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We study the influence of a strong imaginary vector potential on the quantum mechanics of par
confined to a two-dimensional plane and propagating in a random impurity potential. We show
the wave functions of the non-Hermitian operator can be obtained as the solution to a two-dimens
Dirac equation in the presence of a random gauge field. Consequences for the localization prop
and the critical nature of the states are discussed. [S0031-9007(98)05968-7]
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The field of non-Hermitian quantum mechanics has
tracted great interest recently both in its connection
anomalous diffusion in random media [1], as well as
the statistical mechanics of flux lines in superconduct
[2]. At the same time, motivated in part by the conne
tion to properties of the integer quantum Hall transitio
and gapless superconductors detailed investigations h
been made into the critical properties of Dirac fermio
coupled to random gauge fields [3–11]. The aim of th
Letter is to identify a connection between these proble
which explains some of the unusual phenomena rece
reported in the behavior of two-dimensional non-Hermiti
random operators [2]. This correspondence is related
a chiral symmetryof effective Hamiltonians commonly
used in the analysis of problems in non-Hermitian quant
mechanics.

The two-dimensional Hamiltonian we consider d
scribes a particle propagating in a random scalar impu
potential V and subject to a uniform imaginary vecto
potential,ih,

Ĥ 
1

2m
s p̂ 1 ihd2 1 V srd . (1)

The scalar potentialV is assumed to be real and draw
from some random distribution,PfV g, which, for now, is
left unspecified. Related problems have been recorde
a variety of physical situations ranging from the study
reaction diffusion phenomena in biological systems [1
to advective diffusion in random media [1,13,14] and t
study of fluctuating vortex lines in superconductors w
columnar defects [2].

Remarkably, in contrast to properties of the Hermiti
operator (i.e., one in which the vector potential is rea
numerical studies [2] suggest localization properties ofĤ
depend sensitively on the relative strength ofh. While, in
dimensionsd # 2, all wave functions of the Hermitian op
erator are believed to be localized [15], numerical eviden
suggests that application of a sufficiently strong vector p
tentialh induces a delocalization transition of states of t
non-Hermitian operator. In contrast to the situation in 1
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[2,16], the mechanism and stability of the delocalizatio
transition is not yet well understood.

Recent analytical studies have focused on the spec
properties of the non-Hermitian Hamiltonian [17]. Trea
ing the vector potential as a weak perturbation of t
random Hamiltonian, impurity averaged properties of th
Green function have been cast in the form of a fun
tional field integral involving a supersymmetric nonlinea
s model. While capturinguniversalfeatures of the com-
plex spectrum ofĤ, evidence for delocalization of state
was not sought. By contrast, in the present approach,
will impose a strong imaginary vector potential, and tre
the random potential as a perturbation (a regime explo
in 1D by Feinberg and Zee [16]). By doing so we wi
reveal an explicit connection between the Hamiltonian
Eq. (1) and the problem of Dirac fermions propagating
a random gauge field. In particular, we will find a regim
of weak disorder in which it is possible to construct e
plicitly eigenfunctions of the non-Hermitian Hamiltonian
Ĥ for individual realizations of the disorder.

In the absence of the impurity potential, the eigenfun
tions of Ĥ are plane waves with complex eigenvalue
z0s pd  s p2 2 h2dy2m 1 ip ? hym. Since the Hamil-
tonian is realsĤ  Ĥpd, eigenvalues occur in complex
conjugate pairs, a property maintained in the presence
the random potential. In the infinite system, the spectru
forms a dense support occupying the region of the co
plex planejIm zj #

p
2m Rez 1 jhj2 jhjym. The two-

dimensional density of states (DOS) takes the form

n0szd 
n0

p

m
fs2m Rez 1 h2dh2 2 m2sIm zd2g1y2 ,

(2)
where n0 denotes the constant DOS of the Hermitia
Hamiltonian.

Concerned with impurity averaged spectral properti
of the Hamiltonian, we begin by defining the Gree
function Ĝszd  sz 2 Ĥd21 where z denotes the com-
plex argument. Usingnszd ; s1ypVdtr ≠zp Gszd, where
© 1998 The American Physical Society 4257
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V represents the volume,Gszd is shown to be nonanalytic
everywhere the DOS is nonvanishing [14,18].

