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Sliding Columnar Phase of DNA-Lipid Complexes

C. S. O’Hern and T. C. Lubensky
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 1

(Received 4 December 1997)

We introduce a simple model for DNA-cationic-lipid complexes in which galleries between pla
bilayer lipid lamellae contain DNA 2D smectic lattices that couple orientationally and positionally
lattices in neighboring galleries. We identify a new equilibrium phase in which there are long-r
orientational but not positional correlations between DNA lattices. We discuss properties of this
phase such as its x-ray structure factorSsrd, which exhibits unusual exps2const3 ln2 jrjd behavior as
a function of in-plane separationr. [S0031-9007(98)06034-7]

PACS numbers: 87.22.Bt, 61.30.Cz, 62.20.Dc
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DNA is a remarkable polymer that exhibits a comple
phase behavior as a function of packing density, s
concentration, and other variables [1]. It is anionic, givi
up positive counterions to solution. Mixtures of DN
and cationic and neutral lipids in water form complex
that facilitate transfection of DNA into living cells and
that play an important role in the emerging field
gene therapy [2]. Recent x-ray experiments [3] rev
the structure of these complexes at length scales fr
10 to several hundred angstroms, particularly near
isoelectric point where the total charge of counterio
given up by the DNA equals that given up by the cation
lipids. The lipids form bilayer membranes that stack
a lamellar structure (Fig. 1). Parallel strands of DN
arrange in 2D smectic structures in the galleries betw
lipid bilayers. The distance between lipid bilayers is equ
to the diameter of a DNA molecule plus a hydratio
layer. In addition, the distanced between DNA strands
increases with increasing concentration of neutral lip
in a manner consistent with counterions being expel
to solution and charge neutrality of the complex bei
determined only by the DNA and cationic lipids. Th
best fit to x-ray diffraction data is obtained when som
correlation between DNA lattices in different galleries
introduced. We undertake here a theoretical investiga
of possible equilibrium phases of these lamellar DN
lipid complexes. We identify a new phase, with
nonvanishing smectic compression modulusB in each
gallery, in which there is long-range orientational but n
positional correlation between DNA lattices in differe
galleries. This phase exhibits no restoring force
sliding DNA lattices rigidly relative to each other, bu
it does exhibit a restoring force preventing their relati
rotation. We will refer to it as asliding columnar phase.
It is distinct from both the columnar phase in whic
the DNA segments form a 2D lattice and the tota
decoupled phase in which there is no communicat
between different DNA lattices. It is similar to th
decoupled phase of stacks of tethered membranes
Dislocations can destroy positional correlations with
the DNA lattices, melt the sliding columnar phase, a
0031-9007y98y80(19)y4345(4)$15.00
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d

produce a nematic lamellar phase withB ­ 0. Whether
they always melt the phase will be discussed in det
elsewhere [5].

We consider a model in which the DNA strand
are confined to galleries between lipid bilayers in
perfect lamellar structure (with layer spacinga) with no
dislocations or other defects. We assume the ground s
of DNA strands in each galleryn is that favored by
electrostatic interactions, i.e., a 2D smectic lattice wi
layer spacingd ­ 2pyk0. We take the lipid bilayers
to be parallel to thex-z plane and the DNA strands
to be aligned, on average, parallel to thex axis as
shown in Fig. 1. For the moment, we assume that t
lipid bilayers are perfectly flat and do not fluctuate
In this case, long-wavelength properties of the DN
lattice in gallery n are described entirely in terms o
displacementsunsrd along the z direction, wherer ­
sx, zd is a position in thex-z plane. The Landau-
Ginzburg-Wilson Hamiltonian for the complex is then
sum of independent elastic energies for each gallery a
terms coupling displacements and angles in neighbor

d

z

y

x

a

FIG. 1. Schematic representation of DNA-cationic-lipid com
plex. Parallel strands of DNA form smectic lattices with lattic
spacingd in galleries between lipid bilayers with spacinga.
Charged and neutral lipid heads are, respectively, shaded
unshaded. DNA strands are aligned parallel to thex axis, and
the y axis is the normal to the lipid planes.
© 1998 The American Physical Society 4345
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galleries:H ­ H el 1
P

nsH u
n 1 H u

n d with

H el ­
1
2

X
n

Z
d2rfB2sun

zzd2 1 K2s≠2
xund2g ,

H u
n ­ 2Vu

Z
d2r cosf2sun 2 un11dg , (1)

