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Fluctuations of Quasi-Two-Dimensional Smectics Intercalated between Membranes
in Multilamellar Phases of DNA-Cationic Lipid Complexes
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We theoretically elucidate lamellar phases of DNA-cationic lipid complexes as the very first
realization of adecoupledphase of strongly fluctuating 2D smectic DNA manifolds weakly interacting
across membranes. Because of couplings between adjacent 2D sihectid., planes, recently
observed ordinary 2D smectic behavior of DNA in-plane undulations, with ~ L/ ~ L,,
must cross over, at long scales, to a novel fluctuation behavior, ith~ (InL,)> ~ (INL,)~.
[S0031-9007(98)06039-6]

PACS numbers: 87.22.Bt, 05.40.+j, 61.30.Eb, 82.70.K]

Soft condensed matter systems such as liquid crystalgtically elucidate this novel state of matter as the very
exhibit a variety of striking effects induced by thermal first experimental realization of the so-calléecoupled
fluctuations. A classical example is the well-known (unregistered) phase of strongly fluctuating 2D smectic
Landau-Peierls divergence of smectic-A displacemeninanifolds weakly interacting across lipid membranes [6].
fluctuations which destroys true long-range order in these We address this phase of weakly interacting 2D smec-
phases. For the smectic layer displacementandau and tic layers as a genuine 3D condensed matter system. Its
Peierls found, forthree-dimensionasmectics-A,(u?*) ~  elastic degrees of freedom involve the standard “inthe
In(L), where L is the size of the smectic sample [1]. plane” undulations of 2D smectic layers (DNA molecules),
Thermal fluctuation effects are even more pronounced(x,y, z), along they direction, and, also, out-of-plane dis-
in experimentally rareawo-dimensionabmectics. There, placements along the direction, i(x, y, z), correspond-
smectic layers arénes fluctuating in a plane (e.g., long ing to 3D smectic undulations; see Fig. 1. The decoupled
flexible molecules adsorbed on a smooth surface). For phase elastic free energy density associated with these dis-
sample of 2D smectic liquid crystal in they plane (with  placements is
layers perpendicular to the axis), with sizes., andL,,

Toner and Nelson [2] found Edec(ua h) = Ecom(uv h) + Ebend(u’ h) . (2)
u?) ~ L HereE.., is compressional energy density of the form

* D) 2 (3D) ’

for L, < constX L>lv/2, whereas Ecom(u, h) = Bsm <a_”> + Ea_” ok + Bsm <%>
12 o 3)
for L, > constX Ly . To date, the interest in 2D smec- within harmonic approximationEyenq in (2) is of the form

tics was mostly theoretical [3]. Experimental interest in (3D) (D) _
2D smectics has revived in very recent works [4,5] on Ebend = Evend + Evend + Ebond » 4)
DNA-cationic lipid complexes which are able to carry
(transfect) DNA across cell membranes for gene therapy )
applications. These complexes comprise interacting ten- l h(X’T}Z
sionless 1D DNA chains confined between 2D fluid mem- )7 Y u(xy.z)
branes forming a lamellar, 3D smecticlike phase [4,5]. X
Intercalated DNA strands form a striking first example of 1
Iz

strongly fluctuatiomuasi-2D-smectic phasemly weakly
interacting across lipid membranes, Fig. 1. Experimen-
tally [5], these stacked quasi-2D smectic phases have only
a short-range positional order due to divergent fluctuations
of DNA in-plane displacements similar to undulations of
true 2D smectics in Eq. (1). Here we study fluctuations in
these novel phases that combineoime, many aspects of

2D smectics (short-ranged in-plane positional order due

to strong long length scale undulations of DNA in the FIG. 1. Sketch of DNA/lipid membrane complex with DNA
ntercalated between membranes. Elastic degrees of freedom

x-y planes) and of the conventional 3D smectics (thermalIlre the in-plane undulationgx, y, z) along they axis, and out-

undulations along the direction giving rise to the ex- of-plane undulationgi(x, y,z) along thez axis. DNA chains
perimentally observed Landau-Peierls peaks). We thedblack) are, on average, along thexis.
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where EL2) includes 3D smectic bending terms due toeffective elastic free energy obtained by integrating out-
the membrane curvature elasticity energy anisotropicall@f-plane undulation&(x, y, z) out of the partition function
(biaxially) modified due to the presence of DNA chainsOf Eaec(u, h). This yields the effective free energy density

oriented along the axis, for the in-plane undulations(x, y, z) of the form
(3D) KSD) KSD) BgnD) ou ? Ks(ran) 0%u ?
3D) _ Ay 2732 x 2 () — ou ou
Etend = 5 (ayh) + — (9y0,h) Ee(u) = > oy + > Py
(3D) 5 )
K 2 2
+ %(aih)z (5) + & a_u + & (9_14 , (10)
2 \dzox 2 \ dzdy
Efegfj in (4) is the ordinary 2D smectic bending term, - (2D (D) (3D)

plus irrelevant terms. Here‘jsm) = Bsm — Ez/Bsm .

