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A driven diffusive model of three types of particles that exhibits phase separation on a ring is
introduced. The dynamics is local and comprises nearest-neighbor exchanges that conserve each of the
three species. For the case in which the three densities are equal, it is shown that the model obeys
detailed balance. The Hamiltonian governing the steady state distribution in this case is given and is
found to have long range asymmetric interactions. The partition sum and bounds on some correlation
functions are calculated analytically demonstrating phase separation. [S0031-9007(97)05113-2]
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Driven diffusive systems have been a subject of e
tensive studies in recent years [1,2]. Being driven by
external field, these systems are governed by dynam
which generically does not obey detailed balance, lead
to steady states with nonvanishing currents. This cla
of systems provides a relatively simple framework withi
which collective phenomena far from thermal equilibrium
may be studied [3,4].

Theoretical studies of models of driven diffusive sys
tems reveal some basic differences between phase tra
tions taking place under equilibrium and nonequilibrium
conditions. For example, it is well known that phase tra
sitions and spontaneous symmetry breaking are not
pected to take place in one-dimensional (1D) systems
thermal equilibrium at finite temperatures, as long as t
interaction in the system is short range. Recently, it h
been demonstrated that this is not the case in systems
from thermal equilibrium [5]. Indeed, a simple exampl
of an open system with nonconserved order paramete
the boundaries was shown to exhibit spontaneous symm
try breaking [4].

A closely related problem is that of phase separatio
An interesting question is whether 1D homogeneous s
tems (i.e., with no boundary effects as in a ring geometr
are capable of exhibiting phase separation, in cases wh
conserving dynamics is involved. It has been shown th
inhomogeneities, such as defect sites or particles may t
ger the formation of macroscopic regions of high densi
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bound to the defect [6]. Recent numerical studies of
model associated with sedimentation of colloidal crysta
have suggested that phase separation may even occu
homogeneous nonequilibrium systems [7].

Phase separation is accompanied by coarsening phen
ena in which the typical domain size grows indefinitel
with time [8]. Examples of equilibrium 1D systems with
local dynamics which exhibit coarsening are the zero te
perature limit of kinetic Ising models and the noiseles
Landau-Ginzburg equation. However, these systems
not coarsen at finite temperature.

In the present Letter we introduce a simple model
phase separation in a 1D driven diffusive system. Th
is a model of three species of particles on a ring in whic
nearest neighbors on the lattice are exchanged with spec
rates. Thus the dynamics is local, is fully stochastic, a
conserves each of the three species. It is shown that
the special case in which the average densities of the th
species are equal, the dynamics obeys detailed balan
In this case the steady state distribution is shown to
given by a Hamiltonian which has long range asymmetr
interactions. The phase separation which takes place
the model is explicitly demonstrated for this case. It
argued that phase separation takes place in the general
where the densities of the three species are unequal
that the typical domain size coarsens as lnt. The model
is easily generalized ton species, and phase separation
found providedn . 2.
© 1998 The American Physical Society 425
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Definition of the model.—The model is defined on a
1D lattice of lengthN with periodic boundary conditions.
Each site is occupied by either anA, B, or C particle.
The evolution is governed by random sequential dynami
defined as follows: At each time step two neighborin
sites are chosen randomly, and the particles of these s
are exchanged according to the following rates:

AB
q

:
1

BA ,

BC
q

:
1

CB , (1)

CA
q

:
1

AC .

The rates are cyclic inA, B, and C and conserve the
number of particles of each type.

Consider a system withNA particles of typeA, NB

of type B, and NC of type C. For q ­ 1 the particles
undergo symmetric diffusion, and the system is disordere
However, forq fi 1 the particle exchange rates are biase
Since the model is invariant, for example, under th
exchangeA ! B andq ! 1yq, it is sufficient to consider
q , 1. In this case the bias drives, say, anA particle to
move to the left inside aB domain, and to the right inside
a C domain. Therefore, starting with an arbitrary initia
configuration, the system reaches after a relatively sh
transient time a state of the type. . . AABBCCAAAB . . . in
which A, B, andC domains are located to the right ofC,
A, and B domains, respectively. Because of the biasq,
the domain walls. . . AB . . . , . . . BC . . . , and. . . CA . . . are
stable, and configurations of this type are long lived. I
fact, the domains in these configurations diffuse into ea
other and coarsen on a time scale of the order ofq2L,
whereL is a typical domain size in the system. This lead
to the growth of the typical domain size assln tdyj ln qj.
Eventually the system phase separates into three doma
of the different species of the formA · · · AB · · · BC · · · C.
A finite system does not stay in such a state indefinite
For example, theA domain breaks up into smaller domain
in a time of orderq2minhNB,NCj. In the thermodynamic
limit, however, when the density of each type of particle
nonvanishing, the time scale for the breakup of extensi
domains diverges, and we expect the system to pha
separate. Generically the system supports particle curre
in the steady state. This can be seen by considering, s
the A domain in the phase separated state. The rate
which anA particle traverses aB sCd domain to the right
(left) is of the order ofqNB sqNC d. The net current is then
of the order ofqNB 2 qNC , vanishing exponentially with
N . This simple argument suggests that for the special ca
NA ­ NB ­ NC the current is zero for any system size.

