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Correlation Effects in the Compton Profile of Silicon
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Ab initio nonlocal pseudopotential variational quantum Monte Carlo techniques are used to compute
the correlation effects on the valence momentum density and Compton profile of silicon. Our results
for this case are in excellent agreement with the Lam-Platzman correction computed within the local
density approximation. Within the approximations used, we rule out valence electron correlations as
the dominant source of discrepancies between calculated and measured Compton profiles of silicon.
[S0031-9007(98)06062-1]
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The Compton effect [1] has been a very early test
the predictions of the quantum theory of solids [2]. Wit
the advent of new, very high resolution Compton spe
troscopy [3–8] there is renewed interest in this expe
mental technique as a probe of the detailed electro
structure of real materials [9].

Crystalline silicon, as one of the technologically mo
important and best studied materials, is an ideal test s
tem to consider. Silicon momentum densities and Com
ton profiles have been studied experimentally with vario
techniques such as synchrotron radiation x-ray scatter
[10,11],g-ray scattering [12–16], and angular correlatio
of positron annihilation [17–19]. There have also bee
many theoretical computations of these quantities, rang
in complexity from tight-binding [20], empirical pseudo
potential [21] toab initio pseudopotential [22] and all-
electron methods [23,24]. All calculations to date ha
relied on single-particle band theory in their interpretatio
of momentum densities and Compton profiles.

While the existing theoretical calculations are in clos
agreement with experimental observations, discrepanc
remain to be explained. In particular, it is found that the
retical Compton profiles are too high atq ­ 0 as com-
pared to experiment in materials ranging from lithium [7
to silicon [9]. One possible source for such discrepanc
is electron correlation beyond the single-particle appro
mation. In this Letter we develop the nonlocal pseud
potential variational quantum Monte Carlo (VQMC
method for momentum densities, and apply it to stu
the electron correlation effects on the Compton profile
silicon.

In the VQMC method, the true many-body state
approximated by

C ­ CJd"d#,

where thed are Slater determinants of single-particle o
bitals fi such as the eigenstates of the Kohn-Sham eq
tions [25,26]. We generate the single-particle orbitals
performing density functional theory (DFT) calculations i
the local density approximation (LDA), using the Perdew
Zunger [27] parametrization of the Ceperley-Alder [28
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exchange-correlation potential. Correlation effects are
cluded into our many-body wave function via the Jastro
factor CJ . The exact form of the Jastrow factor is dete
mined variationally. Following Fahy, Wang, and Lou
[29], we only include single- and two-particle terms:

CJ sr1, . . . , rNd ­ exp

√X
i

xsrid 2
X
i,j

usjri 2 rjjd

!
.

The two-particle termu incorporates the correlation
resulting from the Coulomb repulsion between electro
It consists of two terms,us ­ uP

s 1 uvar
s . The s index

takes the valuess ­"" or "#, i.e., a different two-
particle term applies between parallel and antipara
spins. The usual plasmon termuP

ssrd ­
A
r f1 2 exps r

Fs
dg

is constructed to have the correct asymptotic depende
at r ! ` and to satisfy the cusp condition atr ! 0. A is
treated as a single variational parameter in this term [2

We introduce further variational freedom into the tw
particle term viauvar . uvar is the most general polynomia
expression on the intervalf0, L0g that satisfies the con
ditions (1) u0s0d ­ 0, (2) usL0d ­ 0, and (3)u0sL0d ­ 0
[30]. The first condition ensures that the cusp condition
mains satisfied. Conditions (2) and (3) ensure thatu and
its derivative remain continuous at the cutoff radiusL0.
This is necessary to avoid singularities in the kinetic e
ergy of the wave function. The cutoff radiusL0 is chosen
to be large enough so that the variational freedom inuvar

can effectively influence the shape of the Coulomb ho
This means thatL0 should be chosen to be on the ord
of a few average electron-electron separations. Since
averagers in silicon is 2,L0 was chosen to be15 a.u. We
have used polynomials up to order 12, which correspo
to 18 variational parameters in this term.

