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We present evidence that decoherence can produce a smooth quantum-to-classical transit
nonlinear dynamical systems. High-resolution tracking of quantum and classical evolutions rev
differences in expectation values of corresponding observables. Solutions of master equa
demonstrate that decoherence destroys quantum interference in Wigner distributions and washes o
structure in classical distributions, bringing the two closer together. Correspondence between qua
and classical expectation values is also reestablished. [S0031-9007(98)06134-1]
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The status of quantum-classical correspondence for d
namical systems is somewhat unclear and perhaps e
controversial. In a nonlinear system, a single classical tr
jectory initially centered on a quantum wave packet ca
quickly diverge from the motion of the centroid given by
the quantum expectation values ofx andp (this defines the
Ehrenfest time, cf. Ballentineet al. in Ref. [1]). However,
when the single trajectory is replaced by a classical prob
bility distribution to give the correspondence principle
a better chance, the situation is far less certain. Thu
some authors have reported evidence for a breakdown
the quantum-classical correspondence in chaotic syste
[2], while others have argued that it can be preserved wh
stated in terms of the expectation values of dynamical va
ables [1]. In yet another line of investigation it has bee
shown that, even in chaotic systems, semiclassical me
ods are successful for times longer than was previous
believed possible [3].

In integrable systems, a rapid divergence betwe
classical and quantum evolutions can occur for initia
conditions near an unstable point: This can force th
system to undergo a “double-slit experiment,” yieldin
very different outcomes in the two cases. This breakdow
of correspondence is caused by the coherent interfere
of fragments of the wave packet and occurs on a sh
time scale, on the order of the system dynamical tim
However, for generic initial conditions, quantum an
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y-
ven
a-
n

a-

s,
of
ms
en
ri-
n
th-
ly

en
l
e

g
n

nce
ort
e.
d

classical expectation values are expected to diverge
a time scale inversely proportional to some power ofh̄
[4,5]. This is regarded as sufficiently slow to cause n
difficulties with the classical limit of quantum theory.

The first purpose of this Letter is to investigate th
quantum-classical correspondence at the level of expec
tion values for chaotic dynamical systems, where a brea
down may be anticipated on a much smallerlogarithmic
time scaleth̄ , lnsCyh̄d [4–6]. We show below that
such a loss of correspondencedoesoccur, though its mag-
nitude is not in conflict with earlier results [1]. While the
time scale on which the violation occurs varies with th
particular initial condition chosen, it is consistent with th
logarithmic timeth̄.

In order to effect a quantum-classical comparison, w
chose Gaussian packets as initial states, with posit
definite Wigner distribution functions. The time evolutio
was then performed using either classical or quantu
dynamical equations. In the chaotic systems investiga
here, for generic initial conditions (i.e., Gaussian packe
randomly sampling the chaotic part of the phase spac
differences between quantum and classical expectat
values stay small for some time and then abruptly increa
After this divergence time, the differences remain mode
typically ,5% 10% (for h̄ ­ 0.1). The Wigner function
begins to differ considerably from the classical phase spa
distribution at relatively early times [7].
© 1998 The American Physical Society 4361
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Our second purpose is to show that the discrepan
between quantum and classical evolutions is drastica
decreased by even a small coupling to the environme
which in the quantum case leads to decoherence [
There are two limiting situations in the study of deco
herence in dynamical systems. In the first case, spec
initial conditions (such as Schrödinger cat states) are us
to study the destruction of interference already present
the initial state but with simple system dynamics, typical
taken to be linear [9]. However, since quantum interfe
ence is dynamically generated only in nonlinear system
[10], the competition between generation and destructi
of quantum coherence cannot be investigated. The res
reported in this Letter are from a study of the second typ
where the system dynamics is nonlinear, but the choice
initial states is kept deliberately simple so as to focus on
on the role of dynamically induced interference (as di
tinct from that present in the initial state). We show be
low that differences at the level of expectation values a
sharply reduced due to decoherence and the effect on c
respondence in phase space is even more spectacular
the parameter regime investigated here—essentially
border between quantum and classical—some remna
of quantum coherence may still survive. However, su
small-scale coherence has apparently little effect on t
correspondence of the expectation values.

A mechanism responsible for the quantum to classic
transition should explain not just how expectation valu
can converge to the same answer, but also lead to co
patible effective phase space distributions. A common a
proach is an appeal to coarse graining, a formal proced
implemented typically by convolving the individual distri-
butions with a Gaussian distribution and then compari
the two resulting coarse-grained distributions [7]. Th
approach has three defects. First, as a formal mathem
cal procedure it can always be inverted, and thus offe
no physical insight. Second, this coarse graining does
alter the dynamics, and hence cannot improve the co
vergence of expectation values. Third, for the classic
system, the notion of a trajectory is lost and, along wi
it, the notion of a Lyapunov exponent.