1 (2D) 2.\2 . int . . .
2Ksm (9yu)”. Finally, Epenq in (4) is an elastic energy By (10) and the equipartition theorem, we obtain

density cost of the form

2 2 kT

m Ko [ 0%u Koy [ 9%u (u@P) = z
it Bax 4+ 2o . q ~(2D) (2D) ’
Ebens = 5 (azax) 2\ azdy ©) Bsm' gy + Ksm gy + q7(Kerqi + Keyg3)

Physically, thek,, term in (6) corresponds to the coupling (11)

of local 2D-smectic tilts= 9,u) between neighboring 2D for the correlation function iy space. A notable feature
smectics. Likewise, th&_, term in (6) describes the cou- of the correlations in (11) is that they diverge along an
pling of local 2D smectic layer densiti¢s- 9,u) between entire line in the g space, namely, along the, axis
neighboring 2D smectics. These two terms, as well as théz, = ¢, = 0). The emergence of such adft axis$ is in

B term in (3), are the major (most relevant) terms describmarked contrast to more common ordered liquid crystalline
ing interactionsbetweemeighboring 2D smectics in this phases, such as smectics [1], for which fluctuations diverge
“decoupled” phase of matter. On the other side, macroenly at asoft pointin ¢ spaceg, = ¢, = g, = 0. This
scopic shear coupling between neighboring 2D smecticgjnusual feature of decoupled phases is directly caused by

of the form their gauge symmetry (8) prohibiting elastic energy costs
w(ou  oh\? such as (7) and (9) which would contribute the tenmg
— =+t =, (7) andK..q* to the denominator of (11). In their absence,
2 \dz dy N

fluctuations diverge along thentire ¢, axis rather than
is forbiddenin the long length scale elastic energyds-  just atq = 0.
coupledphases. Such aterm, though, would appear in the |n DNA-cationic lipid complexes, the presence of the
elastic energy of @olumnarphase which may also oc- soft axis gives rise to an unusual fluctuation behavior
cur in these systems. The presence of a nonz&roro-  discussed hereafter. Experimentally [5], these stacked
scopicshear modulug. stabilizes long-range positional quasi-2D smectic phases exhibit only a short-range in-
order. This is in clear contradiction to the experimentalplane positional order due to divergent fluctuations of DNA
observations on DNA-cationic lipid lamellar phases [4,5],in-plane displacements(x, y, z) similar to those of true
supporting our realization that DNA-cationic lipid lamellar 2D smectics in Eq. (1). Such a true 2D behavior would
phase is, in fact, a decoupled phase. The absence of terrespond to the limit of vanishing interplane coupling
macroscopic shear modulus is related to a strikowal  constantsk,, andk, in Egs. (10) and (11). By (11), we
(gauge) translational invariance of the decoupled phase gind that these couplings between neighboring 2D smectics
the form do not restore DNA positional order, as DNA thermal
u(x,y,z) — ulx,y,z) + f(z), (8) in-plane undylations;uz} = [ (lu(q)l?) still diverge with
increasing sized., and L, of the 2D smectic planes.

where f(z) is anarbitrary functlc_)n ofz [7]. This local . However, the interplane couplings turn out to qualitatively
symmetry reflects the fact that, in the decoupled (unregis,

tered) phase, 2D smectics can be continuoirividually affect the physics at long scales. l%o, the experimentally
y . . 2 — — .

(“locally”) translated (slid) along the direction with no ogservedtbehag |orE[5], ;‘”tk‘” )~ Ly | th [?S Itn true h

free energy costs. This local symmetry prohibits not only2 smectics [2], Eq. (1)] occurs only at short enoug

; : les. At long enough scales, the interplane couplings
the shear energy cost (7) in the compressional energy ( a i . i
but also energy density costs of the form %sz andK,, dominate. There we predict, by applying our

5 \2 Eq. (11), an unusual, more isotropic fluctuation behavior,
Ke (a_Z) (9) in which (1) grows as thesquare of the logarithnof the
2 \az? )’ system sizes,
which one may naively include along with other similar w?) ~ (InL,)?%, (12a)
terms in Eq. (6). The absence of this term is crucialf I <L d
for an uncommon fluctuation behavior we find in the'®" == v an
following. Its appearance is best seen by considering the (u?) ~ (InLy)?, (12b)
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for Ly < L,. On the other hand, fluctuations of the scopicsine-Gordon (SG) shear coupling, of the form
ordinary (out-of-plane) 3D-smectic-like undulatioki?), ’
grow just as thdirst power of the logarithm of the system Esg = —A Cos<—7T Dzu> ) (15)
size, i.e., in the standard Landau-Peierls fashion. Experi- Iy

mentally measured correlations of the in-plane modulateg;q o D.u = u(x.y.z + I.) — u(x.y,z) + L.d,h; as in