In the following, we show that the dynamics of the
model satisfies detailed balance for the special caseNA ­
NB ­ NC . The Hamiltonian governing the steady stat
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distribution is found to have long range interactions.
is demonstrated that phase separation takes place in
thermodynamic limit. The simple considerations give
above indicate that phase separation exists even when
number of particles of the three species are not equal.

Special case,NA ­ NB ­ NC .—We specify a configu-
ration by the set of numbershXij ­ hAi , Bi , Cij, whereAi,
Bi , andCi are equal to one if sitei is occupied by particle
A, B, or C, respectively, and zero otherwise. We sho
that the dynamics satisfies detailed balance with respec
the HamiltonianH given by

H shXijd ­
N21X
i­1

NX
j­i11

fCiBj 2 CiAj 1 BiAjg , (2)

so that in the steady state the probability of finding th
system in a configurationhXij is given by

WNshXijd ­ Z21
N qH shXijd, (3)

where the partition sum is given byZN ­
P

hXij qH shXijd

and the sum runs over all states in whichNA ­ NB ­
NC . Although expression (2) for the Hamiltonian is no
manifestly translationally invariant, a form that is clearl
invariant under translations can be simply obtained fro
(2) but is less convenient for our purposes.

Before proving Eqs. (2) and (3) let us make a few com
ments. TheN-fold degenerate zero energy ground stat
of the Hamiltonian (2) comprise the fully separated co
figurationA · · · AB · · · BC · · · C and any translation of this
configuration. Starting from a ground state, any other co
figuration may be obtained by successive permutations
nearest-neighbor particles. The energy of such configu
tion may be calculated by noting that any particle exchan
against the bias costs one unit of energy while an exchan
in the direction of the bias results in a gain of one un
The maximal energy of this Hamiltonian isN2y9 and cor-
responds to a fully separated stateA · · · AC · · · CB · · · B. It
is of interest to note that although the dynamics defined
(1) is local, the resulting Hamiltonian (2) is long range, i
which each particle interacts with all other particles. Als
the interactions are asymmetric in the sense that the Ham
tonian is not invariant under space inversion. The tempe
ture of the system is given byT ­ 1yj ln qj.

To prove Eqs. (2) and (3) one can check thatWN shXijd
satisfies detailed balance with respect to the dynamics
For example, it is easy to see that an exchange of partic
in the bulk of the lattice. . . AB . . . ! . . . BA . . . satisfies
qWN s. . . AB . . .d ­ WN s. . . BA . . .d. Similarly, particle ex-
change between site 1 andN, say,A · · · C ! C · · · A satis-
fiesqWN sA · · · Cd ­ WN sC · · · Ad, as long asNA ­ NB ­
NC . Note that when the three densities are not equal,
system supports a current, and thus it cannot satisfy
tailed balance.
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In order to demonstrate phase separation it is sufficie
to show that for large finitek the two point density
correlation function satisfies

lim
N!`

skA1Akl 2 kA1l kAkld . 0 . (4)

In our case this implies limN!`kA1Akl . 1y9 for largek.
In fact, we show below that in the limit of largeN and for
any finitek

kA1Akl ­ 1y3 2 OskyNd , (5)

demonstrating the existence of phase separation in
model. This result indicates that the phase separation
complete, in the sense that the probability of finding, sa
a B or a C particle a large distance inside theA domain
vanishes in the thermodynamic limit.

We proceed by first calculating the partition sum,ZN ,
showing that forq , 1 and to leading order inN

ZN ­ Nyfsqd`g3, (6a)

where

sqd` ­ lim
n!`

s1 2 qd s1 2 q2d · · · s1 2 qnd . (6b)

The partition sum forq . 1 is obtained by replacingq
by 1yq in this expression. Note that the partition sum
(6) is proportional toN rather than being exponential in
N . This is a consequence of the long range interaction
low energy excitations are localized about the doma
boundaries, and their degeneracy does not increase w
system size (in contrast to short range models). Atq ­ 1,
however, all configurations are equally probable and t
partition sum is exponential inN .

The calculation of the partition sum is greatly simplified
by noting that configurations with energy larger tha
aN , wherea . 0 is a constant, can be neglected in th
thermodynamic limit. Here we show that this is the cas
for q , s1y3d1ya. A more detailed analysis completes
the proof for allq fi 1 [9]. Consider the sumZm.aN ­PN2y9

m­aN11 Dsmdqm, whereDsmd is the number of states
of energym. Noting thatDsmd is bounded from above
by the total number of states which in turn is bounde
by 3N , one finds thatZm.aN decays exponentially withN
as long asq , s1y3d1ya. Hence, the partition sum may
be replaced by the truncated one as long as exponentia
small corrections inN are of no interest.

