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Quantum Hamilton-Jacobi Equation
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The nontrivial transformation of the phase space path integral measure under certain discretized
analogs of canonical transformations is computed. This Jacobian is used to derive a quantum analog of
the Hamilton-Jacobi equation for the generating function of a canonical transformation that maps any
guantum system to a system with a vanishing Hamiltonian. A perturbative solution of the quantum
Hamilton-Jacobi equation is given. This solution gives a new way to compute quantum corrections for
any soliton equation for which action-angle variables are known. [S0031-9007(98)06163-8]

PACS numbers: 03.65.Ca

A remarkable formulation of classical dynamics isdevelopments in string theory [9]. Equation (14) gives a
provided by the Hamilton-Jacobi equation: 3fg, P,r)  simple method of computing quantum corrections to clas-
satisfies sical solutions, when classical action-angle variables are

oS known.

—(q,P,t) + H(q,9,5,1) =0, (1) After a short review of the path integral formulation to

at make the measure precise, | will compute the transforma-
where H is the Hamiltonian, then the canonical transfor-tion of the measure under the transformations that keep the

mation defined by discretized/ pdg term in the action invariant (up to total
derivatives). These transformations differ from canonical
apS = 0, 3,8 =p (2)  transformations due to the discretization of the phase space

path integral, so the Jacobian for the change of variables in

maps the dynamical system governed by the Hamiltoniathe path integral is nontrivial. A particular application of
H to a trivial dynamical system, one with vanishing this result gives the desired deformation of the Hamilton-
Hamiltonian. To see this, note thagy — H = 9,5¢ —  Jacobi equation, with deformation parameter the Planck
H = %(S — PQ) + PQ, using Eq. (1). Boundary terms constant. From this, the quantum Hamilton-Jacobi equa-
do not affect the phase space equations of motiorfion, EQ. (14), is immediate. The solution of Eq. (14) as a
so this mapping determines identical classical dynamicformal perturbative series takes a simple form, Eq. (15).
[1]. The function$ is Hamilton’s principal function, or ~ We compute(q”,:"|p’,') as a functional integral,
action, which acquires a greater significance in quantur§h00sing the momentum state to position state amplitude to
mechanics [2,3]. obtain a symplectically invariant form for the path mt_egral

Quantum mechanically, canonical transformations of thdn€asure. Notéplg) = (2)~*/> exp(—ipq), and it H is
form considered above do not generate equivalent quantuffdered so that all momentum operators appear on the left,
systems [4—8]. There is no natural action of the group of ?|Hla) = 2m) *>exd(—ipg)H (g, p). Assume that
symplectic transformations on the quantum Hilbert spaceh® Hamiltonian is time independent for notational simplic-
Alternatively, in Feynman’s formulation of quantum me- ity, since the generalization to arbitrary Hamlltonlans is
chanics [3], the phase space path integral is not invaritivial. Since(q”, "Ip’, ') = limu(q"| (1 — ieH)" X
ant under canonical transformations. The noninvariancé?’): With € = (i = ')/N, using 1 = [dp dq| p) X
of phase space (and coordinate space) path integral meg (7 )_d/_ >exp(—ipg) between every factor ofl —
sures has been the focus of a great deal of work [6—8]. 1€H), we find
the present work, the general problem of symplectic trans-

N
formations will not be considered—I shall just consider (7 47|,/ 4y = L "mf l_[ dpidgi AN piPod:
. . b b d b
the properties of the phase space path integral under the V2m NeJ ) (2m)
discretized analogs of canonical transformations of a par- 3)

ticular type. (The approach taken in this Letter is closest

to that of Ref. [8].) The motivation is to answer the fol- whereAy = Zﬁ\':l[pi(qiﬂ — q;) — €H(p;,q;)]. Here,
lowing: Is there a deformation of Eq. (1) which allows a gy+1 = ¢ and pg = p’, and¢; and py are integrated
guantum mechanical map from an arbitrary quantum sysever. In the continuum limitAy — A = [dt[pg —

tem to one with a vanishing Hamiltonian? Apart from the H], and the measure can be described heuristically as an
fundamental interest in this question, the main applicationntegration over all phase space paths satisfyjtf) =

is to the quantization of solitons, of especial interest since”, p(¢') = p, with p(¢”) and ¢(¢') integrated over. For
the quantum properties of solitons are at the heart of recetie pitfalls in such continuum descriptions, see [4-8].
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Equation (3) can now be used to consider the propertiegy in a simple way, and then to compute the Jacobian for
of the phase space path integral under canonical transfothis transformation.
mations. The measuld dp;dg; is clearly invariant un- Consider defining function®(q, p), P(g, p) implicitly
der arbitraryi-dependent canonical transformations as &y means of the following definitions, for arbitrary func-
straightforward mathematical fact. Howevay; is notin-  tions S;(P, g):
variant under such transformations. The point of the fol-  p,(g;+1 — ¢i) = Si(gi+1,Pi) — Si(qi, Pi),
lowing exercise is to find a transformation of integration (4)

variables( p;, ¢;) — (P;, Q;) that changes thpdq term in Qi(Pi — Pi—1) = Si-1(qi, Pi) — Si—1(qi, Pi-1).
A pirqi) = (Pi, Qi) 9 pdq | Now observe that

pi(gi+1 — gi) + Qi(P; — Pi—y) = [Si(gi+1,Pi)) — Si-1(qi, Pi-1)] — [Si(qi, Pi) — Si-1(qi, Pi)], 5)

with the first term in[- - -] a telescoping series when summed okeilNote that Eq. (5) has no dependencerbn Thus
one finds

