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Fingerprints of Reflection Asymmetry at High Angular Momentum in Atomic Nuclei
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The reflection asymmetric phase transition in nuclei at high angular momentum is analyzed in
the framework of the cranked Hartree-Fock-Bogoliubov approximation, with the Gogny interaction,
using approximate parity projection before variation. TheN ­ 88 isotones are studied and our results
compared with experimental data. Good agreement is found for the energy splitting of the even and odd
parity states andBsE1d transition probabilities. Differences on intrinsic deformations, dipole moments,
and pairing energies between odd and even parity states found at low spin disappear with increasing
angular momentum. [S0031-9007(98)06128-6]
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The spontaneous symmetry breaking mechanism is
sociated with the appearance of collective phenomena a
it has been a long studied subject in particular in atom
nuclei [1]. Quadrupole deformation and superfluidity a
the best known. In atomic nuclei the most difficult to b
measured has been, probably, the one associated with
breaking of the reflection symmetry, i.e., the spatial parit
Only recently there has been enough experimental data
draw some definitive conclusions.

In the last few years there have been many investigatio
devoted to the study of reflection asymmetry in nucle
see Refs. [2,3] for recent reviews. The main featur
of octupole deformed nuclei are reflection asymmet
(pearlike shape) and “quasimolecular” rotational ban
of alternating-parity states connected by strong electr
dipole transitions. Most experimental studies have be
done at low angular momentum and only in recent yea
have there been measurements of higher-lying memb
of rotational bands in transitional and deformed nuclei [4
12] where the quasimolecular rotational bands are clea
observed.

From the theoretical point of view, several macroscop
[13–15] and microscopic [16–21] approximations hav
been developed to explain the experimental data. So
most of the microscopic investigations have dealt with th
ground state of even-even nuclei, but not much has be
done for high spin states. The study of octupole corre
tions with microscopic self-consistent theories and effe
tive forces at high angular momentum is very challengin
because it makes parameter-free predictions and interp
tations of experimental data.

To analyze the octupole degree of freedom at hig
spins, we have extended [22] our treatment of angular m
mentum constrained Hartree-Fock-Bogoliubov (CHFB
theory with the Gogny force [23] to include reflection
asymmetric wave functions (w.f.). To compare with th
experimental data, parity symmetry was restored in
projection after variation(PAV) approach: The unpro-
jected energy is first minimized to determine the intrin
sic w.f. and then the projected energy is computed usi
this intrinsic w.f. In the presence of octupole instabil
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ties this approximation is not the optimal one, because th
negative parity states usually have a different octupole d
formation than the positive parity ones. This possibility
obviously, cannot be considered in a PAV approach an
in this approximation we are not able [22] to reproduc
the experimental splittings. Theprojection before vari-
ation (PBV) method, however, allows different intrinsic
w.f. for positive and negative parity states. The ansa
for a PBV w.f. of parityp and angular momentumI is
given by

jcI
pl ­ P̂pjfIl, P̂p ­ 1

2 s1 1 pP̂d (1)

with P̂p the parity projector,p ­ 6, P̂ the standard par-
ity operator [24], andjfIl the intrinsic, parity violating,
w.f. to be determined by minimizing the projected energy

In this Letter, as an approximation toparity projection
before variation at high spin, we first determine the
intrinsic w.f. jfIsq3dl for a given angular momentumI
by minimizing theq3-constrained energy (see below). We
then construct the projected w.f. of Eq. (1) and comput
the projected energies as a function ofq3. The minimum
of the projected energies provides the optimal intrinsi
w.f. for a given spin and parity. By projection onto parity
one can compute energy splittings andBsE1d transition
probabilities as a function of the angular momentum. Th
approach allows us to investigate the fingerprints of
phase transition to octupole deformation driven by th
angular momentum. This approach has already been us
at zero angular momentum [24], and provides a very goo
approximation to the full PBV [25] method.

