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Correlation Effects in the Compton Profile of Silicon
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Ab initio nonlocal pseudopotential variational quantum Monte Carlo techniques are used to compute
the correlation effects on the valence momentum density and Compton profile of silicon. Our results
for this case are in excellent agreement with the Lam-Platzman correction computed within the local
density approximation. Within the approximations used, we rule out valence electron correlations as
the dominant source of discrepancies between calculated and measured Compton profiles of silicon.
[S0031-9007(98)06062-1]
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The Compton effect [1] has been a very early test ofexchange-correlation potential. Correlation effects are in-
the predictions of the quantum theory of solids [2]. With cluded into our many-body wave function via the Jastrow
the advent of new, very high resolution Compton specfactor ¥;. The exact form of the Jastrow factor is deter-
troscopy [3—8] there is renewed interest in this experi-mined variationally. Following Fahy, Wang, and Louie
mental technique as a probe of the detailed electronif29], we only include single- and two-particle terms:
structure of real materials [9].

. Crystalline silicon, as one of th_e teqhnolqglcally most W, (ry,....ry) = eXP(Z (@) — Z u(Jr; — rjl)).
important and best studied materials, is an ideal test sys- i i<j

tem to consider. Silicon momentum densities and Comp- . . .
ton profiles have been studied experimentally with various The two-particle termu incorporates the correlations

techniques such as synchrotron radiation x-ray scatterinhESUItIng from the Coulomb repulsion between electrons.

_ : _ : consists of two termsy, = uf, + u}*". The o index
[10,11], v-ray scattering [12—16], and angular correlat|ontakes the valueso =1 or 1l ie.. a different two-

of positron annihilation [17—-19]. There have also been ficle t lies bet lel and ant el
many theoretical computations of these quantities, ranginga,r icle term applies between para Ae and an |rpara €
pins. The usual plasmon temfj(r) = ~[1 — exp(7)]

in complexity from tight-binding [20], empirical pseudo- )
potential [21] toab initio pseudopotential [22] and all- 1S constructed to hqve the correct asymptotic dependence
electron methods [23,24]. All calculations to date haveAtT — * and to satisfy the cusp condition&t~ 0. A'is
relied on single-particle band theory in their interpretationt®ated as a single variational parameter in this term [29].
of momentum densities and Compton profiles. We mtroduqe further vc_';lrlatlonal freedom into the two-
While the existing theoretical calculations are in closeP@rticle term via"™. w*"is the most general polynomial
agreement with experimental observations, discrepancigPression on the interva, Lo] that satisfies the con-
remain to be explained. In particular, it is found that theo-ditions (1)?’ 0) = 0_'_(2) u(Lo) = 0, and (3)u'(Lo) __,O
retical Compton profiles are too high gt= 0 as com- [30]. The flrst condltlon ensures that the cusp condition re-
pared to experiment in materials ranging from lithium [7] M&ins satisfied. Conditions (2) and (3) ensure thand
to silicon [9]. One possible source for such discrepanciedS derivative remain continuous at the cutoff radils

is electron correlation beyond the single-particle approxi-l NiS IS necessary to avoid singularities in the kinetic en-

mation. In this Letter we develop the nonlocal pseudo€'dY Of the wave function. The cutoff radilg is chosen

potential variational quantum Monte Carlo (VQMC) to be Iargg enoggh so that the variational freedomith

method for momentum densities, and apply it to studyS@n effectively influence the shape of the Coulomb hole.

the electron correlation effects on the Compton profile of! NiS means thaL, should be chosen to be on the order

silicon. of a few average electron-electron separations. Since the
In the VOMC method, the true many-body state isaverager, in silicon i.s 2,Ly was chosen to bES a.u. We

approximated by have use'd polynomlals up to.orde_zr 12, which corresponds

B - to 18 variational parameters in this term.