N
Ay = Z[_Qi(Pi — Pi—1) — €H(pi,qi) — {Si(qi, Pi) — Si-1(qi, P))}] + boundary terms (6)
=1

Comparing Eq. (6) with Eqg. (1), this is the form expected if time is discretized. | must now compute the effect of the
substitutions in Eq. (4) on the measure.
KeepingP;_1, g;+; fixed, | find that
dpidqi = (qi+1 — q1) '9p[Si(gi+1, Pi) — Si(qi, P;)]dP;dq; (7)
whereas

dP;dQ; = (P; — Pi—1) '9,,[Si—1(qi, Pi) — Si—1(qi, Pi-1)1dP;dq; . (8)

The Jacobian for the change of variablég,q);, — | some restriction on the sequeneggsand P; asN 1 . |
(P,Q); is therefore nontrivial. It is not possible to will come back to these restrictions momentarily.
proceed further without some knowledge of the relation Ata formal levelassuming thaP;,—; — P; andg;+; —
between the canonical variables with subscripgsd the ¢; are small asN 1, it follows from Egs. (7) and
variables with subscripts + 1, in other words, Without| (8) that

1
dpidq; = [313,-351,»51‘(6]1‘,1’1') + E(Cliﬂ - C]i)aP,agl,Si(Qi»Pi) + ~--:|dPidCIi»

9)
1
dP;dQ; = [aP;aq,Si—l(QisPi) Y (P; — Pi—l)a%,aq;si—l(QisPi) + ~-~i|dPiin~
We can also derive the analog of Eq. (9) &y, +1dp;:
1
dqgi+1dp; = [aPiaqui(C]iﬂ,Pi) - E(QHI - Qi)aPiazHISi(QHI,Pi) + ~-~i|dCIi+ldPis
(10)

1
dQi+1dP; = |:aP;aq:+|Si(Qi+1,Pi) + E(PHI - Pi)a%?,aq;ﬂsi(QH-l,Pi) + -~-i|in+1dPi~

Equations (9) and (10) determine Jacobians that differ| by;_; cancel in this averagdyeforetaking the continuum
the sign of the total time derivative contribution, indicating limit. Therefore, anomalous contributions of the Edwards-
that this is a nonuniversal artifact of the discretization.Gulyaev [6] type do not appear. So, finally, assuming that
Such contributions are, of course, to be expected, since th% is chosen to become a differentiable functionzods
relation of the index to the continuum time variablefor N T o, we find

q, P, andS need not be the same. We use the ultralocality .

of the phase space measure to eliminate this total derivatiV & l_[ dpidq; = %2 l_[ dP;dQ;

contribution by averaging the Jacobians determined by

Egs. (9) and (10)—heuristically, one can interpret this % exp{l]dta, Indetd o S(q,P,t)]
as setting the time associated with midway between 2 7
g; and g;+1. Note thatall powers ofg;+1 — ¢;, Pi — (12)
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Equation (11) haexactlythe form that one expectén  Eq. (4) will map the quantum system to a quantum system
the continuum limitsince successive canonical transfor-with a vanishing Hamiltonian. The telescoping terms in
mations obey a group law that is consistent with theEq. (5) give rise to boundary terms in the path integral
Indetdpa,S form of the Jacobian. This is an important of exdiS(P(¢"), q(¢"), ") and exp—iS(P(¢'), q(¢'),1') +
consistency check on the calculation. ip(tq(t)].

We can check this Jacobian by performing an explicit What are the conditions for the validity of the formal
calculation in any quantum mechanics problem, since thenanipulations that lead from Egs. (7) and (8) to Eq. (11)?
measure’s transformation properties are universal, i.eThe measure on phase space with the HamiltoAfanust
independent of the Hamiltonian. A simple choice ofbe concentrated on paths such that; — ¢; tends to
Hamiltonian isH = %(p2 + ¢?), the harmonic oscillator. zero withe, and similarly forP; — P;_; with the measure

In this case, one knows [3] that determined by the transformed Hamiltonian. This is true
with quite mild restrictions [5] o ( p, g) for ¢, and simi-
q" t"p' 1"y = I S lar restrictions onH'(P,Q) = H(p(P, Q),q(P,Q)) +
J2mcodtr — t') 9;[S + i/2Indetdpa,S] for P. The smoothness of