To properly account for nonanalytic properties o
the impurity averaged Green function, previous studi
[14,17,18] have emphasized the need to express
Green function through a Hamiltonian which is explicitl
Hermitian. This is achieved by constructing a matr
Hamiltonian with the2 3 2 block structure

Ĥ 

√
0 Ĥ 2 z

Ĥy 2 zp 0

!
. (3)

In this representation, the Green function of the no
Hermitian operator is expressed as the off-diagonal e
ment of the matrix Green function,Ĝszd  limh!0 Ĝ21szd,
where, definingh  01, Ĝ  sih 2 Ĥ d21. Zero en-
ergy eigenstate of the matrix Hamiltonian̂H yield eigen-
states of the non-Hermitian Hamiltonian̂H.

Defining Pauli matrices$s ss0  'd which operate in
the 2 3 2 space, thechiral symmetry of the matrix
Hamiltonian,Ĥ  2s3Ĥ s3, implies that eigenvalues,
ei of Ĥ appear in pairs of opposite sign. Moreover, an
such pair of eigenstates obeysjc1ei l  s3jc2ei l.

The spectrum ofĤ depends sensitively on the strengt
of the vector potentialh. In the absence of the random
potential, the dispersion relation takes the form

E0s pd  6jz0s pd 2 zj , (4)

invariant under reflection about the axis parallel toh.
Thus, in contrast to a Hamiltonian involving a real vecto
potential, where the spectrum is described by a sim
shift of the Fermi sphere, the continuous degeneracy
the zero eigenvalues (the poles of the Green function)
lifted. Instead, settingh ; he2, zero energy states exis
at only two discrete pointsp

sad
0 , a  1, 2 [19] (see Fig. 1).

If the impurity potential is strong (i.e.,l ø h̄yh,
where l denotes the transport mean free path asso
ated with the random impurity potentialV ), unper-
turbed states of the clean system are strongly mix
by the disorder (see Fig. 1). In this limit, the pol
structure of the impurity averaged Green functionĜ is
smeared out. Correspondingly, statistical properties ofĤ

FIG. 1. Dispersion relationE0s pd (normalized byy1h) in the
vicinity of zero energy shown as a function ofp with h 
hê2, Im z  0, and my1y2h  10. Note that the minimum
scattering amplitude required to smear out the points
degeneracy is given bȳhyt , hy1.
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are largely insensitive to the zero eigenvalues ofE0s pd.
In this limit, one can expect the transport properties of t
non-Hermitian operator to reflect those of the Hermiti
counterpart. Conversely, if the impurity potential is wea
sl ¿ h̄yhd the pole structure of the average Green fun
tion is dominated by the nature of the spectrum in t
vicinity of the zeros,p

sad
0 .

Focusing on the limit of weak disorder

Re z ¿
h2

2m
¿

h̄
t

, Im z , (5)

wheret represents the corresponding mean free scatte
time of the random potential, a linearization of the spe
trum in the vicinity of the two zero eigenvalues separa
the spectrum into two branches. Treating the random
tential and Imz as weak perturbations, and performing
gradient expansion in

p̂sad  p
sad
0 1 s21dap̂1e1 1 p̂2e2 , (6)

wherep
sad
0  s21da21my1e1, my1  s2m Rez 1 h2d1y2,

and my2  h, the low energy, long-wavelength expan
sion of the (unperturbed) Hamiltonian around the Fer
pointsp

sad
0 generates theanisotropicDirac operator

Ĥ
s0d

D  2t0 ≠ fs1y1s p̂ ? e1d 1 s2y2s p̂ ? e2dg . (7)

Here we have introduced an additional set of Pauli ma
ces, $tst0  'd, that index the block structure associate
with the reflection symmetry. The existence of two d
generate zero energy eigenstates ofĤ

s0d
D conspires with

the exact chiral symmetry to yield an anisotropic Loren
symmetry.

