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We study the influence of a strong imaginary vector potential on the quantum mechanics of particles
confined to a two-dimensional plane and propagating in a random impurity potential. We show that
the wave functions of the non-Hermitian operator can be obtained as the solution to a two-dimensional
Dirac equation in the presence of a random gauge field. Consequences for the localization properties
and the critical nature of the states are discussed. [S0031-9007(98)05968-7]
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The field of non-Hermitian quantum mechanics has at{2,16], the mechanism and stability of the delocalization
tracted great interest recently both in its connection tdransition is not yet well understood.
anomalous diffusion in random media [1], as well as to Recent analytical studies have focused on the spectral
the statistical mechanics of flux lines in superconductorproperties of the non-Hermitian Hamiltonian [17]. Treat-
[2]. At the same time, motivated in part by the connec-ing the vector potential as a weak perturbation of the
tion to properties of the integer quantum Hall transitionrandom Hamiltonian, impurity averaged properties of the
and gapless superconductors detailed investigations ha@reen function have been cast in the form of a func-
been made into the critical properties of Dirac fermionstional field integral involving a supersymmetric nonlinear
coupled to random gauge fields [3—11]. The aim of thisoc model. While capturinginiversalfeatures of the com-
Letter is to identify a connection between these problemslex spectrum ofd, evidence for delocalization of states
which explains some of the unusual phenomena recentlyas not sought. By contrast, in the present approach, we
reported in the behavior of two-dimensional non-Hermitianwill impose a strong imaginary vector potential, and treat
random operators [2]. This correspondence is related tthe random potential as a perturbation (a regime explored
a chiral symmetryof effective Hamiltonians commonly in 1D by Feinberg and Zee [16]). By doing so we will
used in the analysis of problems in non-Hermitian quantuneveal an explicit connection between the Hamiltonian in
mechanics. Eqg. (1) and the problem of Dirac fermions propagating in
The two-dimensional Hamiltonian we consider de-arandom gauge field. In particular, we will find a regime
scribes a particle propagating in a random scalar impuritypf weak disorder in which it is possible to construct ex-
potential V and subject to a uniform imaginary vector plicitly eigenfunctions of the non-Hermitian Hamiltonian
potential,ih, H for individual realizations of the disorder.
. | P In the absence of the impurity potential, the eigenfunc-
H=——(p+ih)”+ V(). (1) tions of A are plzane waves with complex eigenvalues,
o = - +ip - . Si il-
The scalar potentiaV is assumed to be real and drawn fgg?a)n is( feal(ﬁh=)/ 12,;:) eilgen\%ﬁies Solggjrtrne cl-é?nngllex

rr?tm Some.;?‘gdog‘ ?":'trébunob'f[v]’ r\]Nh'Chb’ for now, gs d conjugate pairs, a property maintained in the presence of
et unspeciiied. Related problems have been recorded o ranqom potential. In the infinite system, the spectrum

a var.iety O.f physical situations 'ranging from the study Offorms a dense support occupying the region of the com-
reaction diffusion phenomena in biological systems [12] 5
X e L : plex plane|lm z| = +/2m Rez + |h|* |h|/m. The two-
to advective diffusion in random media [1,13,14] and thedimensional density of states (DOS) takes the form
study of fluctuating vortex lines in superconductors with y
columnar defects [2]. @ ¥ m
Remarkably, in contrast to properties of the Hermitian »o(z) = — ,
operator (i.e., one in which the vector potential is real), m [2m Rez + h)h? — m2(Im 2)2]'/2
numerical studies [2] suggest localization propertie&lof (2)
depend sensitively on the relative strengtthofWhile, in  where vy denotes the constant DOS of the Hermitian
dimensions! = 2, all wave functions of the Hermitian op- Hamiltonian.
erator are believed to be localized [15], numerical evidence Concerned with impurity averaged spectral properties
suggests that application of a sufficiently strong vector poef the Hamiltonian, we begin by defining the Green
tentialh induces a delocalization transition of states of thefunction G(z) = (z — H)~! where z denotes the com-
non-Hermitian operator. In contrast to the situation in 1Dplex argument. Using'(z) = (1/7Q)tr 9,-G(z), where
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Q) represents the volumeé;(z) is shown to be nonanalytic
everywhere the DOS is nonvanishing [14,18].
To properly account for nonanalytic properties of

are largely insensitive to the zero eigenvaluesEgfp).
In this limit, one can expect the transport properties of the
non-Hermitian operator to reflect those of the Hermitian

the impurity averaged Green function, previous studiesounterpart. Conversely, if the impurity potential is weak
[14,17,18] have emphasized the need to express thé > 7/h) the pole structure of the average Green func-