; paths is trivially true after the change of variables if
X exf{—z tan(r — ) [(p” + ¢") S satisfies Eq. (14), since the action is just/ drQP.
In this context, it should be noted that the form of the
Al o transformed Hamiltonianf’, is valid only in the € | 0
2p'q” csdt t)]] (12) limit—however, since the Jacobian is explicitly ultralocal,
B ) 5 5 several types of anomalous contributions that appear for
(;hOOS&?(_q,P,t? =gPsedt —t)— (¢ + P )tar(lt ~  general symplectic transformations [6-@&) not appear
t')/2. Th'f choice of§ amounts ta? N cosr — ') T for the specific symplectic transformations consideired
gsint — '), with Q =gqgcodsr — 1) = psin(t = '),  this Letter. The applications of Eq. (14) to field-theoretic
and satisfies the classical Hamilton-Jacobi equation,rgphiems may be more interesting, for ordering difficulties

Eq. (1). According to the calculations above [Egs. (3)in field theory are usually absorbed into renormalization
and (6)], performing some trivial integrations the transi--qonstants [5].

tion amplitude should equal Equation (14) may appear to be a simple deformation of

1 dPydQ, Eq. (1), but in fact it is not. According to Jacobi’s theo-

(q".t"|p' 1"y = [ rem [1], finding a sufficient number of solutions of Eq. (1)
Vam 2 allows one to solve the dynamics of the system—the key

X i1 giQi1(p'~Pr) g3 Nsed=r) 13y point is that the variable® are integration constants for

] ) ] these solutions, an interpretation possible since they do not
Comparing this form to Eq. (12), we find exact agree-appear in Eq. (1) explicitly. This interpretation is not pos-
ment. This is another check on the absence of Edwardssble for Eq. (14), s@ priori one has to find appropriate
Gulyaev [6] corrections, since the harmonic oscillator ischoices of P before one can even attempt to solve this
not a cyclic Hamiltonian irp, g coordinates. equation, unless one tredisas a perturbation parameter.

Equations (4) and (11) imply di[pg — H(p.q)] =  since such a perturbative solution is not a good approxima-
[dilp(P,0)q(P,0) — H(p(P,Q),q(P,0)) — 59, X tion in general, one may be led to conclude that Eq. (14) is
Indetdpd,S]. Thus, using Eq. (6) and restorinig if S of less practical value in quantum mechanics than Eq. (1)
satisfies is in classical mechanics. Nevertheless, Eq. (14) is simple,

; and of conceptual value in understanding the classical limit
at<S + —hln detapaqS> + H(gq,948) =0, (14) of quantum mechanics. A formal solution to Eq. (14) can
2 be found as follows: Lef = Sy + hAS; + /A28, + ....
Then

3:80(q, P,t) + H(q,p = 9,50,1) =0,

i ,

atsl(q’P,t) + apH(q,p = aqSOa t)aqsl(q,P, t) = _Etr[(aPaqSO) latapaqso],
. (15)
1 —

atSZ(Q’P, t) + apH(q,p = aqSOa t)aqSZ(q’Ps t) = _Eat tr[(aPaqSO) lapaqS1],

i _ 1 _
0:83(q, P,1) + 0,H(g,p = 0450,1)0453(q, P,1) = == 0, tr{(0p 94 S0) 1 0p3gSa — 3L(9p04S0) " 0pdgS1 T} ..
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The solution to this set of equations is obtained by thebased partly on an S, C) algebraic symmetry of a Le-
method of characteristic projections. L%tbe a complete gendre transform, and finds a modification of the classical
integral of Eqg. (1), which of course coincides with the Hamilton-Jacobi equation that has appropriate covariance
first equation in Eg. (15), and(s) a solution ofg =  properties for the postulated equivalence. Their function
a,H(q(1), p = 9,50, 1), which is just one of the classical S satisfies an equation quite different from Eq. (14), and it
equations of motion. The$y(¢(z), P, t) is a solution of is argued thas is related to solutions of the Schrédinger
equation. Functional integrals of any sort do not appear in
[12], and there is no relation to the present result, Eqg. (11).
| am grateful to S. Treiman and A. Anderson for
helpful conversations, and I. Klebanov and W. Taylor
for comments. | am indebted to P. van Nieuwenhuizen
for detailed comments on the manuscript. This work was
supported in part by NSF Grant No. PHY96-00258.

d i _

dt
(16)

with analogous equations f6¢,i > 1. We see, therefore,
that the integral surfaces, indexed By of Eq. (15), de-
pend on the behavior of integral surfaces functions of
P. Thus, the perturbative solution of Eq. (14) incorpo-
rates information about quantum fluctuations by its depen-
dence on the complete integral of Eq. (1) at neighboring
values ofP.
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