The interaction used in the calculations is the finit
range density dependent Gogny force D1S [26]. Th
finite range of this force is very important for describing
the pairing correlations. This interaction has been ve
successful in the description of many properties of sphe
cal and deformed nuclei over the periodic table, and
particular the octupole properties of nuclei at zero angul
momentum [17,20,24]. As an application of the metho
we study the experimentally measured high spin states
theN ­ 88 isotones.
© 1998 The American Physical Society
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The simplest way to determine the intrinsic, octupo
deformed, w.f.jfI sq3dl is to use an unrestricted mean
field variation. By unrestricted we mean that in th
minimization of the energy we allow Hartree-Fock
Bogoliubov (HFB) w.f. which are not eigenstates o
the symmetry operatorŝN , P̂, etc., enlarging thereby
the allowed variational Hilbert space. Within the HFB
approach one deals with the symmetries, on the avera
by introducing appropriate Lagrange multipliers.

The most general parity breaking Bogoliubov transfo
mation is

a1
k ­

X
l

Ulkc1
l 1 Vlkcl , (2)

where cl are the particle operators and the indexl
runs over states of positive and negative parity. T
main consequence is that the HFB equation is not blo
diagonal in the four channelssp1, p2, n1, n2d, but only
in sp , nd. As basis states we use those of the triaxi
harmonic oscillator. In the present calculations, we u
ten deformed [22] oscillator shells.

The HFB w.f. jfIl of Eq. (1), the vacuum of the
quasiparticle operatorsak , is obtained by the variational
principle

dkfIjĤ 2 li N̂i 2 vĴx 2 l1Q̂10 2 l3Q̂30jf
Il ­ 0 .

(3)

The Lagrange multipliers are determined by the co
straints kfIjN̂ijf

Il ­ Ni , kfIjĴxjfIl ­
p

IsI 1 1d,
kfIjQ̂10jf

Il ­ 0, andkfIjQ̂30jf
Il ­ q3, with i ­ p , n.

Since the parity symmetry is broken, it is necessary
constrain the mass dipole operator,Q̂10, to fix the position
of the center of mass coordinate at the origin to decoup
the spurious states. The constraint on the mass octup
operator, Q̂30, is used to fix the octupole moment a
the desiredq3 value. The w.f.jfIl determined in this
way is a function ofq3, i.e., jfIsq3dl, and so is the
projected onejcI

psq3dl. (Notice thatq3 in the projected
w.f. is merely used to label the w.f. Obviously, the
expectation value of̂Q30 with the projected w.f. is zero.)
To describe a rotational band, the CHFB equation (3)
solved for spinI ­ 0, 1, 2, 3, 4, . . . and differentq3 val-
ues. The corresponding w.f.jfIsq3dl are parity mixed.
To get the splitting (if any) between the positive parit
band sI ­ 01, 21, 41, . . .d and the negative parity one
sI ­ 12, 32, 52, . . .d, we project at states of good parity
As mentioned above, as an approximation to PBV, w
calculate the projected energies

EI
psq3d ­

kc I
psq3d jĤjcI

psq3dl
kcI

psq3d jc I
psq3dl

(4)

to find the minimum ofEI
psq3d as a function ofq3.

Since the Gogny force is a functional of the densit
in the evaluation of the projected energy one has
provide a prescription for the density dependence of t
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Hamiltonian. In the present calculations, we use the sam
as in [24].

Once we know the projected w.f. we can calculate ex
pectation values and transition matrix elements. To evalu
ate transition matrix elements we should, in principle
project onto good angular momentum. This is very com
plicated and we shall calculate them in the Kamlah ap
proximation [27] to angular momentum projection.

As an example of our results, we show in Fig. 1 the
CHFB and projected [Eq. (4)] energies of the nucleu
144Ba for several spin values. At lowI, the even parity
states have an energy minimum at a lower intrinsi
octupole moment than the odd parity states. At high
I , however, both the even and odd parity states hav
their minima at the same value of the intrinsic octupole
moment.

In Fig. 2 we show the deformation parametersb2, b3,
b4, pairing energies, and dipole momentsD0, calculated
with the intrinsic wave functions at the energy minima
of Fig. 1. Here thebl parameters are the deformation
parameter of the liquid drop model with a sharp surface
All parameters show a staggering between odd and evenI

FIG. 1. Projected (dashed lines) and unprojected (solid lines
energies for144Ba versus the octupole moment of the intrinsic
w.f. Only natural parity projected energies are shown.
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FIG. 2. Upper panel: Deformation parameters along the Yra
line for 144Ba, b2 (solid line), b3 (dash-dotted line), andb4
(dotted line). Lower panel: Pairing energies for protons an
neutrons for the same nucleus.

values at low angular momentum. At low spins, eve
I states have dipole moments roughly equal to 0.0
while the odd-I have 0.187. At highI, the value of the
dipole moment is approximately equal to 0.18 for bo
odd and evenI . The experimental values for the dipole
moment in144Ba show a similar behavior, atI ­ 7 the
dipole moment is 0.07(10) and forI ­ 8 11 is 0.14(3).
This staggering is due to the fact that the intrinsic w.f.
different for even and odd-I values. It is interesting to
notice that at high-I values the staggering disappears, a
one would expect in a phase transition from an octupo
vibration to an octupole deformation. The results for the
other N ­ 88 isotones are similar to the ones displaye
for 144Ba.