Being generally nonsymmetric under reflection, matr
elements of the random impurity potential violate th
reflection symmetry. Accounting for matrix elemen
which scatter across the Fermi surface (i.e., between
Dirac points) as well as within each subspace, the gen
Hamiltonian takes the form

ĤD  Ĥ
s0d

D 1

3X
n0

tn ≠ s1Vn 1 t0 ≠ s2 Im z , (8)

where the impurity potentials,Vnsrd, are real random
functions with Fourier componentsX

n

Ṽnsq dtn



√
Ṽ s2q1, q2d Ṽ sq1 2 2my1, q2d

Ṽ ps q1 2 2my1, q2d Ṽ s1q1, q2d

!
.

Equations (7) and (8) represent an important intermed
result of this Letter: First, the low energy sector of th
original Hermitian Hamiltonian (3) has been described
terms of the stochastic Dirac Hamiltonian,̂HD . Second,
ĤD possesses the chiral symmetrys3ĤDs3  2ĤD ,
a direct consequence of the chirality of the auxilia
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operator (3). The significance of the second observa
lies in the fact that the behavior of chiral Dirac Hamilton
ans can be analyzed forindividual realizations of the dis-
order: As we shall see, it is possible to construct expli
solutions for the zero energy eigenfunctionjCDl of ĤD .
From these the eigenfunctionsjCzl sjCzp ld of the original
non-Hermitian operator̂H sĤyd can then be obtained as

jCzl ø
µ

0
1

∂
P̂yjCDl, jCzpl ø

µ
1

0

∂
P̂yjCDl ,

(9)

for anarbitrary eigenvaluez provided Eq. (5) holds. Here
the matrix structure refers to thes space, and the opera
tor P̂ accounts for the fact that in order to obtain eige
functions of the full problem, the eigenstates of the lo
energy expansion (8) have to be “boosted” to the Fe
pointsp

sad
0 , a  1, 2, respectively [20].

We next turn to the explicit construction of the wav
functionCDsrd. To this end we first remove the anisotrop
of the Hamiltonian (7) by rescaling the coordinates acco
ing torm  symyydxm, y 

p
y1y2. As a resultĤD takes

the canonical form

ĤD 
2X

m1

sm ≠ sit0≠m 1 Amd ,

where h̄  y  1 and the two componentss m  1, 2d,
Am  Am 1 Bm 1 Cm are given by

Am  dm1t0V0, Bm  dm1

3X
n1

tnVn ,

Cm  dm2t0 Im z .

The disorder inĤD appears in the form of a minima
coupling to a generally non-Abelian vector potential (i.
Bm fi 0). It is thus natural to seek a gauge transformat
that removes the stochastic components of the Hamilt
ian. Indeed, although the potentialsAm andBm are not in
general of pure gauge type, the nongauge components
be accounted for by extending the concept of gauge tra
formations so as to include “axial” transformations.

Focusing on the Abelian sector first, we decompo
Am into a transverse (axial gauge) and a longitudin
(pure gauge) component:Am  emn≠nx' 1 ≠mxk, re-
spectively [21]. It is then straightforward to verify that

CDsxd  eis0x2 Im zeis0xksxdes3x'sxd
µ

Q1

Q2

∂
(10)

represents a solution ofĤDCD  0 for Bm  0
[22]. Here Q6 [ C and the gauge transformatio
expsis0x2 Im zd has been used to dispose of the sm
imaginary component of the eigenvaluez in the non-
Hermitian problem. This contribution can be absorb
into the “boost” component of̂P (9) [23].

The treatment of the non-Abelian componentsBm is
conceptually similar but—due to their noncommutativi
in t space—technically more involved. Referring
Ref. [24] for details, we merely state that, in the presen
on
-

it

-
w

i

y
d-

.,
n
n-

can
ns-

se
al

ll

d

y

ce

of finite Bm, Eq. (10) generalizes to

CDsxd  eis0x2 Im zeis0xksxdUsxdes3x'sxdes3
$jsxd? $t

3

µ
fsx1 1 ix2dQ1

gsx1 2 ix2dQ2

∂
. (11)

Here Usxd [ SUs2d plays the role of the Abelian gauge
transformation expfis0xksxdg, whereas the vector field$j
plays the role of the Abelian axial componentx' and
obeys an analogous but more complicated equation [2
Finally, f and g represent analytic functions which ar
fixed by the boundary conditions (see below).

