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Invariants and Geometric Structures in Nonlinear Hamiltonian Magnetic Reconnection
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Collisionless magnetic reconnection in a two dimensional plasma is analyzed, using a two-fluid model
where electron mass and pressure effects are important. Numerical simulations show the formation of
current and vorticity layers along two branches crossing at the stagnation point of the plasma flow.
These structures are interpreted on the basis of the Hamiltonian Casimirs (conserved fields) of the fluid
plasma model. [S0031-9007(98)06155-9]
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The problem of magnetic reconnection in collisionles
regimes was originally motivated by applications to spac
plasma processes, such as reconnection events occur
in the Earth magnetotail [1]. Renewed interest in thi
problem was prompted by the observation of fast relax
tions in high temperature laboratory plasmas of thermon
clear interest. One well known example is the so calle
“sawtooth crash” of the central temperature of a tokama
plasma, which may occur on a time scale short compar
to the average electron-ion collision time [2]. Recently
was shown [3,4] that electron inertia may account for th
fast time scales observed in the experiments.

The first aim of this Letter is to extend this analysi
to finite temperature regimes, where electron pressu
effects are important. We find that in the early nonlinea
phase the growth of the magnetic island is even fast
than in the cold electron limit of Ref. [4]. The fast
collisionless evolution in this early nonlinear regime i
a non-steady-state process, characterized by the format
of increasingly narrower microscales below the electro
skin depth. The long term behavior is likely to require
kinetic considerations outside the scope of the fluid mod
adopted in this paper.

The second aim is the investigation of the role playe
by the Casimir invariants. Indeed, it can be shown that th
adopted collisionless model admits a Hamiltonian structu
[5,6]. While magnetic flux is reconnected in the cours
of plasma evolution, the conserved fields associated w
the Casimirs preserve their initial topology. The natur
of collisionless reconnection under these circumstances
entirely different from that of resistive reconnection.

The model we consider is an extension of reduce
magnetohydrodynamic [7] to a two-fluid description
where electron inertia, associated with the inertial sk
depth,de ­ cyvpe, and the electron pressure terms ar
retained in the generalized Ohm’s law [8] (a mor
general model is the four field model of Ref. [9]). More
specifically, we adopt an isothermal equation of state f
the electrons and disregard diamagnetic effects associa
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with equilibrium pressure gradients, a valid approximatio
as long as the electron diamagnetic frequency is sma
compared with the characteristic growth rate of the
reconnection process. On the other hand, we reta
the divergence of the electron stress tensor (electro
gyroviscosity) in the generalized Ohm’s law. The paralle
electron compressibility introduces the characteristic sca
length,%s ­

p
Teymiyvci , related to the ion inertia and

to the electron temperature,Te. The cold electron regime
is defined by the limit%syde ! 0. We also consider the
limit where the ion Larmor radius,%i ­

p
Tiymiyvci , is

neglected. In linear theory,%i enters on equal footing
with %s in determining the growth rate [10,11]. In
addition, the Hamiltonian structure is preserved even wit
%i terms retained [6]. Thus we may expect that%i terms
will not change the qualitative behavior obtained her
below in the limit%i ! 0.

The 2D model equations we consider are [8]

dF
dt

­ %2
s fU, cg , (1)

dU
dt

­ fJ, cg . (2)

Here the time is normalized on the Alfvén time,tA,
de ; deyLx and %s ; %syLx , where Lx is the charac-
teristic macroscopic length. The magnetic field isB ­
B0ez 1 =c 3 ez , with B0 constant andz the ignorable
coordinate. TheE 3 B drift on the normal plane isv' ­
ez 3 =w, wherew is a stream function,U ­ =2w is the
corresponding vorticity,J ­ 2=2c is the current density,
and F ­ c 1 d2

eJ is the z component of the velocity-
space averaged canonical momentum. The Poisson bra
ets are defined asfA, Bg ­ ez ? =A 3 =B and the total
time derivative is defined asdydt ; ≠y≠t 1 fw, g. The
first equation corresponds to Ohm’s law in which elec
tron inertia, the electron pressure gradient, and the ele
tron stress tensor are considered. The second equation
the vorticity equation.
© 1998 The American Physical Society
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These equations can be written in the following conse
vative form:

d6G6

dt
­ 0 , (3)

where we have defined the fields

G6 ; F 6 de%sU . (4)