Green function through a Hamiltonian which is explicitly
Hermitian. This is achieved by constructing a matrix
Hamiltonian with the2 X 2 block structure

(10 ")

A

H = ®3)

At — ¢ 0

tion is dominated by the nature of the spectrum in the
vicinity of the zerosp,".
Focusing on the limit of weak disorder

2

h h
Rez> — > —,Imz,
2m T

(5)

In this representation, the Green function of the nonwherer represents the corresponding mean free scattering
Hermitian operator is expressed as the off-diagonal eletime of the random potential, a linearization of the spec-

ment of the matrix Green tunctioﬁ?,(z) = lim,_ G (2),
where, definingn = 0%,G = (in — H)_!. Zero en-
ergy eigenstate of the matrix Hamiltonigd yield eigen-
states of the non-Hermitian Hamiltonidh

Defining Pauli matricesr (oo = 1) which operate in
the 2 X 2 space, thechiral symmetry of the matrix
Hamiltonian, H = —o3H o3, implies that eigenvalues,
€; of H appear in pairs of opposite sign. Moreover, any
such pair of eigenstates obelys, ) = o3l—e.).

The spectrum ofH depends sensitively on the strength
of the vector potentiah. In the absence of the random
potential, the dispersion relation takes the form

Eo(p) = *lzo(p) — zl, (4)

invariant under reflection about the axis parallel ko
Thus, in contrast to a Hamiltonian involving a real vector

trum in the vicinity of the two zero eigenvalues separates
the spectrum into two branches. Treating the random po-
tential and Imz as weak perturbations, and performing a

gradient expansion in

5 (@)

(@) . .
P =po + (—1)pre; + paes,

(6)
Wherep(()“) = (=1)*"'muv ey, mv; = 2m Rez + h?)'/2,
and mv, = h, the low energy, long-wavelength expan-
sion of tr}e (unperturbed) Hamiltonian around the Fermi
pointsp,” generates thanisotropicDirac operator

" (0)
D (1)
Here we have introduced an additional set of Pauli matri-
ces,7(rg = 1), that index the block structure associated
with the reflection symmetry. The existence of two de-

=70 ® [o1vi(P - 1) + orva(P - €2)].

shift of the Fermi sphere, the continuous degeneracy
the zero eigenvalues (the poles of the Green function) i
lifted. Instead, settindh = he,, zero energy states exist
at onlytwo discrete pointqu()“), a = 1,2 [19] (see Fig. 1).

If the impurity potential is strong (i.e.] < ii/h,
where [ denotes the transport mean free path assoc
ated with the random impurity potentia¥), unper-

turbed states of the clean system are strongly mixeg

by the disorder (see Fig. 1). In this limit, the pole
structure of the impurity averaged Green functignis
smeared out. Correspondingly, statistical propertie®{of

p,/mv,

p,/mv,

FIG. 1. Dispersion relatioik,(p) (normalized byv;4) in the
vicinity of zero energy shown as a function pf with h =
hé,, Imz = 0, and mv,/2h = 10. Note that the minimum
scattering amplitude required to smear out the points o
degeneracy is given b§/7 ~ hv,.
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e exact chiral symmetry to yield an anisotropic Lorentz
Symmetry.

Being generally nonsymmetric under reflection, matrix
elements of the random impurity potential violate the
reflection symmetry. Accounting for matrix elements
Wwhich scatter across the Fermi surface (i.e., between the
Dirac points) as well as within each subspace, the general
amiltonian takes the form

3
l()0)+ ZT,,@o'lV,, +79® 0y Imz, (8)

r=0

5:[D=

where the impurity potentialsy, (r), are real random
functions with Fourier components

> Vua)r,
V(g1 — 2mvy, q2)

( V(+q1,q2) )

Equations (7) and (8) represent an important intermediate
result of this Letter: First, the low energy sector of the
original Hermitian Hamiltonian (3) has been described in
terms of the stochastic Dirac Hamiltonia®{p. Second,

V(‘leéh)
V*(q1 — 2mvy1, q2)

{Hp possesses the chiral symmewryHposz = —Hp,

a direct consequence of the chirality of the auxiliary



VOLUME 80, NUMBER 19 PHYSICAL REV

IEW LETTERS 11 My 1998

operator (3). The significance of the second observatio
lies in the fact that the behavior of chiral Dirac Hamiltoni-
ans can be analyzed fordividual realizations of the dis-
order. As we shall see, it is possible to construct explicit
solutions for the zero energy eigenfunctiphy ) of Hp.
From these the eigenfunctiot¥,) (| ¥,-)) of the original
non-Hermitian operatafl (1) can then be obtained as

o= (O Jites), e = (1 it
©)

for anarbitrary eigenvalue; provided Eqg. (5) holds. Here
the matrix structure refers to the space, and the opera-

of finite B, Eq. (10) generalizes to
‘I’D(X) — eiﬂ'oxz Imzeia'u,\/u(x)U(X)e(r3)m(x)ezr3é(x)-?

