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Sliding Columnar Phase of DNA-Lipid Complexes
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We introduce a simple model for DNA-cationic-lipid complexes in which galleries between planar
bilayer lipid lamellae contain DNA 2D smectic lattices that couple orientationally and positionally to
lattices in neighboring galleries. We identify a new equilibrium phase in which there are long-range
orientational but not positional correlations between DNA lattices. We discuss properties of this new
phase such as its x-ray structure fac§@r), which exhibits unusual exp-constx In? |r|) behavior as
a function of in-plane separatian [S0031-9007(98)06034-7]

PACS numbers: 87.22.Bt, 61.30.Cz, 62.20.Dc

DNA is a remarkable polymer that exhibits a complexproduce a nematic lamellar phase wBh= 0. Whether
phase behavior as a function of packing density, salthey always melt the phase will be discussed in detail
concentration, and other variables [1]. Itis anionic, givingelsewhere [5].
up positive counterions to solution. Mixtures of DNA We consider a model in which the DNA strands
and cationic and neutral lipids in water form complexesare confined to galleries between lipid bilayers in a
that facilitate transfection of DNA into living cells and perfect lamellar structure (with layer spaciny with no
that play an important role in the emerging field of dislocations or other defects. We assume the ground state
gene therapy [2]. Recent x-ray experiments [3] reveabf DNA strands in each gallery: is that favored by
the structure of these complexes at length scales frormalectrostatic interactions, i.e., a 2D smectic lattice with
10 to several hundred angstroms, particularly near théayer spacingd = 2 /ky. We take the lipid bilayers
isoelectric point where the total charge of counteriongo be parallel to thex-z plane and the DNA strands
given up by the DNA equals that given up by the cationicto be aligned, on average, parallel to theaxis as
lipids. The lipids form bilayer membranes that stack inshown in Fig. 1. For the moment, we assume that the
a lamellar structure (Fig. 1). Parallel strands of DNAlipid bilayers are perfectly flat and do not fluctuate.
arrange in 2D smectic structures in the galleries betweem this case, long-wavelength properties of the DNA
lipid bilayers. The distance between lipid bilayers is equalattice in gallery n are described entirely in terms of
to the diameter of a DNA molecule plus a hydrationdisplacements:”(r) along thez direction, wherer =
layer. In addition, the distancé between DNA strands (x,z) is a position in thex-z plane. The Landau-
increases with increasing concentration of neutral lipid€Ginzburg-Wilson Hamiltonian for the complex is then a
in a manner consistent with counterions being expelledum of independent elastic energies for each gallery and
to solution and charge neutrality of the complex beingterms coupling displacements and angles in neighboring
determined only by the DNA and cationic lipids. The
best fit to x-ray diffraction data is obtained when some
correlation between DNA lattices in different galleries is
introduced. We undertake here a theoretical investigation
of possible equilibrium phases of these lamellar DNA-
lipid complexes. We identify a new phase, with a
nonvanishing smectic compression modulBsin each
gallery, in which there is long-range orientational but not
positional correlation between DNA lattices in different
galleries. This phase exhibits no restoring force for
sliding DNA lattices rigidly relative to each other, but
it does exhibit a restoring force preventing their relative
rotation. We will refer to it as &liding columnar phase
It is distinct from both the columnar phase in which
the DNA segments form a 2D lattice and the totally

decoupled phase in which there is no communicatior!G. 1. Schematic representation of DNA-cationic-lipid com-

between different DNA lattices. It is similar to the plex. Parallel strands of DNA form smectic lattices with lattice
. pacingd in galleries between lipid bilayers with spaciag

d(_acouplgd phase of stacks O_f_tethered membrane_s _[@harged and neutral lipid heads are, respectively, shaded and
Dislocations can destroy positional correlations withinynshaded. DNA strands are aligned parallel totrexis, and
the DNA lattices, melt the sliding columnar phase, andhey axis is the normal to the lipid planes.
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galleries:H = He' + >, (H + H?) with function,

=1y f PrBul) + Ka(o2u")], gu(r) = (u(®) = uOP) = PofP(zl/1x1), @)
" diverges with separatiorzr. Angular fluctuations are

H = -v, f d*rcog2(0" — 6"*1)], (1)  nondivergent: (%) = f(qu)zqu(q) = A22f (A, /AY),
whereA, ~ 1/d ~ ~ 1/d are the wave number cut-

w_ _ 2 no_ o+l offsiin g, andgq, andfg(O) = const andfy(w) ~ w2“ ®,

H, V”f d"r cogko(u w )], Dislocations define another length scaledp, =
where 0" = 9,u", and u? = d.u" — [(d,u")* + n;m ~ exp(EZD/zT) where n, is the density of dis-