. L2
density p(x,y,z) ~ Re exgi7-[y — u(x,y,2)]} [0b-  Fig. 1,1, is the equilibrium distance between 2D-smectic
tained from the “DNA peak” [5] of|p(q)|*) atg, = 21—” planes (at: = nl;), wheread, is the 2D smectic repeat

g. = q. = 0] must be short ranged due to the divergentdistance._ This cogpling is irrelevant dbng sca_les,
behavior of in-plane undulations in Eq. (12). Within due to divergence in Eq. (14). Thus, 2D smectics see

the harmonic theoryK (x,v,z) = {p(x,v,2)p(0,0,0)) ~  their neighbors as smooth anisotropic 2D manifolds, and
eXF[—% ZI—T)ZC(X,)),Z)], with macrqscopicshear modulus;{ in Eq. _(7)] is zero. How-
L ) ever, it would be wrong to ignorEsg is one is interested,
C(r) = {[ulx,y,2) = u(0,0,01) e.g., in shortrange correlations of the in-plane modu-

lated density p(x,y,z) ~ Re eX[:{izl—zT[y — ulx,y,2)]}
betweendifferent 2D smectic planes in the stack. Such
short-range correlations generallyanish with van-
ishing strengthA of the microscopic SG shear term
) in Eg. (15) [i.e., forA — 0, the correlation function
X K(x,y,z) = {p(x,v,2)p(0,0,0)) vanishes forz # 0].
Kx,y.z2 =0~ ex;{—n<ln Z) } (13a) By perturbatifle (cum/lDJIant) expansion in powers (Jf the
shear couplingA in (15) we compute these interplane

3
=2 [ S a1 - exptian)]

and (lu(q)|?) as in (11). For then-plane correlations
(z = 0) we thus predict, in accord with Eq. (12),

for x/y > (Ku/K,)'?, and x > xmn = L(Kin correlations [8]. For example, for the nearest-neighbor
K..)'/?, whereas smectic planes, we find(x = 0,y = 0,z = */,) ~ A,
n y\2 and for the next-nearest-neighbor planes, we find
K(x,y,z =0) ~ ex;{—;(ln y_> } (13b) K(x =0,y =0,z = *2[,) ~ A%, etc. Furthermore,

though irrelevant, sine-Gordon shear coupling (15) renor-
for x/y < (K./K,)"?, and y > ymin = xmn/A,  malizes (stiffens) the elastic constarits, and K., [8].
with A = (K /B&)2. In Eq. (13), 7 = ksT/ T(; grdg;?z, this ren?r:mazi{zationis cgth% f]grszx ~
l}g(szquﬁlD))l/z, Xy ~ A(sz/sz)l/2, and y. ~ x2/A. Jd&®rx?Ksg(r),  wi sG(r) = (Esg(0)Esg(r))E,. -

Correlations in Egs. (13a) and (13b) are the most sig!3y (11), we findKsq(r) ~ 8(z)x  ~ 8(z)y"*, with a

: ~ ~73/2
nificant result of this Letter. They have an uncommonnony(g%ersal expgnenb. For exa}mple,w 7,72 K
power-law-like decay, withscale dependenexponents [OF Bsm 3> K., /15; herem ~ kT is the materials con-
changing slowly as logarithm of the length scale. ForStant entering Eq. (13). AAKZ{‘/ZmUSt. remain finite, it
example, by (132)K(x,y = 0,z = 0) ~ x~ 7%, with must be tha_ta_) >4 (i.e.,n >2Y%/7)in t.he Qecoupled
n(x) = nIn(x) + const. This novel behavior occurs p_hase stability range. _Fom <4, arbitrarily weak

for x > xpin Or y > ymin, at scales shorter than a sine-Gordon shear coupling (15) is relevant and converts
(large) topological defect length scalé.s discussed the decoupled phase into the columnar p_ha_lse (with a
in the following. On the other side, at length scales"ONZero shear modulys ~ A). Asw ~ kT, itis clear
shorter than(xmin, ymin), We find the ordinary 2D smectic that the decoupled phaseasly entropically favored over
correlations [2] already observed in Ref. [5]. Another th€ columnar phase.

