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We present evidence that decoherence can produce a smooth quantum-to-classical transition in
nonlinear dynamical systems. High-resolution tracking of quantum and classical evolutions reveals
differences in expectation values of corresponding observables. Solutions of master equations
demonstrate that decoherence destroys quantum interference in Wigner distributions and washes out fine
structure in classical distributions, bringing the two closer together. Correspondence between gquantum
and classical expectation values is also reestablished. [S0031-9007(98)06134-1]
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The status of quantum-classical correspondence for dyclassical expectation values are expected to diverge on
namical systems is somewhat unclear and perhaps eventime scale inversely proportional to some powerzof
controversial. In a nonlinear system, a single classical trg4,5]. This is regarded as sufficiently slow to cause no
jectory initially centered on a quantum wave packet cardifficulties with the classical limit of quantum theory.
quickly diverge from the motion of the centroid given by  The first purpose of this Letter is to investigate the
the quantum expectation valuesxofindp (this defines the quantum-classical correspondence at the level of expecta-
Ehrenfest time, cf. Ballentinet al. in Ref. [1]). However, tion values for chaotic dynamical systems, where a break-
when the single trajectory is replaced by a classical probadown may be anticipated on a much smaltggarithmic
bility distribution to give the correspondence principle time scalet; ~ In(C/k) [4—6]. We show below that
a better chance, the situation is far less certain. Thusuch a loss of correspondemdeesoccur, though its mag-
some authors have reported evidence for a breakdown ofitude is not in conflict with earlier results [1]. While the
the quantum-classical correspondence in chaotic systentisne scale on which the violation occurs varies with the
[2], while others have argued that it can be preserved wheparticular initial condition chosen, it is consistent with the
stated in terms of the expectation values of dynamical varilogarithmic timetz ;.
ables [1]. In yet another line of investigation it has been In order to effect a quantum-classical comparison, we
shown that, even in chaotic systems, semiclassical metithose Gaussian packets as initial states, with positive
ods are successful for times longer than was previouslgefinite Wigner distribution functions. The time evolution
believed possible [3]. was then performed using either classical or quantum

In integrable systems, a rapid divergence betweenynamical equations. In the chaotic systems investigated
classical and quantum evolutions can occur for initialhere, for generic initial conditions (i.e., Gaussian packets
conditions near an unstable point: This can force theandomly sampling the chaotic part of the phase space),
system to undergo a “double-slit experiment,” yieldingdifferences between quantum and classical expectation
very different outcomes in the two cases. This breakdowvalues stay small for some time and then abruptly increase.
of correspondence is caused by the coherent interferen@dter this divergence time, the differences remain modest,
of fragments of the wave packet and occurs on a shotypically ~5%-10% (for i = 0.1). The Wigner function
time scale, on the order of the system dynamical timebegins to differ considerably from the classical phase space
However, for generic initial conditions, quantum and distribution at relatively early times [7].

0031-900798/80(20)/4361(5)$15.00 © 1998 The American Physical Society 4361



VOLUME 80, NUMBER 20 PHYSICAL REVIEW LETTERS 18 My 1998

Our second purpose is to show that the discrepancpostdecoherence dynamics admit a Langevin description
between quantum and classical evolutions is drasticallpf trajectories allowing for the existence of a Lyapunov
decreased by even a small coupling to the environmengxponent. We demonstrate below that decoherence dra-
which in the quantum case leads to decoherence [8matically improves the correspondence of the expectation
There are two limiting situations in the study of deco-values, leads to the existence of a single phase space dis-
herence in dynamical systems. In the first case, speciatibution, and allows for a Lyapunov exponent to exist at
initial conditions (such as Schrddinger cat states) are usddte times. All the deficiencies of the coarse-graining ap-
to study the destruction of interference already present iproach are therefore overcome.
the initial state but with simple system dynamics, typically We restrict attention to bounded, one-dimensional,
taken to be linear [9]. However, since quantum interfer-driven systems. Tools employed are very high-resolution
ence is dynamically generated only in nonlinear systemsimulations of the time-dependent Schrddinger, quantum
[10], the competition between generation and destructiomand classical Liouville, and master equations recently
of quantum coherence cannot be investigated. The resulisiplemented on massively parallel computers [13]. The
reported in this Letter are from a study of the second typenumerical results discussed below are for the driven
where the system dynamics is nonlinear, but the choice adystem considered in Ref. [14], with Hamiltonian,
initial states is kept deliberately simple so as to focus only
on the role of dynamically induced interference (as dis- H = p?/2m + Bx* — Ax*> + Ax codwt). (1)
tinct from that present in the initial state). We show be-
low that differences at the level of expectation values argye used a parameter regime: & 1, B = 0.5, A =
sharply reduced due to decoherence and the effect on cofg, A = 10, w = 6.07) in which a substantial area of