As the two-particle termu has the effect of making
the electrons avoid each other beyond what is dicta
by the antisymmetry of the wave function, theu term
alone tends to smooth the charge density [29]. The sin
particle partx of the Jastrow factor introduces variation
freedom that allows adjustment of the charge density
further minimize the energy or the variance of the ener
© 1998 The American Physical Society 4253
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In our study we used thex term in two ways: First,
x can be treated as a fully variational part of th
wave function with no constraints. We used up to nin
parameters (nine independent Fourier coefficients) in o
study. This variationalx-factor will be referred to asxvar

in the following.
Second,x can be used to restore the DFT charg

density following the prescription of Ref. [29]. In the res
of this Letter the notationxCD will refer to this choice.
In this case,x is chosen to bexCDsrd ­ 1

2 C lns rLDAsrd
ru onlysrd d,

whereC is treated as a single variational parameter.
The optimal parameters in the Jastrow factor a

determined via minimizing the variance of the total energ
[30]. We estimate the variance of the total energy as

s2 ­
1P

j wsRjd

X
i

sĤ 2 ET d2CsRid
CsRid

wsRid ,

whereĤ is the Hamiltonian operator, andhRij is a set of
N-electron configurations having probability distributio
jCguidesRidj2. Cguide is our best estimate of the optima
wave function andET is our best estimate for the ground
state energy. The weighting factors

wsRid ­
jCsRidj2

jCguidesRidj2

are required because theRi are distributed with probabil-
ity density jCguidesRidj2 and not with probability density
jCsRidj2. This formalism allows us to minimizes2 with
respect to the variational parameters in the Jastrow fac
on afixedset of configurations, thus eliminating statistica
noise from the minimization procedure. In practice, th
variance minimization is carried out iteratively, i.e., th
hRij are regenerated several times. The variance mi
mization and all subsequent calculations are carried ou
a 16-atom (64-electron) simulation cell.

Table I shows the effect of introducing variational free
dom in the wave function on the total energy. While mo
of the energy gain is realized with the simple 1-parame
plasmon termuP [29], the introduction of further varia-
tional freedom lowers the energy further appreciabl
Similar gains have been reported for Ge by Williamso
et al. [30].

Once the optimal parameters have been determin
we turn to calculating the momentum density. Th

TABLE I. Effect of the variational freedom in the Jastrow
factor on the total energy of Si. The no-Jastrow-factor ener
was set to zero. In parentheses are the estimates of
statistical error in the last digit.

Jastrow factor Energy gain (eVyatom)

None 0.00(7)
uP 23.10s5d
uP 1 xCD 23.23s4d
uP 1 xvar 23.45s4d
uP 1 uvar 1 xvar 23.59s4d
4254
r

e
y

or

i-
in

t
r

.

d,

y
he

momentum density for a many-body system is given
the expression

Nskd ­
Z

dsdr1 · · · drNe

3 Cpsr1 · · · rNe de
ik?sCsr1 1 s · · · rNe d,

­ sNconfd21
NconfX

i

Z
dseik?sCsRi 1 sdyCsRid ,

where thehRij are configurations generated with probab
ity densityjCsRidj2. At each configuration the remaining
three-dimensional integration is carried out directly on
uniform, randomly shifted grid. In our study this uniform
grid was chosen to have3 3 3 3 3 points. Our method
mirrors that of Ref. [31] used to sample pair correlatio
functions.

In general, converged momentum distributions requ
largek-point grids for the LDA calculation [22]. A dense
k-grid corresponds to a large supercell simulation. Sin
doing a large supercell calculation is computationally pr
hibitive within VQMC, we do small supercell calculation
with generalizedperiodic boundary conditions. In this
scheme, the many-body wave function is required to ha
the property

Csr1, . . . , ri 1 L, . . . , rNe d
Csr1, . . . , ri, . . . , rNe d

­ eiK?L,

where L is a lattice vector of thesimulation cell and
the phase factorF ­ eiK?L is independent of the index
of the electron which is being moved. This proper
is guaranteed if the single-particle orbitalsfi that form
the Slater determinants in the many-body wave functi
all satisfy the same boundary conditionfisr 1 Ld ­
eik?Lfsrd. In other words, the constituent single-partic
wave functions all have to correspond to the samek-
point of the Brillouin zone of thesimulationcell. In the
case where the simulation cell is aK 3 L 3 M replica
of the primitive cell, the constituent single-particle wav
functions have to fall on a (possibly shifted)K 3 L 3 M
Monkhorst-Pack [32] grid.

We are able to compute momentum densities for
densek-point grid by repeating the VQMC calculation
with several shifted sets of LDA wave functions. Wit
our 2 3 2 3 2 simulation cell, ten calculations, each wit
a different set of wave functions, were required to obta
a 10 3 10 3 10 k-point resolution. At the same time, we
can calculate the momentum density due to just the LD
orbitals, with no Jastrow factor.