The minima of the projected energies of Fig. 1 as
function of I determine the yrast states of positive an
negative parity. Since the projected w.f. of Eq. (1) d
not satisfy exactly the constraints on particle number a
spin imposed on the intrinsic w.f., we correct for thi
in first order perturbation theory. In Fig. 3 we show
the yrast bands of theN ­ 88 isotones. As can be
seen, the theoretical predictions are in excellent agreem
with the experimental data. The common characteristic
the interleaving of different parity states at high angul
momentum. This is the main characteristic of a rotation
band in a octupole deformed nucleus. In144Ba, for
instance, the splitting at low spin is around 0.7 MeV
It decreases with growing spin up toI , 9h̄ where it
vanishes. The situation is similar in the other nuclei.

In addition to the deformation parameters and th
interleaving of the members of a rotational band, th
strength ofE1 transitions between members of alternatin
parity bands is another significant observable of octupo
deformed nuclei. They exhibitE1 rates which are about
2 orders of magnitude faster than for reflection-symmet
nuclei. In Fig. 4 we display theBsE1d values as a
function of the spin.
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FIG. 3. Yrast lines of theN ­ 88 isotones, for even (full
labels) and odd (open labels)I values. The experimental data
144Ba [4,8],146Ce [5],148Nd [10], and150Sm [6] are represented
by circles and the theoretical ones by triangles.
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FIG. 4. Reduced transition probabilitiesE1 of the N ­ 88
isotones, versus the angular momentum. The experimental d
144Ba [4,9],146Ce [5],148Nd [10], and150Sm [11] are represented
by full circles and the theoretical results by open ones.
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FIG. 5. BsE1dyBsE2d rates of theN ­ 88 isotones versus the
angular momentum. The experimental data144Ba [8], 146Ce
[12], 148Nd [7,10], and150Sm [6,12] are represented by full
circles and the theoretical results by open ones.

For spin values in the reflection-symmetric phase o
expects smallerBsE1d values than in the reflection-
asymmetric one (because of the poor w.f. matching of t
initial and final states in the first case). In our calculation
we get the phase transition around11h̄; at this spin value
we find a jump in theBsE1d values. Experimentally
the phase transition takes place around8h̄ and in144Ba
and 146Ce one can see the same enhancement in
BsE1d. In148Nd the phase transition is not so pronounce
(probably because148Nd and150Sm are transitional nuclei
and shape fluctuations are important). In Fig. 5 we fina
present the theoretical and experimental values of t
BsE1dyBsE2d ratio. The agreement between theory an
experiment is good for144Ba, 146Ce, and148Nd. For
150Sm the agreement is not as good as for the oth
isotones because this nucleus is transitional and at h
spin the shape fluctuations are very important [28]. The
shape fluctuations are not considered in our approach;
experimentalBsE2d values, therefore, are larger than th
calculated ones and theBsE1dyBsE2d ratio accordingly
smaller. We note that no effective charges have been u
in the calculations and that the force parameters whe
adjusted many years ago.

In conclusion, for the first time, we have performe
microscopic calculations of the yrast bands of heavy, o
tupole unstable nuclei with an approximate parity pro
jection before the variation and parity-breaking cranke
Hartree-Fock-Bogoliubov wave functions. The calcula
tions have been performed with the finite range, dens
dependent Gogny force for theN ­ 88 isotopes where
experimental data were available. In particular we ha
evaluated the energy splitting of positive and negative p
ity states as well as projected transition probabilities. T
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theoretical predictions are, in general, in very good agre
ment with the experimental ones. This is particularly no
table as there was no adjustment of parameters in th
calculation. Our results confirm the interpretation of a
phase transition to octupole deformed nuclei at high spin
for these nuclei.
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