respondence in phase space is even more spectacular. gjRase space is predominantly stochastic, with the finite-
the parameter regime investigated here—essentially th@me Lyapunov exponent = 0.4-0.5. Gaussian phase
border between quantum and classical—some remnangpace distributions, typically minimum uncertainty wave
of quantum coherence may still survive. However, sucthackets, were employed as initial conditions to sample the
small-scale coherence has apparently little effect on theyolution in the stochastic region. Other Hamiltonians
correspondence of the expectation values. studied include the driven Duffing system and a two-
A mechanism responsible for the quantum to classicadimensional, truncated Toda potential. These systems
transition should explain not just how expectation valuesjielded similar results; a detailed presentation will be
can converge to the same answer, but also lead to corgiven elsewhere [15].
patible effective phase space distributions. A common ap- The specific model of decoherence used here is the
proach is an appeal to coarse graining, a formal proceduigeak coupling, high temperature limit of quantum Brown-
implemented typically by convolving the individual distri- jan motion [12]. In this limit, dissipation can be ignored
butions with a Gaussian distribution and then comparingt early times, and only the diffusive contributions in the
the two resulting coarse-grained distributions [7]. Thismaster equations [6,8] need be kept. The diffusion con-
approach has three defects. First, as a formal mathematitant was chosen to be small enough so that, over the time
cal procedure it can always be inverted, and thus offergcales of interest, the energy increase was negligible, and
no physical insight. Second, this coarse graining does n@hanges in the classical phase space structure were only

alter the dynamics, and hence cannot improve the ?0;Perturbative. For the Hamiltonian (1), the quantum mas-
vergence of expectation values. Third, for the classic er equation in terms of the Wigner function is
system, the notion of a trajectory is lost and, along with

. . 2

it, the notion of a Lyapunov exponent. ofw _ _p ofw 9V dfw Lofw + p? f‘zfv ,
In contrast to the coarse-graining approach, deco- 9t m. dx dx dp ap

herence provides aynamical explanation [8] of the 2

quantum-to-classical transition by taking into account in- h _ 3 A dL. i
teractions with an (external or internal) environment ofVNereaV/dx = 4Bx* — 2Ax + A coswr) andL, is

the system—adegrees of freedom that effectively monitor B2r(—1)r  92ntly g2l
and, therefore, select certain stable or “pointer” observ- Ly = Z 220 (2n + 1)! gx2nt1 gp2n+tl
ables destined to become the classical variables [8,11]. n=1 3 '

The simplest models of this type lead to master equations — _ﬁsza__

for the reduced density matrix for the system [12]. Dif- ap?

fusion terms in these equations automatically coarse gral
the distributions, now a physical effect of the coupling
to the environment rather than a mathematical trick. The of. p ofc AV af. 0f.

degree of coarse graining is determined by the interplay 9t m ox  ox ap ap? (3)
between the dynamics of the system and the nature and

strength of the coupling with the environment. Moreover,This dynamics is equivalent to the Langevin equation
the effectively classical master equations that describe thex = —V’(x) + F(r) where F(r) denotes a Gaussian,
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white noise. The quantum Schrédinger and master equa-
tions, as well as the classical Fokker-Planck equations
were solved using a high-resolution spectral algorithm
[13]. In the absence of diffusion, the classical Liouville
equation was solved as afbody problem, the distribu-
tion being sampled by at least10’ particles. Numeri-
cal checks included carrying out simulations at different
spatial and temporal resolutions and a direct verification
for the moments obtained from the codes by substituting
them in the Bogoliubov-Born-Green-Kirkwood-Yvon-like
(BBGKY-like) moment evolution hierarchy and verify-
ing that this set of equations is satisfied to a relatively
high order. Lyapunov exponents were computed using
the techniques described in Ref. [16]. It was verified that,
at the noise levels used, the finite-time Lyapunov expo-
nents from the Langevin equation agreed with those com-
puted from the Hamiltonian dynamics.

The exponential instability characteristic of chaos forcesIG. 1(color). Classical and quantum expectation val(s
the system to rapidly explore large areas of phase spa@s a function of time. The initial condition is a minimum
and to interfere on a time scale set by when the wav&ncertainty Gaussian wave packet with) = —3, (p) = 8,

: . (x — (x))*) = 0.0025, {(p —{(pH*» = 1. Fh is set to 0.1.
function has spread over much of the available space [4'T'his yields r; ~ 4. The central vertical bar denotes the

6] and the Moyal corrections arising from its nonlocality ayerage divergence time, and the left and right bars denote the
have become comparable to the classical force [6]: minimum and maximum, respectively, for ten initial conditions
that randomly sampled the chaotic phase space.