Equation (11) represents a nonperturbative solution
the zero energy Dirac equation foranygiven realization of
the disorder. It, therefore, allows the construction of th
eigenfunctions of the non-Hermitian Hamiltonian accor
ing to Eq. (9). The most important properties ofCD are
(a) that the generalized gauge factors depend in a nonlo
way on the spatial distribution of the disorder potential a
(b) that the axial gauge factors lead to an exponential d
order dependent amplification of themodulusof the wave
function,C

y
DCD ; jCD j2  Qye2s3fx'1 $j? $tgQ.

What can be said about the asymptotic behavior
the wave functionCD and, in particular, about its lo-
calization properties? To address this question we c
sider the impurity averaged two-point correlation functio
Csr1 2 r2d ; jCDsr1dj2q1 jCDsr2dj2q2 . From the struc-
ture of the solution we infer thatC  FA 3 FB factor-
izes into Abelian and non-Abelian components both
which can be straightforwardly extracted from Eq. (11
To say more, it is necessary to specify both the form
the random potential distribution function and the topo
ogy of the system. Here we focus on the thermodynam
limit with Gaussian white-noise distributed disorder,PfV g,
of uniform variance. Under these circumstances, ta
ing f  g  1 in Eq. (11) represents the only admissib
choice [25].

Defining gA  s2 3 2pntd21 as the variance of
the coarse-grained Gaussian distribution forAm [i.e.,
x'sxdx's yd ~ 2gA ln jx 2 yjg, and focusing, for sim-
plicity, on the caseq1  q2  1, the impurity average
yields a strongly anisotropicsy1 ¿ y2d algebraicdecay

FAsrd ~ jsy1r1d2 1 sy2r2d2j22gAyp , (12)

implying that eigenstates of the non-Hermitian operatorĤ
arecritical [7,8]. Moreover, since the algebraic decay o
FA is not influenced by Imz, we infer that the critical
nature of the wave functions is also insensitive to Imz.

As for the non-Abelian sector, the nontrivial relationsh
between the fieldsBm and the effective “gauge” field,
$j makes the calculation of the correlation functionFB

more involved (cf. Refs. [5–7,10]). However, althoug
at present no rigorous statements on the long dista
behavior of the correlation functionFB can be made in
general, insight can be drawn from the following fact
(a) The theory possesses a strong coupling fixed po
4259
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described by the Wess-Zumino-Novikov-Witten theo
SU24s2d [5,7] (corresponding to an infinite strength of th
non-Abelian components of the disorder potential), a
(b) in this limit [7,10], the correlation function

FBsrd ~ jsy1r1d2 1 sy2r2d2j21y2 (13)

is again algebraic. Note that the scaling exponent
Eq. (13) is fixed solely by the number of nodes (two
in Eq. (4). Therefore, given that the wave functions a
critical in the strongly disordered limit, it seems highl
plausible that they remain critical in general.

In this Letter, we have studied the spectral properti
of the two-dimensional random Schrödinger operator
the presence of a uniform imaginary vector potent
h. Mapping it to a Hermitian Hamiltonian with chiral
symmetry, a gradient expansion identifies properties
the non-Hermitian operator with those of a stochas
Dirac HamiltonianĤD . This correspondence allows fo
the explicit construction of eigenfunctions of the non
Hermitian Hamiltonian for individual realizations of the
disorder. In the thermodynamic limit, the wave function
were shown to be delocalized alongboth the directions
parallelandperpendicular toh.

Finally, we note that the main characteristics of the wa
function (11), long-ranged disorder dependence encod
in the “gauge fields,” and exponential amplification of th
wave function modulus can manifest themselves in mo
complex phenomena than that discussed in this Let
First, one can envisage systems with nontrivial topo
ogy and/or stochastic potentials with superimposed regu
structures (e.g., spatially nonuniform distribution func
tions). In such cases the behavior of the wave functio
may changequalitatively (e.g., to localization). Second
we note that the sensitivity of the modulus to disorder r
sults instrong statistical fluctuationsof the wave functions
which are large in comparison to the average. In partic
lar, correlation functions of the momentsC acquire scaling
exponents with nonlinear dependence inqi , a characteris-
tic related to multifractality.
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