In contrast to the coarse-graining approach, dec
herence provides adynamical explanation [8] of the
quantum-to-classical transition by taking into account i
teractions with an (external or internal) environment o
the system—degrees of freedom that effectively monit
and, therefore, select certain stable or “pointer” obser
ables destined to become the classical variables [8,1
The simplest models of this type lead to master equatio
for the reduced density matrix for the system [12]. Di
fusion terms in these equations automatically coarse gr
the distributions, now a physical effect of the couplin
to the environment rather than a mathematical trick. T
degree of coarse graining is determined by the interpl
between the dynamics of the system and the nature a
strength of the coupling with the environment. Moreove
the effectively classical master equations that describe
4362
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postdecoherence dynamics admit a Langevin descript
of trajectories allowing for the existence of a Lyapuno
exponent. We demonstrate below that decoherence d
matically improves the correspondence of the expectat
values, leads to the existence of a single phase space
tribution, and allows for a Lyapunov exponent to exist
late times. All the deficiencies of the coarse-graining a
proach are therefore overcome.

We restrict attention to bounded, one-dimensiona
driven systems. Tools employed are very high-resoluti
simulations of the time-dependent Schrödinger, quantu
and classical Liouville, and master equations recen
implemented on massively parallel computers [13]. Th
numerical results discussed below are for the driv
system considered in Ref. [14], with Hamiltonian,

H ­ p2y2m 1 Bx4 2 Ax2 1 Lx cossvtd . (1)

We used a parameter regime (m ­ 1, B ­ 0.5, A ­
10, L ­ 10, v ­ 6.07) in which a substantial area of
phase space is predominantly stochastic, with the fini
time Lyapunov exponentl . 0.4 0.5. Gaussian phase
space distributions, typically minimum uncertainty wav
packets, were employed as initial conditions to sample t
evolution in the stochastic region. Other Hamiltonian
studied include the driven Duffing system and a two
dimensional, truncated Toda potential. These syste
yielded similar results; a detailed presentation will b
given elsewhere [15].

The specific model of decoherence used here is
weak coupling, high temperature limit of quantum Brown
ian motion [12]. In this limit, dissipation can be ignored
at early times, and only the diffusive contributions in th
master equations [6,8] need be kept. The diffusion co
stant was chosen to be small enough so that, over the t
scales of interest, the energy increase was negligible, a
changes in the classical phase space structure were o
perturbative. For the Hamiltonian (1), the quantum ma
ter equation in terms of the Wigner function is

≠fW

≠t
­ 2

p
m

≠fW

≠x
1

≠V
≠x

≠fW

≠p
1 LqfW 1 D

≠2fW

≠p2
,

(2)

where≠Vy≠x ­ 4Bx3 2 2Ax 1 L cossvtd andLq is

Lq ;
X
n$1

h̄2ns21dn

22ns2n 1 1d!
≠2n11V
≠x2n11

≠2n11

≠p2n11

­ 2h̄2Bx
≠3

≠p3
.

The classicalsLq ­ 0d Fokker-Planck equation is

≠fc

≠t
­ 2

p
m

≠fc

≠x
1

≠V
≠x

≠fc

≠p
1 D

≠2fc

≠p2
. (3)

This dynamics is equivalent to the Langevin equatio
mẍ ­ 2V 0sxd 1 Fstd where Fstd denotes a Gaussian
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white noise. The quantum Schrödinger and master equ
tions, as well as the classical Fokker-Planck equatio
were solved using a high-resolution spectral algorith
[13]. In the absence of diffusion, the classical Liouville
equation was solved as anN-body problem, the distribu-
tion being sampled by at least,105 particles. Numeri-
cal checks included carrying out simulations at differen
spatial and temporal resolutions and a direct verificatio
for the moments obtained from the codes by substitutin
them in the Bogoliubov-Born-Green-Kirkwood-Yvon-like
(BBGKY-like) moment evolution hierarchy and verify-
ing that this set of equations is satisfied to a relative
high order. Lyapunov exponents were computed usin
the techniques described in Ref. [16]. It was verified tha
at the noise levels used, the finite-time Lyapunov exp
nents from the Langevin equation agreed with those com
puted from the Hamiltonian dynamics.

