origin suggested by the numerical simu-
lation (see also Ref. [4])p ~ @o(t) (x/8)sin(y), ¢ ~
codx) + Yo(r)cogy),withgg ~ —A ~ —yA, A ~ w/2
is the fluid displacement along for |[x| > 6 ~ v and
o ~ —A%/2, we can readily estimate the angldetween
the x axis and the direction of,. Foro,/d, — 0, this
angle is eithel0 or 7 /2, i.e., vy is aligned along either
the x axis or they axis and no rotation is induced. For
o,/d. > 1, we find instead

tand ~ =/Iol ~ +w/2V2. (8)



VOLUME 80, NUMBER 20 PHYSICAL REVIEW LETTERS 18 My 1998

In this case the asymptotes of the hyperbolic streanformation of microscales. Thus, Hamiltonian reconnec-
functionse - tend to be tangent to the separatrix/oét the  tion is intrinsically a non-steady-state process. In the
origin. Sincew(t) tends to grow to macroscopic values, time asymptotic limit, these microscales become unphysi-
there is no indication of saturation of the anglg) in the  cal and dissipative processes must intervene. However,
early nonlinear stage wharn, > d,. the correct treatment of the long time evolution is likely
As a test of the validity of our results, we have checkedo require kinetic considerations. One should note that
the relative changes of the enerffyand of the invariant electrons are accelerated in a narrow layer to very large
g+ = [G.+d*x. Clearly, the exact solution of Egs. (1) speeds along the magnetic field lines. Thus, the electron
and (2) should consen® andg. exactly. We find that distribution function tends to become highly distorted and
H varies less than% and g, less thamd% at the end one can think of velocity space instabilities (e.g., of the
of the integration period. The numerical inaccurancy instreaming type) which would limit this tendency, intro-
the conservation off andg is related to the microscale, ducing an effective (anomalous) current diffusion. Mag-
which becomes narrower in time. Our simulations stop at aetic stochasticity associated with 3D effects is another
time when the microscale has become so narrow that it cgpossibility. Nevertheless, our analysis is valuable in that it
no longer be satisfactorily resolved by our numerical gridsuggests possible links between spatial structures and the
Up to this time, there is no indication of saturationwaft).  conservation of the phase-space volume associated with
With the introduction of a viscosity operator, we have beercollisionless kinetic models.
able to reach larger values of(r). Collisional electron It is a pleasure to acknowledge helpful conversations
viscosity in Ohm’s law introduces a cutoff scale length,with S. Bulanov, B. Coppi, M. Ottaviani, J. Rem, and
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the structures that are found over the scatgsandd.  and by the Italian National Research Council (CNR).
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