(9.u™)?]/2 is the nonImear strain for gallery. B, and locations andESp is the energy of a dislocation, which
K, are, respectlvely the 2D compression and bendings finite for smectics. At length scales less thﬁfb
moduli. V, is of order(A2/d)e >7%/4, where A, is the  the system is described by the harmonic or the nonlinear
charge per unit lengthe(per 1.7 A) of DNA. We do elastic theory. At length scales longer théf,, disloca-
not yet have an estimate & whose dominant origin is tions melt the smectic lattice, leaving a 2D nematic with
likely a membrane mediated interaction. power-law angular correlations [8]. In what follows, we
If Vv, is sufficiently strong, the DNA strands form concentrate on the case in whighy, is the longest length
a regular 2D lattice in they-z plane, and the whole scale in the problem and in which there is a regime in
complex will resemble an Abrikosov flux lattice in a which dislocations can be ignored.
high-T, material with the magnetic field parallel to the  The coupling energies? and " are irrelevant if
copper-oxide planes [6]. It will have the symmetry of they tend to zero at large, and L. and relevant if they
an anisotropic discotic columnar liquid crystal [7]. As diverge withL, andL.. If DNA lattices are totally de-
V., is reduced (or temperature is increased), ﬂuctuationaoup|ed,<j-[nu> = —V,L.L. exr[—k%(uz(r»] tends expo-
can melt the columnar DNA lattice without destroying the nentially to zero for both harmonic and anharmonic 2D
lipid-bilayer lamellar lattice. What is the nature of the elasticities, and is irrelevant. On the other hdaé(r)) is
melted phase? To answer this question, we considdnite for both linear and nonlinear elasticity, and the po-
the limit in which the potential¥, andV, are small. From  tential (/) = —VyL.L.e % diverges withL, L, and
the known statistical properties of 2D smectics, we findis relevant. When dislocations are allowed, tHeasé,,)
thatV, is irrelevant andV, is relevant with respect to the dies off as a power law at large, and L., and (H.,?)
totally decoupled phase. may be relevant or irrelevant. Thus, if we ignore disloca-
When the potentials/y and V, are zero, we have tions, the angular coupling is relevant, and the decoupled
a stack of decoupled 2D smectics, whose propertiegjamiltonian will flow to a new long-wavelength Hamil-
are by now well known [8,9]. First we will ignore tonian with angular but not positional coupling between
dislocations. At length scales less than the nonlineajayers. In the continuum limit, this Hamiltonian is
lengthsl, = K2 /T\/Bz andl, = I2/), whereT is the
temperature and = /K,/B,, fluctuations are described H = %f d*x[Bu?, + K(92u)* + Ky (3,0,u)], (5)
by the linearized elastic Hamiltonian with the nonlinear
strain replaced by the linear stradnu. At length scales where x = (r,y), u(x) = w’/%(r), B = By/a, K =
longer than/, and!,, nonlinearities lead to renormalized K,/a, and the nonlinear strain is still that of a two-
bending and compression modWli(q) and B(q) that, dimensional system. Note that there are no terms
respectively, diverge and vanish at small wave numbeproportional to(d,u)? 0r(82u)2 The only term involving
q. In both the harmonic and nonlinear regimes, they derivatives is the onKV(a d.u)* = K,(d,6)* coupling
displacement correlation function in each gallery can beangles in different layers. This Hamrltonran is invariant
expressed as under transformations of the typ&x) — u(x) + f(y)
o u g, q. =0, for any function f(y) independent ofr, i.e., it is
Gl@) = q,"0(q:/q¥) ~ {qn/u g: = 0. (2)  invariant under arbitrary rigid displacements of one
¢ layer relative to another. To lowest order iW,,
K, = Vya(cos26); = Vyae 40",
The elastic constark, introduces a new length, =
ay/K/Ky. Atlength scales within a gallery less than
DNA lattices behave like independent 2D smectics. If
l, < l,,, there will be a crossover from 2D harmonic to

In the harmonic regimey = 4, u = 2, and7G '(q) =

Bz(qz g¥). In the anharmonic regimez = 7/2,and
= 3/2 The mean-square fluctuation in the displace-

ment diverges in both regimes with the lengthsandL,

of the sample in the-z plane:

W?) = d’q G(q) = Lf“ff,l)(Lz/Lff), (3) 3D sliding lattice at length scales of order If [, > I, .,
2m)? there will be a crossover first to 2D nonlinear behavior
Where 2a=n—-1-p= 1 in both regimes and and then to 3D sliding behavior.
fu (0) ~ T/JK>B, and fu (w) N2 my2a/u g Fluctuations inu in the harmonic limit are now de-

w — . Alternatively the displacement correlation termined byG(q) = T[Bq> + Kq} + K}qxq}] 1. They
4346



VOLUME 80, NUMBER 19 PHYSICAL REVIEW LETTERS 11 My 1998

diverge with system size: from destruction of the order parametfr describing pe-
2y~ cln’L and (Au)® = A.CInL 6 riodic order2 over an order-para.meter cohergnpe I.eggtlh
wh~c n+ nd (Aup)? pCInL. (6 or from deviations of the local director (specifying in this
where Au, = u""?(r) — u"(r), C = T/\/BK,, andA,  case the normal to the DNA strands) from the direction

is a number. Thus(H,") =~ —V,L?> ", wheren. =  of preferred alignment over a bend or twist penetration
A1kyC/2 tends to zero at large for n, > 2, andV, is  depthAz. Inthe smecticA phase, screw dislocations have
irrelevant forT > T, = (4/A k), /BK,. no elastic energy; their energy is totally in the core and

Since (u?) diverges with L, the correlation function is dominated in type-ll systems, for whicky > &, by
gu(x) = ([u(x) — u(0)]*) diverges withx. In the limit  director misalignment [12]. The mass-density amplitude
L — =, g,(r,0) is finite for allr and at largdr| is ypna for our DNA lattices is strictly speaking undefined

2u(r,0) ~ CIN2(A2A|r]). @) in the sliding phase in the regions betwe_e_n DNA gaI_Ieries.
. _ _ Thus, we argue that any core energy arising from disloca

When y is nonzero,g,(r,y) diverges withL for all  ton lines parallel to the layers (i.e., in thez plane) must
y. The behavior ofg,(x) has interesting consequencescome from director mismatch rather than from destruction
for the x-ray structure factoS(q) = [d’xS(x)e”"%*,  of periodic order. To describe director mismatch, we con-
where S(x) = (elu®)~uOl) " Fory =0, the dominant  sider a “gauge” version of the elastic energy of the sliding

contribution toS(r) = S(r,0) = exf —kjg.(r,0)/2] is phase in which displacements and angles are coupled in a

o~ Cho(in? AZAleD/2 Ir| > 1, rotationally invariant way:
SI) =1 el el 2 ) (8) 1

e~ kolxlfu(lzl/lx > Ir| < ly- Hg = §]d3x[B(8Zu)2 + D(0,u — 0)2

The contribution toS(0, y) arising from g,(0,y) is zero

in the infinite volume limit wherV,, is irrelevant. There + K (0:0)* + Ky(3,0)* + K.(9,0)].

are, however, short-range positional correlations between (10)

layers arising from the irrelevant variablg,. To low- ] o )

est order in a perturbation expansionWp/T, S(0,y = This energy reduces to the sliding phase elastic energy

na) ~ (V,/2T)'I", wherel has contributions of the form [Eq. (5)] whend is integrated out. It introduces twist and
[ d?re %8=0/2 Thuys, there is exponential decay of bend penetration depths = VK, /D andA, = yK./D
S(0,y) ~ e 1YV/& with &, = a/InQT/V,I). The corre- _characterlzmg length _scale_s over which orientations relax
lation length &, is finite so long asV,l < 2T. Since Inresponse to layer distortions.

¢.(r,0) grows more rapidly withr in the totally de- Dlslocatlon.s are topologlc_al line defects. .They can
coupled phase than in the sliding phageand &, are b_e characterized by a_densﬂy(x) that (_jetermlnes the
smaller in the latter than in the former phase. There aréingular part of the displacement variabigx): V X
further contributions tcS(r, y) that become more impor- Y#(x) = b(x). Using standard techniques [13], we can
tant asl grows larger. Wher, diverges, there will be a calculate dislocation energies in terms of the Fourier
transition to the true columnar crystal phase with a nonvatransformb(q) of b(x):

nishing 2D shear modulus. 1 d’q K(q)q?|by(q)?