The total time derivative isd6ydt ; ≠y≠t 1 fw6, g
where the generalized stream functions are defined as
w6 ; w 6 s%sydedc. Since the fieldsG6 are conserved
as they are advected by the generalized velocitiesv6 ­
ez 3 =w6, their topology remains frozen during the time
evolution of the system (v6 are smooth functions ofx, y,
andt).

The mathematical model can also be cast in noncano
cal Hamiltonian form with the Hamiltonian functional
given by (modulo addition of Casimirs [6]):

H ­
1
2

Z
d2x sj=cj2 1 d2

eJ2 1 %2
s U2 1 j=wj2d .

(5)

Two infinite sets of Casimirs can also be defined:

C6 ­
Z

d2x h6sG6d (6)

with h6 arbitrary functions. The Casimirs are constan
of motion of our system of equations. In the limit o
vanishing%s, upon expandingh6 to first order, we find
the Casimirs of the cold electron case,C1 ­

R
d2x h1sFd

and C2 ­
R

d2x Uh2sFd. In this case, the canonical
momentumF is conserved and its topological structur
is preserved in time. We point out that the topologica
transition ofF requires both finite%s and finite electron
inertia. This can be seen by rewriting Eq. (1) as

≠F
≠t

1 fw 2 % 2
s U, Fg ­ d2

e%2
s fJ, Ug . (7)

Thus, forde%s ! 0, F is written in Lagrangian conserva-
tive form. The last term in Eq. (7), which is responsibl
for the topological transition ofF, is related to the off-
diagonal terms of the electron stress tensor. It expres
the fact that the magnetic fluxc and the current density
J are advected with different velocities: the first with th
particle and the second with the gyrocenter fluid velocity

We consider the largeD0 regime, defined byD0de .

sdey%sd1y3, which allows [4,12] an early nonlinear phase
during which fast magnetic reconnection can take plac
The linear system obtained from Eqs. (1) and (2) wa
solved analytically in Ref. [11]. In the relevant limit
%s . de, the linear growth rate normalized to the Alfvén
time is gL , s2de%

2
s ypd1y3 (the parameterD0 measures

the logarithmic jump ofc across the reconnection laye
[13]). In this linear regime, the mode structure exhibit
macroscopic convection cells, with characteristic siz
Lcell , Lx, the vorticity profile has a width,%s, while
the current density has a width of,de, with a tail ex-
tending over a distance,%s. Note that, already in linear
r-

[6]:
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theory, one can see an enhancement of the reconnecti
rate, by a factors%syded2y3 compared with the growth rate
obtained for%s , de.

In this paper, we present the numerical solution of the
nonlinear Eqs. (1) and (2) obtained by means of the finit
difference method on a nonuniform grid. The numerica
integration strategy is such that the discretization erro
for the space operators can be assumed asymptotically
second order. We assume a two dimensional slab wit
aspect ratioe ­ LxyLy and double periodic boundary
conditions, equilibrium fieldsceq ­ cosx, weq ­ 0, and
initial perturbationssw, dcd ­ Rehfwsxd, dcsxdgegt1ikyj.
Our results for the case%s ! 0 were first reported
in Ref. [14]. These results confirm the formation of
a current layer along the neutral line with a sublaye
characterized by a microscale, which shrinks with time
as dstd , de expf2wstdy2deg, wherew is the magnetic
island width, in agreement with the analysis of Ref. [4].