H u
n ­ 2Vu

Z
d2r cosfk0sun 2 un11dg ,

where un ø ≠xun, and un
zz ­ ≠zun 2 fs≠xund2 1

s≠zund2gy2 is the nonlinear strain for galleryn. B2 and
K2 are, respectively, the 2D compression and bend
moduli. Vu is of order sl2

cydde22payd , wherelc is the
charge per unit length (e per 1.7 Å) of DNA. We do
not yet have an estimate ofVu whose dominant origin is
likely a membrane mediated interaction.

If Vu is sufficiently strong, the DNA strands form
a regular 2D lattice in they-z plane, and the whole
complex will resemble an Abrikosov flux lattice in
high-Tc material with the magnetic field parallel to th
copper-oxide planes [6]. It will have the symmetry
an anisotropic discotic columnar liquid crystal [7]. A
Vu is reduced (or temperature is increased), fluctuati
can melt the columnar DNA lattice without destroying th
lipid-bilayer lamellar lattice. What is the nature of th
melted phase? To answer this question, we cons
the limit in which the potentialsVu andVu are small. From
the known statistical properties of 2D smectics, we fi
that Vu is irrelevant andVu is relevant with respect to the
totally decoupled phase.

When the potentialsVu and Vu are zero, we have
a stack of decoupled 2D smectics, whose proper
are by now well known [8,9]. First we will ignore
dislocations. At length scales less than the nonlin
lengthslx ­ K

3y2
2 yT

p
B2 and lz ­ l2

xyl, whereT is the
temperature andl ­

p
K2yB2, fluctuations are describe

by the linearized elastic Hamiltonian with the nonline
strain replaced by the linear strain≠zu. At length scales
longer thanlx and lz, nonlinearities lead to renormalize
bending and compression moduliKsqd and Bsqd that,
respectively, diverge and vanish at small wave num
q. In both the harmonic and nonlinear regimes, t
displacement correlation function in each gallery can
expressed as

Gsqd ­ q2h
x Qsqzyqm

x d ,
Ω

q
2h
x , qz ­ 0 ,

q2hym
z qx ­ 0 .

(2)

In the harmonic regime,h ­ 4, m ­ 2, andTG21sqd ­
B2sq2

z 1 l2q4
xd. In the anharmonic regime,h ­ 7y2, and

m ­ 3y2. The mean-square fluctuation in the displac
ment diverges in both regimes with the lengthsLx andLz

of the sample in thex-z plane:

ku2l ­
Z d2q

s2pd2
Gsqd ­ L2a

x fs1d
u sLzyLm

x d , (3)

where 2a ­ h 2 1 2 m ­ 1 in both regimes and
f

s1d
u s0d , Ty

p
K2B2 and f

s1d
u swd , l2l22aym

z w2aym as
w ! `. Alternatively the displacement correlatio
4346
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function,

gusrd ­ kfusrd 2 us0dg2l ­ jxj2afs2d
u sjzjyjxjmd , (4)

diverges with separationr. Angular fluctuations are
nondivergent: ku2l ­

R d2q
s2pd2 q2

xGsqd ­ L2a
x fusLzyL

m
x d,

whereLx , 1yd , Lz , 1yd are the wave number cut-
offs in qx andqz andfus0d ­ const andfuswd , w2aym.

Dislocations define another length scalejd
2D ­

n
21y2
d ø expsEd

2Dy2T d, where nd is the density of dis-
locations andEd

2D is the energy of a dislocation, which
is finite for smectics. At length scales less thanj

d
2D ,

the system is described by the harmonic or the nonlin
elastic theory. At length scales longer thanj

d
2D, disloca-

tions melt the smectic lattice, leaving a 2D nematic wi
power-law angular correlations [8]. In what follows, w
concentrate on the case in whichj

d
2D is the longest length

scale in the problem and in which there is a regime
which dislocations can be ignored.