% <f(x1 + ixp)0 )

glx1 — ixp)®_
Here U(x) € SU(2) plays the role of the Abelian gauge
transformation exXfp o x| (x)], whereas the vector field
plays the role of the Abelian axial component and
obeys an analogous but more complicated equation [24].
Finally, f and g represent analytic functions which are
fixed by the boundary conditions (see below).

(11)

tor TT accounts for the fact that in order to obtain eigen- EQuation (11) represents a nonperturbative solution to
functions of the full problem, the eigenstates of the lowthe Z€ro energy Dirac equation fanygiven realization of

energy expansion (8) have to be “boosted” to the Fermﬁhe disorder. It, therefore, allows the construction of the

pOintSp(()a),a — 1,2, respectively [20]. eigenfunctions of the non-Hermitian Hamiltonian accord-

We next turn to the explicit construction of the wave
function¥',(r). To this end we first remove the anisotropy
of the Hamiltonian (7) by rescaling the coordinates accord

ing to Eq. (9). The most important propertiesbf, are
(a) that the generalized gauge factors depend in a nonlocal
way on the spatial distribution of the disorder potential and

(b) that the axial gauge factors lead to an exponential dis-

ingtor, = (v,/v)x., v = \Jvivy. AsaresultH) takes

. order dependent amplification of theodulusof the wave
the canonical form :

function, W W), = |, = @f2l+e71@,

What can be said about the asymptotic behavior of
the wave function¥p and, in particular, about its lo-
calization properties? To address this question we con-

2
.7‘[D = Z oy ®(l'7'03,u + J’Zl,u),

n=l

wheres = v =1 and the two componentsu = 1,2), sider the impurity averaged two-point correlation function,
A, =A, + B, + C, are given by C(r; — r) = |Pp(r)|29|¥p(ry)|?2. From the struc-
3 ture of the solution we infer thaf = F, X Fp factor-

Ap = SuimoVo, By = du Z vV, izes into Abelian and non-Abelian components both of

C, = 8u,mImz. = which can be straightforwardly extracted from Eq. (11).

To say more, it is necessary to specify both the form of

The disorder ingf[D appears in the form of a minimal the random potential distribution function and the topol-
coupling to a generally non-Abelian vector potential (i.e.,09y of the system. Here we focus on the thermodynamic
B, # 0). Itis thus natural to seek a gauge transformatiorlimit with Gaussian white-noise distributed disordefV ],
that removes the stochastic components of the Hamiltoref uniform variance. Under these circumstances, tak-
ian. Indeed, although the potentialg andB,, are notin ing f = g = 1in Eq. (11) represents the only admissible
general of pure gauge type, the nongauge components c&hoice [25].
be accounted for by extending the concept of gauge trans- Defining g4 = (2 X 27v7)™! as the variance of
formations so as to include “axial” transformations. the coarse-grained Gaussian distribution foy [i.e.,
Focusing on the Abelian sector first, we decomposey, (x)x1(y) = —galn|x — y|], and focusing, for sim-
A, into a transverse (axial gauge) and a longitudinalplicity, on the caseg; = ¢» = 1, the impurity average
(pure gauge) componen#t, = €,,d,x1 + d, x|, re- yields a strongly anisotropi@, > v,) algebraicdecay
spectively [21]. It is then straightforward to verify that Fale) o (w1 + (uarg2| 24/, (12)

, , C)
‘I’D(X) = (o0 Imzela'o,\/u(x)eﬂ's/\’i(x)<®i) (10)

implying that eigenstates of the non-Hermitian operafor

R arecritical [7,8]. Moreover, since the algebraic decay of

represents a solution ofHpW¥, =0 for B, =0  F, is not influenced by Inx, we infer that the critical

[22]. Here ®. € C and the gauge transformation nature of the wave functions is also insensitive togdm

exp(ioopx, Imz) has been used to dispose of the small As forthe non-Abelian sector, the nontrivial relationship

imaginary component of the eigenvaluein the non- between the field$3, and the effective “gauge” field,

Hermitian problem. This contribution can be absorbed¢ makes the calculation of the correlation functiéi

into the “boost” component dfl (9) [23]. more involved (cf. Refs. [5-7,10]). However, although
The treatment of the non-Abelian compone®s is  at present no rigorous statements on the long distance

conceptually similar but—due to their noncommutativity behavior of the correlation functiofiy can be made in

in 7 space—technically more involved. Referring to general, insight can be drawn from the following facts:

Ref. [24] for details, we merely state that, in the presencéa) The theory possesses a strong coupling fixed point
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