New numerical solutions obtained for parameter value
%s ­ 3de and %s ­ dey2, at fixed aspect ratioe ­ 1y2
and inertial skin depthde ­ 0.08 are shown in Figs. 1
and 2. In particular, Fig. 1 shows the contour plots of
the fields c , w, J, U, F, G1, and w1 for the case
%s ­ 3de at a time such that the ratio of the magnetic
island width over the inertial skin depth isø3.5. (Note
that the contour lines ofG1 are very close to those ofc

for this case, where%s . de.) Figure 2 shows the profiles
of the quantitiesdc ­ c 2 ceq, w, J, andG1 across the
neutral line at different simulation times for%s ­ dey2.
From Figs. 2(a) and 2(b) we see thatdc and the stream
function w vary over a region of order%s , de. On the
contrary, the profiles of the current densityJ and of
the conserved fieldG1 develop a narrow sublayer below
the skin depth, similarly to the case%s ­ 0.

The amount of reconnected flux, as measured b
dcX ; cs0, 0; td 2 ceqs0d (the magnetic flux function at
the X point, x ­ y ­ 0), scales asdcX , 2w2stdy8, as
can be shown by simple analytic considerations. Th
island width grows to macroscopic values in the early
nonlinear phase, i.e.,Lcell . wstd $ de, %s; hence the
amount of reconnected flux tends to become of orde
unity. Likewise, the peak value of the current density
increases with the square of the magnetic island width
Note thatU is an odd function ofx andy and the origin is
a stagnation point of the flow. Hence,sdG1dX ­ dcX 1

d2
edJX ­ 0, from whichdJX , w2stdy8d2

e . Clearly, this
result is strictly valid in the absence of dissipation.

Figure 1(h) illustrates the time evolution of lnfwstdydeg.
This figure compares the cases%s ­ dey2 and %s ­
3de. In both cases, the growth ofwstd is faster than
exponential and indicative of a quasiexplosive behavio
in the early nonlinear phase, as discussed in [4] for th
case%s ­ 0. The growth rate is larger at larger values
of %syde. Although the precise scaling law is difficult to
obtain numerically, these results suggest that the magne
island attains a macroscopic amplitude on the time sca
t , g

21
L , %

22y3
s d

21y3
e (%s . de).
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FIG. 1. Contour plots for the case%s ­ 3de, de ­ 0.08, ande ­ 1y2 at a time such thatwstdyde ø 3.5: (a) c; (b) w; (c) J;
(d) U; (e) F; (f) G1; (g) w1. (h) lnwstdyde for different values of%s. The x and y coordinates are normalized on the scale
lengthLx .
)

d
-
-
e

ed
s
of

e

if
d

u-
In the finite%s regime, in contrast with the limit%s !
0, F changes its topology: oneO point forms at the origin
and four stationary points form symmetrically around i
as shown in Fig. 1(e). The initial topology of theG6

FIG. 2. Cross sections at constanty for the case%s ­
dey2: (a) dcysdcdx­Lxy2 at y ­ 0; (b) wyswdx­2Lx y2 at
y ­ Lyy4; (c) J at y ­ 0; (d) G1 at y ­ 0. t ­ 50 corre-
sponds towyde ø 1.7, t ­ 70 to wyde ø 2.7, and t ­ 90 to
wyde ø 5.6.
4432
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fields is preserved, as shown in Fig. 1(f). Figure 2(g
shows the contour lines ofw1. The contour levels of
G2 andw2 are symmetric to those ofG1 andw1.

A cross-shaped configuration in the current density an
vorticity layers is shown in Figs. 1(c) and 1(d). The cur
rent density layer is split into two branches, while two lay
ers of vorticity with opposite signs are formed along thes
branches. This is a distinctly new feature as compar
with the cold electron case. The formation of the cros
shape can be interpreted in terms of the time evolution
the conserved fields,G6. Initially, these two fields have
vertical contour lines, with a neutral line (i.e., a line wher
=G6 ­ 0) along they axis. As the instability evolves,
the contour lines ofG1 andG2 rotate in opposite direc-
tions: the neutral lines do not coincide any longer and,
superimposed, form a cross. The rotation is introduce
by the velocity fieldsv6 ­ ez 3 =w6. SinceG6 are ad-
vected byv6, the neutral lines ofG6 (on which≠G6y≠t ­
0) at a nonlinear time (such thatw . de) tend to align
along the branches of the separatrices ofw6. Using the
ansatz near the origin suggested by the numerical sim
lation (see also Ref. [4]),w , w0std sxydd sins yd, c ,
cossxd 1 c0std coss yd, with w0 , 2 Ùl , 2gl, l , wy2
is the fluid displacement alongx for jxj . d , g and
c0 , 2l2y2, we can readily estimate the angleu between
the x axis and the direction ofv1. For %syde ! 0, this
angle is either0 or py2, i.e., v1 is aligned along either
the x axis or they axis and no rotation is induced. For
%syde . 1, we find instead