The coupling energiesH u
n and H u

n are irrelevant if
they tend to zero at largeLx and Lz and relevant if they
diverge withLx and Lz . If DNA lattices are totally de-
coupled,kH u

n l ­ 2VuLxLz expf2k2
0ku2srdlg tends expo-

nentially to zero for both harmonic and anharmonic 2
elasticities, and is irrelevant. On the other handku2srdl is
finite for both linear and nonlinear elasticity, and the p
tential kH u

n l ­ 2VuLxLze24ku2l diverges withLxLz and
is relevant. When dislocations are allowed, thenkcosunl
dies off as a power law at largeLx and Lz , and kH u

n l
may be relevant or irrelevant. Thus, if we ignore disloc
tions, the angular coupling is relevant, and the decoup
Hamiltonian will flow to a new long-wavelength Hamil-
tonian with angular but not positional coupling betwee
layers. In the continuum limit, this Hamiltonian is

H ­
1
2

Z
d3xfBu2

zz 1 Ks≠2
xud2 1 Kys≠y≠xud2g , (5)

where x ­ sr, yd, usxd ­ uyyasrd, B ­ B2ya, K ­
K2ya, and the nonlinear strain is still that of a two
dimensional system. Note that there are no term
proportional tos≠yud2 or s≠2

yud2. The only term involving
y derivatives is the oneKys≠y≠xud2 ­ Kys≠yud2 coupling
angles in different layers. This Hamiltonian is invarian
under transformations of the typeusxd ! usxd 1 fsyd
for any function fsyd independent ofr, i.e., it is
invariant under arbitrary rigid displacements of on
layer relative to another. To lowest order inVu ,
Ky ­ Vuakcos2ul2

0 ­ Vuae24ku2l.
The elastic constantKy introduces a new lengthly ­

a
p

KyKy. At length scales within a gallery less thanly ,
DNA lattices behave like independent 2D smectics.
ly , lx,z, there will be a crossover from 2D harmonic t
3D sliding lattice at length scales of orderly . If ly . lx,z ,
there will be a crossover first to 2D nonlinear behavi
and then to 3D sliding behavior.

Fluctuations inu in the harmonic limit are now de-
termined byGsqd ­ T fBq2

z 1 Kq4
x 1 Kyq2

xq2
yg21. They
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diverge with system sizeL:

ku2l , C ln2 L and ksDupd2l ­ ApC ln L , (6)

where Dup ­ un1psrd 2 unsrd, C ­ Ty
p

BKy, and Ap

is a number. Thus,kH u
n l ø 2VuL22hc , where hc ­

A1k2
0Cy2 tends to zero at largeL for hc . 2, andVu is

irrelevant forT . Tu ­ s4yA1k2
0 d

p
BKy.

Since ku2l diverges withL, the correlation function
gusxd ­ kfusxd 2 us0dg2l diverges withx. In the limit
L ! `, gusr, 0d is finite for all r and at largejrj is

gusr, 0d , C ln2sL2ljrjd . (7)

When y is nonzero,gusr, yd diverges with L for all
y. The behavior ofgusxd has interesting consequence
for the x-ray structure factorSsqd ­

R
d3xSsxde2iq?x,

where Ssxd ­ keik0fusxd2us0dgl. For y ­ 0, the dominant
contribution toSsrd ; Ssr, 0d ­ expf2k2

0gusr, 0dy2g is

Ssrd ­

(
e2Ck2

0 sln2 L2ljrjdy2, jrj . ly ;

e2k2
0 jxjf

s2d
u sjzjyjxjmdy2, jrj , ly .

(8)

The contribution toSs0, yd arising from gus0, yd is zero
in the infinite volume limit whenVu is irrelevant. There
are, however, short-range positional correlations betw
layers arising from the irrelevant variableVu. To low-
est order in a perturbation expansion inVuyT , Ss0, y ­
nad , sVuy2T dnIn, whereI has contributions of the formR

d2re2k2
0 gusr,0dy2. Thus, there is exponential decay o

Ss0, yd , e2j yjyjy with jy ­ ay lns2TyVuId. The corre-
lation length jy is finite so long asVuI , 2T . Since
gusr, 0d grows more rapidly withr in the totally de-
coupled phase than in the sliding phase,I and jy are
smaller in the latter than in the former phase. There
further contributions toSsr, yd that become more impor
tant asI grows larger. Whenjy diverges, there will be a
transition to the true columnar crystal phase with a non
nishing 2D shear modulus.