The Hamiltonian of Eq. (5) has nonlinear parts arising E= EB 27)? Bg? + K(q)¢*[¢> + (B/D)q?]’
from the nonlinear straim,,. These lead to logarithmic (11)
renormalizations of the coefficien®s K, and K, similar
to those in smectic liquid crystals [10]. We find \(;VheredK((l)cill2 = Kxﬁ,% + Kyq; + quif-b This enerﬁy

/3 epends only on the component ofb, i.e., on the

Ky(@ ~ K'(@) ~ B™'"(@) ~ {In(A/h@]'"*, (9) component ofb normal to the bilayer planes. When
where h(q) = (¢2 + A2¢* + A2q2¢?)"/> with A2 =  there is a single dislocation line parallel to tieaxis
K/B and A2 = K,/B. Preservation of rotational in- With b(x) = de,5(x)5(z), the energy per unit lengta
variance in the calculation of the above renormalizedpredicted by this equation is precisel5p/a, where
elastic constants requires considerable care. Details dfS, is the energy of a two-dimensional edge dislocation.
this calculation will be presented in a separate publicaSince Eq. (11) includes orientational mismatch energy
tion [11]. and we expect no core energy from destruction of

We have thus far ignored dislocations. In two dimen-the mass-density order parameter, we conclude that the
sions, dislocations cause the smectic lattice to melt atnergy for dislocations witlb in the x-z plane is in fact
length scales larger thagg. Dislocations will certainly zero. Thus, it is possible to form dislocation loops with
suppress order in the sliding phase. To obtain quantiarbitrarily long segments in thez plane. (This situation
tative estimates of their effect, we need to calculate thés analogous to that of the “pancake” models of flux
energy per unit length of a dislocation predicted by thédattices in high?,. superconductors [14].) These loops
elastic energy of the sliding phase. We would like to ob-are equivalent to independent 2D dislocations connected
tain not only the elastic energy of a dislocation but alsdby loop segments withh, = 0 passing between DNA
some estimate of its core energy, which can arise eithegalleries. Dislocations will melt the sliding columnar
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phase if these 2D dislocations melt the smectic lattice In this Letter, we have introduced and investigated
in any given gallery. Smectic lattices in galleries abovesome of the properties of a new phase of matter that may
and below a given gallery act as external fields orientingexist in highly anisotropic, rotationally invariant columnar
that gallery along the common direction of the wholesystems such as DNA-cationic-lipid complexes. It would
sample. Thus, each gallery is equivalent to a smectibe interesting to find evidence for this phase in the DNA
in an external aligning field (whose long-wavelengthcomplexes studied in Ref. [3]. The material in these ex-
Hamiltonian is in the universality class of they model periments consisted of micron-size spherulites composed
[13]) that will Kosterlitz-Thouless (KT) melt to a nematic of apparently randomly oriented domains of length of or-
at atemperatur@y. If Ty > T,,thenforT, < T < Ty, der L = 500 A on a side of DNA-lipid complex. The
there lattices have not melte®, is irrelevant, and the x-ray data are consistent with nearly independent har-
sliding columnar phase exists. If, > Ty, then the monic smectic layers with some exponentially attenuated
sliding columnar phase exists only up to length scales opositional correlation between layers. A nonvanishing
order of the KT correlation lengtlfy = dexp(b/IT — V. will lead to exponential correlations between layers
Tw|'/?), whereb is a nonuniversal constant. Beyo#gl,  even in the harmonic regime. 500 A corresponds approxi-
the phase will be a lamellar nematic. The possibility ofmately to the nonlinear 2D length. Thus, it is not clear
T, < Ty will be addressed elsewhere [5]. whether the domain size is set by actual distortions of the
In our discussion to this point, we have assumed thalipid layers or by the breakdown of harmonic behavior at
lipid bilayers define absolutely rigid 2D galleries for the length scales longer thap or /,. It will be necessary to
DNA. In reality, the lipid bilayers fluctuate. To treat these prepare monodomain samples to determine whether there
fluctuations, we should introduce a height variabfér) is a crossover to anharmonic 2D behavior or to that of the
for membranen and ay displacement variable}(r) for 3D sliding phase proposed in this paper.
the DNA lattice in thenth gallery. Clearly the variables  We are grateful to Cyrus Safinya for inspiring our
are coupled, and at long wavelengths, we can assume thayterest in this problem, to John Toner for emphasizing
are locked together. Thus, we can construct a continuurthe importance of dislocation interactions in the sliding
elastic Hamiltonian in terms af(x) = u.(x) andu, (x): phase, and to Robijn Bruinsma and Randy Kamien for
. T s » ) helpful discussions. This work was supported in part by
H,y. = zf d’x[Biuz, + K3 (dyu;)” + K7,(9,0yu;) the NSF under Grant No. DMR94-23114.
Note added.-Results essentially identical to those
+ B'ul, + 2B u_uyy + K}, (07uy)*  reported here were obtained independently by Golubovic
n 2K§Z(8xazuy)2 + K (aguy)z]_ and Golubovicas reported in Ref. [15].
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