tanu , 6
p

jc0j , 6wy2
p

2 . (8)
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In this case the asymptotes of the hyperbolic strea
functionsw6 tend to be tangent to the separatrix ofc at the
origin. Sincewstd tends to grow to macroscopic values
there is no indication of saturation of the angleustd in the
early nonlinear stage when%s . de.

As a test of the validity of our results, we have checke
the relative changes of the energyH and of the invariant
g1 ;

R
G1d2x. Clearly, the exact solution of Eqs. (1)

and (2) should conserveH andg1 exactly. We find that
H varies less than1% and g1 less than4% at the end
of the integration period. The numerical inaccurancy
the conservation ofH andg1 is related to the microscale,
which becomes narrower in time. Our simulations stop a
time when the microscale has become so narrow that it c
no longer be satisfactorily resolved by our numerical gri
Up to this time, there is no indication of saturation ofwstd.
With the introduction of a viscosity operator, we have bee
able to reach larger values ofwstd. Collisional electron
viscosity in Ohm’s law introduces a cutoff scale length
which, if below the skin depth, does not substantially affe
the structures that are found over the scales%s and de

and the cross-shaped structure (see also Refs. [15,16]).
course, viscosity spoils the Hamiltonian structure of th
model and leads to the reconnection of the fieldsG6. In
the long term, a small dissipation may lead to a steady st
reconnection process.

The formation of a new structure for the current den
sity layer in collisionless and semicollisional regime
was already noted in Refs. [12,17]. In the semicoll
sional regime [17], electron-ion collisions are more im
portant than the electron inertia in providing the effectiv
impedance to the parallel electric field, but%s is larger
than the reconnection layer width, so this regime can
compared with our results in the limit%s . de. Our work
is the first clear identification of the cross-shaped stru
ture for the current density and vorticity layers and i
interpretation in terms of the Casimirs, which are only a
proximately conserved in the semicollisional regime.

The important difference between Hamiltonian and di
sipative reconnection [18] can now be clarified. Bot
these processes require the localized violation of the top
logical constraints on the magnetic flux,c . In Hamilton-
ian plasma models, topological constraints continue to
present, but they involve new fields,F or G6 in the model
we have discussed, which differ fromc by current den-
sity and plasma vorticity terms. Therefore, reconnectio
of c can proceed unimpeded only by the conservation
F or of G6 if current and vorticity layers are formed.

In the presence of dissipation, the topological co
straints relax and the current and vorticity layers a
limited by diffusion. On the contrary, in Hamiltonian
reconnection the presence of the locally conserved fie
makes these layers increasingly sharper and leads to
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formation of microscales. Thus, Hamiltonian reconnec
tion is intrinsically a non-steady-state process. In th
time asymptotic limit, these microscales become unphys
cal and dissipative processes must intervene. Howeve
the correct treatment of the long time evolution is likely
to require kinetic considerations. One should note tha
electrons are accelerated in a narrow layer to very larg
speeds along the magnetic field lines. Thus, the electro
distribution function tends to become highly distorted an
one can think of velocity space instabilities (e.g., of the
streaming type) which would limit this tendency, intro-
ducing an effective (anomalous) current diffusion. Mag
netic stochasticity associated with 3D effects is anothe
possibility. Nevertheless, our analysis is valuable in that
suggests possible links between spatial structures and
conservation of the phase-space volume associated w
collisionless kinetic models.
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