The Hamiltonian of Eq. (5) has nonlinear parts arisi
from the nonlinear strainuzz . These lead to logarithmic
renormalizations of the coefficientsB, K , andKy similar
to those in smectic liquid crystals [10]. We find

Kysqd , K1y2sqd , B21y3sqd , hlnfLyhsqdgj1y4, (9)

where hsqd ­ sq2
z 1 l2q4

x 1 l2
yq2

xq2
yd1y2 with l2 ­

KyB and l2
y ­ KyyB. Preservation of rotational in

variance in the calculation of the above renormaliz
elastic constants requires considerable care. Details
this calculation will be presented in a separate publi
tion [11].

We have thus far ignored dislocations. In two dime
sions, dislocations cause the smectic lattice to melt
length scales larger thanj2

d. Dislocations will certainly
suppress order in the sliding phase. To obtain qua
tative estimates of their effect, we need to calculate
energy per unit length of a dislocation predicted by t
elastic energy of the sliding phase. We would like to o
tain not only the elastic energy of a dislocation but al
some estimate of its core energy, which can arise eit
s
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from destruction of the order parameterc, describing pe-
riodic order, over an order-parameter coherence lengthj

or from deviations of the local director (specifying in thi
case the normal to the DNA strands) from the directio
of preferred alignment over a bend or twist penetrati
depthlB. In the smectic-A phase, screw dislocations hav
no elastic energy; their energy is totally in the core a
is dominated in type-II systems, for whichlB . j, by
director misalignment [12]. The mass-density amplitud
cDNA for our DNA lattices is strictly speaking undefine
in the sliding phase in the regions between DNA gallerie
Thus, we argue that any core energy arising from dislo
tion lines parallel to the layers (i.e., in thex-z plane) must
come from director mismatch rather than from destructi
of periodic order. To describe director mismatch, we co
sider a “gauge” version of the elastic energy of the slidin
phase in which displacements and angles are coupled
rotationally invariant way:

Hg ­
1
2

Z
d3xfBs≠zud2 1 Ds≠xu 2 ud2

1 Kxs≠xud2 1 Kys≠yud2 1 Kzs≠zud2g .

(10)

This energy reduces to the sliding phase elastic ene
[Eq. (5)] whenu is integrated out. It introduces twist and
bend penetration depthsly ­

p
KyyD andlz ­

p
KzyD

characterizing length scales over which orientations re
in response to layer distortions.

Dislocations are topological line defects. They ca
be characterized by a densitybsxd that determines the
singular part of the displacement variableusxd: === 3

===usxd ­ bsxd. Using standard techniques [13], we ca
calculate dislocation energies in terms of the Four
transformbsqd of bsxd:

E ­
1
2

B
Z d3q

s2pd3

Ksqdq2jbysqdj2

Bq2
z 1 Ksqdq2fq2

x 1 sByDdq2
z g

,

(11)

where Ksqdq2 ­ Kxq2
x 1 Kyq2

y 1 Kzq2
z . This energy

depends only on they component ofb, i.e., on the
component ofb normal to the bilayer planes. When
there is a single dislocation line parallel to they axis
with bsxd ­ deydsxddszd, the energy per unit lengthe
predicted by this equation is preciselyEd

2Dya, where
Ed

2D is the energy of a two-dimensional edge dislocatio
Since Eq. (11) includes orientational mismatch ener
and we expect no core energy from destruction
the mass-density order parameter, we conclude that
energy for dislocations withb in the x-z plane is in fact
zero. Thus, it is possible to form dislocation loops wit
arbitrarily long segments in thex-z plane. (This situation
is analogous to that of the “pancake” models of flu
lattices in high-Tc superconductors [14].) These loop
are equivalent to independent 2D dislocations connec
by loop segments withby ­ 0 passing between DNA
galleries. Dislocations will melt the sliding columna
4347
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phase if these 2D dislocations melt the smectic latt
in any given gallery. Smectic lattices in galleries abo
and below a given gallery act as external fields orient
that gallery along the common direction of the who
sample. Thus, each gallery is equivalent to a sme
in an external aligning field (whose long-waveleng
Hamiltonian is in the universality class of thex-y model
[13]) that will Kosterlitz-Thouless (KT) melt to a nemati
at a temperatureTN . If TN . Tu, then forTu , T , TN ,
there lattices have not melted,Vu is irrelevant, and the
sliding columnar phase exists. IfTu . TN , then the
sliding columnar phase exists only up to length scales
order of the KT correlation lengthjN ­ d expsbyjT 2

TN j1y2d, whereb is a nonuniversal constant. BeyondjN ,
the phase will be a lamellar nematic. The possibility
Tu , TN will be addressed elsewhere [5].