<x>, (D=0.025)
10%|<x>—<x> | (D=0)
10*|<x>q—~<><>c| (D=0.025)

th ~ AN In(xy8p/h), 4)
where A is the Lyapunov exponentdp is the mea-
sure of dispersion in the initial conditions, angd =  the “backbone” of the classical phase space distribution

V0,V /d, V)| is a measure of the nonlinearity in the and becomes a complicated looking interference pattern
potential averaged over the accessible space. We inve which the classical phase space structure can no longer
tigated the evolution of several expectation values, suche distinguished [Fig. 2(a)]. Fine-scale structure in the
as(x), higher order moments such &s — (x))"*) (with  interference pattern (i.e., oscillations within /a box)
a maximumn = 4), and expectation values of variablesis clearly apparent. On the time scales probed in our
that, in principle, include all moments. Some of our re-simulations, the Wigner function has not reached the stage
sults are shown in Fig. 1. In all cases, and for all of theof “structure saturation,” i.e., smoothness on a seale
investigated initial conditions, we found good agreemenin phase space [5].
between the quantum and classical results during the ini- Our results are encapsulated in Fig. 2. As can be seen
tial portion of the evolution. (This initial period wésnger ~ from comparing the decohered Wigner function [Fig. 2(b)]
than the Ehrenfest time, consistent with the results of Balwith the classical distribution given by the solution to
lentineet al. [1]). The onset of the discrepancy dependedEqg. (3) [Fig. 2(c)], decoherence markedly improves the
on the initial condition, but in all cases was a factor ofcorrespondence at the level of distribution functions, radi-
a few larger than the dynamical time. The discrepancyally changing the unitarily evolved Wigner function of
saturates to typically no more than 10% of the expectatioifrig. 2(a) by effectively smoothing it over scales [B]p =
values thereafter. The value afwas varied to test for o. = 4/2D/A in momentum (which is translated by dy-
logarithmic scaling: While the results are consistent withnamics into a smoothing in position). In our case, =
(4), the dynamic range of the simulations is insufficient to0.3 and y ~ 0.6, which implies that we are on the border
make a more precise statement. between quantum and classical regimes (defined, respec-
We have therefore good evidence that, in isolatedively, by whethero. y is large or small compared to
chaotic systems, the quantum-classical correspondeng@]). Even though the distributions in Figs. 2(b) and 2(c)
defined at the level of expectation values is lost relativelyare very close, the Wigner function still contains traces of
quickly due to dynamically generated quantum interferdocal quantum interference. However, this makes only a
ence. This is best appreciated by comparing classicahinor difference to expectation values, and tends to vanish
phase space densities with quantum Wigner distributionsas the evolution proceeds. We note that, with our choice of
As the wave packet spreads and folds, the Wigner functioparameters, the diffusion term affects the evolution of clas-
becomes dominated by small-scale interference whickical and quantum expectation values roughly to the same
saturates on a scale set by the size of the system iextent (Fig. 1). Decoherence destroys the interference pat-
both momentum and positionSp = h/L, 6x = i/P.  ternin the Wigner function, while, at the same time, noise
Eventually, the Wigner function is unable to track evensmooths out the fine structure of the classical distribution
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FIG. 2(color). (a) Wigner distribution function from a solu-

tion of Eq. (2) at timer = 8T, whereT is the period of the
driving force. The diffusion constar? = 0. The box repre-
sents a phase space aredbf (b) Wigner distribution function
at timer = 8T, with diffusion constanD = 0.025, illustrating

the destruction of large scale quantum coherence. (c) Classical

distribution function from a solution of Eq. (3) at time= 8T,
with diffusion constantD = 0.025.
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in such a way that quantum and classical distributions and
expectation values both converge to each other. Thus, one
concludes that the decohered quantum evolution does go
over to the classical Fokker-Planck limit.

In summary, we have provided evidence that in a quan-
tized classically chaotic system, for fixéxl classical and
quantum expectation values diverge from each other af-
ter a time~z;. In the case studied here, the discrepancy
is =10% of the typical magnitude of the expectation val-
ues. Decoherence was shown to substantially reduce this
discrepancy as well as to bring the Wigner and classi-
cal distributions very close to each other. In this com-
bined sense, decoherence restores the quantum-classical
correspondence. Our results complement previous stud-
ies which have focused more on the phase space aspects
of the correspondence and the destruction of dynamical lo-
calization by noise and dissipation [17].
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