experimentally interesting issue is the modulated density T0Pological defects, such as DNA hairpin tums, soften
correlations betweedlifferent 2D smectic planes in the elastic constants of the decoupled phase. To the lowest

stack, K(x,y,z # 0). Within the continuum elastic O'der in hairpin twms fugacitys, = exfl —Ecore /kpT],
theory, we findvanishingk (x,y,z # 0). This is related this softening is~—zi, [ d*r r>exd—U(r)/ksT], with
to a bizarre divergence o€lative in-plane displacements U(r) = wiksT In(r) (the in-plain hairpin turn interaction
between thenearest-neighboD smectics, induced by potential), andw; = 2/w for B > K /12 [8]. This
the presence of the soft axis in (11), softening is finite (i.e., the defects are irrelevant) only if
_ 2\ - w; > 4. However, asv > 4 in the decoupled phase sta-
(Qutr,y,2 + &) = ulx,y,2)1) ~ In(Le) ~ In(Ly). bility range, one hags = 2/w < 1/2 there. Thus, hair-
(14) pin turns arerelevantand turn the decoupled phase into
So, C(x =0,y =0,z = [,) = o, and, thus,K(x = 0, anematiclikephase (witheasyx-y plane) at scales longer
y =0,z =1.) = 0 in thermodynamic limit. However, than the defect scalé.r ~ (znp) >/“~ ). For example,
the presence of the interplane modulated density correldor w; << 1, &ger ~ (znp) /> ~ eXfEcore/2ksT]. For
tions has been evidenced in recent experiments [5]. Herie system of Ref. [5], we estimate,../kzT = 30 [8].
we rationalize these correlations as an effect ofiiaro-  Thus, (i) £4r IS huge there, and there is a broad range
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of length scales for observing the defect-free correlations[1] See P.G. de Gennes and J. Prdste Physics of Liquid

in Eqg. (13); (ii) a more isotropic liquidlike state of DNA Crystals(Clarendon Press, Oxford, 1993).

chains, produced by disordering the nematiclike phase ori-[2] J. Toner and D.R. Nelson, Phys. Rev2B, 316 (1981).

entationally within the easy-y plane, seems unlikely to  [3] L. Golubovicand Z.-G. Wang, Phys. Rev. Lei9, 2535

occur inequilibriumin the system of Ref. [5] (unless the (1992); Phys. Rev. B9, 2567 (1994). ,

interplane couplings can be made exceedingly small).  [4] J- Radler, I. Koltover, T. Salditt, and C.R. Safinya,
Thus far, for simplicity, we ignored chirality effects of Science275 810 (1997).

. - 5] T. Salditt, I. Koltover, J. Radler, and C.R. Safinya, Phys.
DNA. They are presumably weak in the experimental re- 5] Rev. Leltt.79, 258% (1997). ny y

alization [4,5]. Still, even aveakchirality may modify  [g] Unregistered states may occur also in lamellar phases of
the structure of the decoupled phase in these systems: It * tethered membranes. See J. Toner, Phys. Rev. G&tt.

contributes the terms of the form gcpira10.0,u to the 1741 (1990); L. Golubovic Phys. Rev. Lett.65 1963
elastic energy of the decoupled phase (10). This chiral  (1990); L. Golubovicand T.C. Lubensky, Phys. Rev. A
term twists 2D smectic planes around thexis and turns 43, 6793 (1991).

the decoupled phase into a “tilt-grain-boundary” (TGB) [7] We note that thdull nonlinear elastic energy functional of
phase (like that discussed in [9]) with the “cholesteric” the decoupled phase must be invariant with respect to the
pitch period Apicch = 27K /gchira1 @long thez direc- local continuoustranslational invariance

tion. This twist, however, does not qualitatively affect

the form of the in-plane correlations. They are still ulx,y,z) = ulx,y + f(2),2) + f(2),

as in Eq. (13) in a suitably twisted coordin_ate system, h(x,y,2) — h(x,y + f(2),2),

with x-y planes locally rotated around theaxis by the

angle= 2mz/Apich = z&chiral/Kzx. Interestingly,arbi- wheref(z) is an arbitrary function of (here we employed

trarily weak g.hira1 can transform the decoupled phase Lagrangian elasticity picture). This reduces, for small
into a TGB phase, essentially because 2D smectics see strains, d,u,d,h < 1, to the harmonic approximation

their neighbors as smooth 2D manifolds. This peculiar- ~ 9auge invariance in Eq. (8). On the other side, in a
ity is in marked contrast to the behavior of the columnar ~ ¢olumnar phase, the above continuous local symmetry

: ; £ is broken down to discrete local symmetry for which
2222: dvghallcf?nﬁ:chs;fgégsvgﬁ)et?ge] TGB phase onlycffiral local translationf(z) = I,m(z). Herem(z) is an arbitrary
. . o integer valued function of = multiple of /,.
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