In our discussion to this point, we have assumed t
lipid bilayers define absolutely rigid 2D galleries for th
DNA. In reality, the lipid bilayers fluctuate. To treat thes
fluctuations, we should introduce a height variablehnsrd
for membranen and ay displacement variableun

y srd for
the DNA lattice in thenth gallery. Clearly the variables
are coupled, and at long wavelengths, we can assume
are locked together. Thus, we can construct a continu
elastic Hamiltonian in terms ofusxd ; uzsxd anduysxd:

Hyz ­ 1
2

Z
d3xfBzu2

zz 1 Kz
xxs≠2

xuzd2 1 Kz
xys≠x≠yuzd2

1 Byu2
yy 1 2Byzuzzuyy 1 Ky

xxs≠2
xuyd2

1 2Ky
xzs≠x≠zuyd2 1 Ky

zzs≠2
zuyd2g .

(12)

The DNA lattice introduces a preferred direction
the x-z plane that causes the bend elastic const
tensor K

y
ij for uy to be anisotropic. The statistica

properties ofuz , including the correlation functionSsqd,
predicted by this Hamiltonian are essentially identical
those predicted by the simpler rigid-layer Hamiltonia
of Eq. (1). The Grinstein-Pelcovits renormalization
Bz , Kz

xx, and Kz
xy are identical to those ofB, K , and

Ky . We can useHyz to calculate smectic correlations i
the lipid bilayers determined byShsxd ­ keiq0fuysxd2uys0dgl,
whereq0 ­ 2pya. X-ray diffraction measuresShsqd, the
Fourier transform ofShsxd, as well asSsqd. The most
noticeable difference between this function and that
standard lamellar phases arises from the anisotropy
the bending modulus. There are other differences aris
from theuzz-uyy coupling that will be discussed in mor
detail in an upcoming publication.

The intrinsic chirality of DNA molecules leads to inter
actions that will cause the direction of DNA lattices to r
tate, like the director in a cholesteric phase, about an a
perpendicular to the layers in both the sliding column
and lamellar nematic phases. We expect, however, th
interactions to be small and resultant pitches to be v
large because the lipid bilayer prevents close approac
DNA molecules.
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In this Letter, we have introduced and investigat
some of the properties of a new phase of matter that m
exist in highly anisotropic, rotationally invariant columna
systems such as DNA-cationic-lipid complexes. It wou
be interesting to find evidence for this phase in the DN
complexes studied in Ref. [3]. The material in these e
periments consisted of micron-size spherulites compo
of apparently randomly oriented domains of length of o
der L ­ 500 Å on a side of DNA-lipid complex. The
x-ray data are consistent with nearly independent h
monic smectic layers with some exponentially attenua
positional correlation between layers. A nonvanishi
Vu will lead to exponential correlations between laye
even in the harmonic regime. 500 Å corresponds appro
mately to the nonlinear 2D lengthlx . Thus, it is not clear
whether the domain size is set by actual distortions of
lipid layers or by the breakdown of harmonic behavior
length scales longer thanlx or lz . It will be necessary to
prepare monodomain samples to determine whether th
is a crossover to anharmonic 2D behavior or to that of
3D sliding phase proposed in this paper.

We are grateful to Cyrus Safinya for inspiring ou
interest in this problem, to John Toner for emphasizi
the importance of dislocation interactions in the slidin
phase, and to Robijn Bruinsma and Randy Kamien
helpful discussions. This work was supported in part
the NSF under Grant No. DMR94-23114.

Note added.—Results essentially identical to thos
reported here were obtained independently by Golubo´
and Golubovic´ as reported in Ref. [15].
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