v =v,dd, As the two-particle termu has the effect of making
where thed are Slater determinants of single-particle or-the electrons avoid each other beyond what is dictated
bitals ¢; such as the eigenstates of the Kohn-Sham equady the antisymmetry of the wave function, theterm
tions [25,26]. We generate the single-particle orbitals byalone tends to smooth the charge density [29]. The single-
performing density functional theory (DF T) calculations in particle party of the Jastrow factor introduces variational
the local density approximation (LDA), using the Perdew-freedom that allows adjustment of the charge density to
Zunger [27] parametrization of the Ceperley-Alder [28]further minimize the energy or the variance of the energy.
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In our study we used thg term in two ways: First, momentum density for a many-body system is given by
x can be treated as a fully variational part of thethe expression
wave function with no constraints. We used up to nine
parameters (nine independent Fourier coefficients) in ourN(k) = f dsdry ---dry,
study. This variationak -factor will be referred to ag ¥

in the following. X W (ry - ry)e W +s---1y,),
Second, y can be used to restore the DFT charge Neont '
density following the prescription of Ref. [29]. In the rest = (Neont) " . f dse™SW(R; +s)/P(R)),

of this Letter the notationy“P will refer to this choice.
In this case,y is chosen to bgP(r) = ; C In("LD—A(r)), where the[R;} are configurations generated with probabil-

where(C is treated as a single variational para?ﬁgltygr). ity density| ¥ (R;)|>. At each configuration the remaining
The optimal parameters in the Jastrow factor arghree-dimensional integration is carried out directly on a
determined via minimizing the variance of the total energyuniform, randomly shifted grid. In our study this uniform
[30]. We estimate the variance of the total energy as  grid was chosen to havg X 3 X 3 points. Our method
R 1 (H — Er?¥(R;) mirro'rs that of Ref. [31] used to sample pair correlation
=S LR) 2 V(R w(R;), functions. S _

J U ! In general, converged momentum distributions require
whereH is the Hamiltonian operator, af®;} is a set of largek-point grids for the LDA calculation [22]. A dense
N-electron configurations having probability distribution k-grid corresponds to a large supercell simulation. Since
[V guidge (R)I?. Wauige is our best estimate of the optimal dplng a Iqrge supercell calculation is computatlonall)_/ pro-
wave function andt; is our best estimate for the ground- hibitive within VQMC, we do small supercell calculations

state energy. The weighting factors with generalizedperiodic boundary conditions. In this
[¥(R,)]? scheme, the many-body wave function is required to have
w(R;) = m the property
. gu1de. l_ . . \I'(I'l,...,l'i + L,...,I'Ne) KL
are required because tliRe are distributed with probabil- =e 7,

ity density | Wguiqe (R;)|> and not with probability density LAUTERRR R A

|¥(R;)|*>. This formalism allows us to minimize? with where L is a lattice vector of thesimulation cell and
respect to the variational parameters in the Jastrow factdhe phase factod = ¢’* is independent of the index
on afixedset of configurations, thus eliminating statistical of the electron which is being moved. This property
noise from the minimization procedure. In practice, theis guaranteed if the single-particle orbitals that form
variance minimization is carried out iteratively, i.e., thethe Slater determinants in the many-body wave function
{R;} are regenerated several times. The variance minill satisfy the sameboundary conditiong;(r + L) =
mization and all subsequent calculations are carried out in’* ¢ (r). In other words, the constituent single-particle
a 16-atom (64-electron) simulation cell. wave functions all have to correspond to the sakne
Table | shows the effect of introducing variational free- point of the Brillouin zone of thaimulationcell. In the
dom in the wave function on the total energy. While mostcase where the simulation cell isk& X L X M replica
of the energy gain is realized with the simple 1-parameteﬁf the primitive cell, the constituent single-particle wave
plasmon termu” [29], the introduction of further varia- functions have to fall on a (possibly shifted) X L X M
tional freedom lowers the energy further appreciably Monkhorst-Pack [32] grid.
Similar gains have been reported for Ge by Wiliamson We are able to compute momentum densities for a
et al. [30]. densek-point grid by repeating the VQMC calculation
Once the optimal parameters have been determinetith several shifted sets of LDA wave functions. With
we turn to calculating the momentum density. Theour2 X 2 X 2 simulation cell, ten calculations, each with
a different set of wave functions, were required to obtain
al0 X 10 X 10 k-point resolution. At the same time, we