Figure 1 shows the effect of the quality of the wave fun
tion on the correlation correction to the LDA momentum
densitiesNVQMCskd 2 NLDAskd at selected values ofk.
The wave function only containing the plasmon termuP

yields a clearly incorrect correction toNLDAskd. In con-
trast, the 2-parameter formsu ­ uP 1 xCDd first used by
Fahy, Wang, and Louie [29] and our best 28-parame
show identical (within statistical error) shifts of weigh
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FIG. 1. Momentum density difference between VQMC
and LDA calculations with three wave functions in
selectronsyprimitive celldysa.u.d3 (see text). The graph
summarizes data for various directions ofk. The lines
connecting points are a guide to the eye. Expected statisti
errors are indicated by vertical bars.

from low to high momentum values. By analogy to the ho
mogeneous electron gas, we do expect such a weight tra
fer. The weight transfer is most marked atjkj , 1 a.u.,
where the momentum density is reduced by approximate
2% of its value atk ­ 0. The correlation effect is isotropic
within the achieved error bars.

In order to compare our calculations to experimen
tal observations, we integrate our momentum densities
obtain Compton profiles. Recall that in the impulse ap
proximation [33,34] the Compton profile is given as a two
dimensional integral of the momentum density,

Jsqd ­
Z

dk0Nsk0ddsq̂ ? k0 2 qd .

In Fig. 2 we plot an experimental valence Compton profi
[9] and the results of anab initio DFT-LDA calculation
for the valence Compton profile along the (100) directio
in silicon, as well as the differenceDJsqd between these
two curves. The calculation is performed within th
pseudopotential approximation and the resulting pseud
wave-functions are reconstructed to regain oscillations
the core regions as described in [22]. The LDA curv
agrees closely with other theoretical predictions [23,24
Figure 3 shows the correlation correction to the direction
profiles in three high-symmetry directions. Correlation
beyond the DFT-LDA cause weight to shift from lowe
to higher momenta. The correction is isotropic within th
achieved error bars. The reduction of weight atk ­ 0
corresponds to approximately 1% of thek ­ 0 magnitude
of the valence Compton profile. We find that correlatio
corrections are responsible for about 25% of the differen
between the best theoretical calculations (Refs. [22–2
of the valence Compton profile and experiment.
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FIG. 2. Comparison between experimental and DFT-LD
valence Compton profiles along the (100) direction in silico
The left vertical axis gives the scale of the two Compto
profiles, and the right vertical axis applies to the differenc
DJsqd ­ JEXP sqd 2 JLDAsqd.

The standard method to include correlation effec
beyond the single-particle picture into momentum dens
and Compton profile calculations has been the Lam
Platzman correction [35] in the LDA. This correction to
the momentum density is, in principle, exact in the fram
work of density functional theory, but is approximate an
isotropic in the LDA. We computed the Lam-Platzma
correction to silicon Compton profiles within the LDA
using diffusion Monte Carlo data for the homogeneou

FIG. 3. Correlation correction to the LDA Compton profile o
silicon. The standard error associated with the VQMC da
is 0.01.
4255



VOLUME 80, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 11 MAY 1998

e

s
i
h

e

is
ta
t
h
e
lt
t
e
n
b

ti
m
e

n

a
ls
r
h

e
n

y

f
e
o
m

ro
c

ys.

.,

k-
o,

m.

. B

pn.

to

tt.
electron gas given by Ortiz and Ballone [36]. Th
momentum density corrections were then integrated
yield correlation corrections to the Compton profile
Figure 3 shows the Lam-Platzman correction along w
our VQMC results, which may depend on direction. T
two computations are in quite good agreement.

In conclusion, we computed, for the first time, th
VQMC correlation correction to the valence Compto
profile of silicon. We have shown that, although soph
ticated variational wave functions are necessary to ob
a good estimate of the ground-state energy of silicon,
correct momentum density is already obtained with t
simple 2-parameter variational wave function first us
by Fahy, Wang, and Louie [29] for solids. Our resu
show that valence correlation effects can be ruled ou
the dominant source of discrepancy between experim
tally observed and calculated Compton profiles of silico
This indicates that some other nontrivial physics must
present for which the Compton profile acts as a sensi
probe. These effects could include the failure of the i
pulse approximation, core-core interaction effects, exp
mental uncertainty, or multiple-scattering corrections.

It is further found that the Lam-Platzman correctio
predicts this correction accurately for Si. We expect th
correlation corrections to momentum densities and Com
ton profiles of systems whose ground-state properties
well described within the LDA, such as simple meta
will be similarly well described by the Lam-Platzman co
rection. It remains an interesting open question as to w
happens for systems where the LDA is not adequate. M
mentum densities in, for example, transition metal oxid
could exhibit novel features not captured by the LDA a
the Lam-Platzman correction.
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