The exponential instability characteristic of chaos force
the system to rapidly explore large areas of phase spa
and to interfere on a time scale set by when the wa
function has spread over much of the available space [
6] and the Moyal corrections arising from its nonlocality
have become comparable to the classical force [6]:

th̄ , l21 lnsxdpyh̄d , (4)

where l is the Lyapunov exponent,dp is the mea-
sure of dispersion in the initial conditions, andx .p

jk≠xVy≠xxxV lj is a measure of the nonlinearity in the
potential averaged over the accessible space. We inv
tigated the evolution of several expectation values, su
as kxl, higher order moments such asksx 2 kxldnl (with
a maximumn ­ 4), and expectation values of variables
that, in principle, include all moments. Some of our re
sults are shown in Fig. 1. In all cases, and for all of th
investigated initial conditions, we found good agreeme
between the quantum and classical results during the i
tial portion of the evolution. (This initial period waslonger
than the Ehrenfest time, consistent with the results of Ba
lentineet al. [1]). The onset of the discrepancy depende
on the initial condition, but in all cases was a factor o
a few larger than the dynamical time. The discrepanc
saturates to typically no more than 10% of the expectatio
values thereafter. The value ofh̄ was varied to test for
logarithmic scaling: While the results are consistent wit
(4), the dynamic range of the simulations is insufficient t
make a more precise statement.

We have therefore good evidence that, in isolate
chaotic systems, the quantum-classical corresponden
defined at the level of expectation values is lost relative
quickly due to dynamically generated quantum interfe
ence. This is best appreciated by comparing classic
phase space densities with quantum Wigner distribution
As the wave packet spreads and folds, the Wigner functi
becomes dominated by small-scale interference whi
saturates on a scale set by the size of the system
both momentum and position:dp ­ h̄yL, dx ­ h̄yP.
Eventually, the Wigner function is unable to track eve
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FIG. 1(color). Classical and quantum expectation valueskxl
as a function of time. The initial condition is a minimum
uncertainty Gaussian wave packet withkxl ­ 23, kpl ­ 8,
ksx 2 kxld2l ­ 0.0025, ksp 2 kpld2l ­ 1. h̄ is set to 0.1.
This yields t h̄ , 4. The central vertical bar denotes the
average divergence time, and the left and right bars denote t
minimum and maximum, respectively, for ten initial conditions
that randomly sampled the chaotic phase space.

the “backbone” of the classical phase space distributio
and becomes a complicated looking interference patte
in which the classical phase space structure can no long
be distinguished [Fig. 2(a)]. Fine-scale structure in th
interference pattern (i.e., oscillations within āh box)
is clearly apparent. On the time scales probed in ou
simulations, the Wigner function has not reached the sta
of “structure saturation,” i.e., smoothness on a scale,h̄
in phase space [5].

Our results are encapsulated in Fig. 2. As can be se
from comparing the decohered Wigner function [Fig. 2(b)
with the classical distribution given by the solution to
Eq. (3) [Fig. 2(c)], decoherence markedly improves th
correspondence at the level of distribution functions, rad
cally changing the unitarily evolved Wigner function of
Fig. 2(a) by effectively smoothing it over scales [6];Dp .
sc ­

p
2Dyl in momentum (which is translated by dy-

namics into a smoothing in position). In our case,sc .
0.3 andx , 0.6, which implies that we are on the border
between quantum and classical regimes (defined, resp
tively, by whetherscx is large or small compared tōh
[6]). Even though the distributions in Figs. 2(b) and 2(c
are very close, the Wigner function still contains traces o
local quantum interference. However, this makes only
minor difference to expectation values, and tends to vanis
as the evolution proceeds. We note that, with our choice
parameters, the diffusion term affects the evolution of clas
sical and quantum expectation values roughly to the sam
extent (Fig. 1). Decoherence destroys the interference p
tern in the Wigner function, while, at the same time, nois
smooths out the fine structure of the classical distributio
4363
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FIG. 2(color). (a) Wigner distribution function from a solu-
tion of Eq. (2) at timet ­ 8T , whereT is the period of the
driving force. The diffusion constantD ­ 0. The box repre-
sents a phase space area of4h̄. (b) Wigner distribution function
at timet ­ 8T , with diffusion constantD ­ 0.025, illustrating
the destruction of large scale quantum coherence. (c) Classi
distribution function from a solution of Eq. (3) at timet ­ 8T ,
with diffusion constantD ­ 0.025.
4364
cal

in such a way that quantum and classical distributions a
expectation values both converge to each other. Thus,
concludes that the decohered quantum evolution does
over to the classical Fokker-Planck limit.

In summary, we have provided evidence that in a qua
tized classically chaotic system, for fixed̄h, classical and
quantum expectation values diverge from each other
ter a time,th̄. In the case studied here, the discrepan
is #10% of the typical magnitude of the expectation va
ues. Decoherence was shown to substantially reduce
discrepancy as well as to bring the Wigner and clas
cal distributions very close to each other. In this com
bined sense, decoherence restores the quantum-clas
correspondence. Our results complement previous st
ies which have focused more on the phase space asp
of the correspondence and the destruction of dynamical
calization by noise and dissipation [17].
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