TABLE |. Effect of the variational freedom in the Jastrow .5n calculate the momentum density due to just the LDA
factor on the total energy of Si. The no-Jastrow-factor energy bitals. with no Jastrow factor

was set to zero. In parentheses are the estimates of ti ! .
statistical error in the last digit. Figure 1 shows the effect of the quality of the wave func-

tion on the correlation correction to the LDA momentum

Jastrow factor Energy gain (eyatom) densitiesNvoumc(k) — NLpa(k) at selected values d.
None 0.00(7) The wave function only containing the plasmon tesfh

u? o —3.10(5) yields a clearly incorrect correction ¥ pa (k). In con-

ur I X _gigg; trast, the 2-parameter forta = u” + yCP) first used by

u X —3. . )

WP g g _350(4) Fahy, Wang, and Louie [29] and our best 28-parameter

show identical (within statistical error) shifts of weight
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FIG. 2. Comparison between experimental and DFT-LDA
e 3 valence Compton profiles along the (100) direction in silicon.
(electrongprimitive cel)/(a.u)’ (see text). ~The graph tpe jeft vertical axis gives the scale of the two Compton

summarizes data for various directions &. The lines p.qfiies and the right vertical axis applies to the difference
connecting points are a guide to the eye. Expected statlstm%J(q) = Jexe(q) — JLoa(q)

errors are indicated by vertical bars.

FIG. 1. Momentum density difference between VQMC
and LDA calculations with three wave functions in

from low to high momentum values. By analogy to the ho- The standard method to include correlation effects
mogeneous electron gas, we do expect such a weight trarigeyond the single-particle picture into momentum density
fer. The weight transfer is most marked|k{ < 1 a.u.,, and Compton profile calculations has been the Lam-
where the momentum density is reduced by approximatelf?latzman correction [35] in the LDA. This correction to
2% of its value ak = 0. The correlation effect is isotropic the momentum density is, in principle, exact in the frame-
within the achieved error bars. work of density functional theory, but is approximate and
In order to compare our calculations to experimen-isotropic in the LDA. We computed the Lam-Platzman
tal observations, we integrate our momentum densities tgorrection to silicon Compton profiles within the LDA
obtain Compton profiles. Recall that in the impulse ap-using diffusion Monte Carlo data for the homogeneous
proximation [33,34] the Compton profile is given as a two-
dimensional integral of the momentum density,

J(@) = ] AN K~ q).

In Fig. 2 we plot an experimental valence Compton profile

[9] and the results of aab initio DFT-LDA calculation 0.05
for the valence Compton profile along the (100) direction
in silicon, as well as the differenc&J(g) between these
two curves. The calculation is performed within the
pseudopotential approximation and the resulting pseudo !
wave-functions are reconstructed to regain oscillations in
the core regions as described in [22]. The LDA curve &
agrees closely with other theoretical predictions [23,24]. . 5—0.05
Figure 3 shows the correlation correction to the directional

profiles in three high-symmetry directions. Correlations

beyond the DFT-LDA cause weight to shift from lower —01
to higher momenta. The correction is isotropic within the N T
achieved error bars. The reduction of weightkat= 0 05 1 15 5
corresponds to approximately 1% of tke= 0 magnitude ' '

of the valence Compton profile. We find that correlation lq| (a.u)

corrections are responsible for about 25% of the diﬁerencgle_ 3. Correlation correction to the LDA Compton profile of
between the best theoretical calculations (Refs. [22—24kjlicon. The standard error associated with the VQMC data
of the valence Compton profile and experiment. is 0.01.
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