To calculate the truncated partition sum we note th
states with energym , Ny3 2 1 may be uniquely decom-
posed intoN disjoint sets, where each set corresponds
one of theN ground states of the system. Any state withi
a given set may be obtained from the corresponding grou
state by successive permutations of nearest-neighbor p
ticles, in a way that the energy always increases along
path of intermediate states.

The sets are labeled byl ­ 1, . . . , N , the position of
the rightmostA particle in theA domain in the ground
state configuration of that set (Fig. 1). Because of th
translational invariance of the model the partition sum ca
nt
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FIG. 1. Thel ­ 5 ground state for anN ­ 21 system.

be written asZN ­ NZ 1 e2OsNd whereZ is the partition
sum obtained by summing over one of theN sets of
configurations. We now turn to calculatingZ . Consider
an excitation of energym created only at one domain
boundary, say,AB. The excitation can be formed by one o
moreB particles moving into theA domain (equivalently
A particles moving into theB domain). A movingB
particle may be considered as a walker. The energy
the system increases linearly with the distance traveled
the walker inside theA domain. An excitation of energym
at theAB boundary is formed byj walkers passing a total
distance ofm. Hence, the total number of states of energ
m at the AB boundary is equal to the number of ways
Psmd of partitioning an integerm into a sum of (positive)
integers. When considering all three interfaces in th
ground state, the number of states composed of excitatio
of energymi , i ­ 1, 2, 3 at the three interfaces is given
by Psm1dPsm2dPsm3d. Note that since only excitations
with total energy smaller thanNy3 2 1 are considered, a
walker cannot travel from one boundary to another, an
local excitations at the three boundaries are independe
The partition sumZ , after taking the thermodynamic limit,
is given by

Z ­
X̀

m­0

qm
mX

mi­0

Psm1dPsm2dPsm3ddm11m21m3,m . (7)

This sum may be rewritten as

Z ­

√ X̀
m­0

qmPsmd

!3

. (8)

Using the classical result for the generating function o
Psmd [10], attributed to Euler, we obtain Eqs. (6). Note
that excitations of energy up toNy3 2 2 are properly ac-
counted for. Once excitations of greater energy are co
sidered, triplets of the form. . . ABC . . . can be formed.
These triplets can be moved around the lattice with n
energy cost so that the degeneracy is not accounted
correctly in Eqs. (6). However, our results above impl
that these contributions are unimportant forq , s1y3d3.
A more detailed analysis [9] confirms that for allq , 1,
Eqs. (6) give the partition sum up to corrections expone
tially small in N.

In order to calculate the correlation function considere
in the next paragraphs, it is useful to introduce a parti
sum Zs. It is defined as the partition sum under the
constraint that one of the walkers at theAB interface has
traveled a distances. One can show that

Zs ­ qsZ . (9)
427
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We now turn to the correlation functionkA1Akl ­ 1y3 2

kA1Bkl 2 kA1Ckl. In order to prove Eq. (5) we show
that the correlation functionskA1Bkl and kA1Ckl are of
OskyNd. This is done explicitly forkA1Bkl. Similar
considerations yield the same result forkA1Ckl. Define
kA1Bkll as the correlation function calculated within the
set of states related to the ground statel. Neglecting
corrections exponentially small inN we can write

kA1Bkl ­
1
N

NX
l­1

kA1Bkll . (10)

We now outline the proof that
PN

l­1kA1Bkll is finite so
that for largeN , kA1Bkl vanishes likekyN. Consider first
thel ­ 1, . . . , Ny3 terms in the sum (10) for whichA1 ­ 1
in the ground state. The sum of these terms may be brok
into two parts in the following way:

Ny3X
l­1

kA1Bkll ­
k21X
l­1

kA1Bkll 1

Ny3X
l­k

kA1Bkll . (11)

To bound this sum we note that the first term contain
contributions from states corresponding to ground states
whichA1 ­ Bk ­ 1. Here we use the boundkA1Bkll # 1
for l ­ 1, . . . , k 2 1. The second term contains contribu
tions from states corresponding to ground states in whi
A1 ­ 1 but Bk ­ 0. Here, only excited states in which
one of theB walkers travels at least a distancel 2 k 1 1
into the A domain may contribute tokA1Bkll. Thus, for
k # l # Ny3 the correlation functionkA1Bkll may be
bounded from above by

P`
s­l2k11 ZsyZ . Combining the

bounds for the two parts one finds

Ny3X
l­1

kA1Bkll # k 2 1 1

Ny3X
l­k

X̀
s­l2k11

qs. (12)

The geometrical series in (12) converges forq , 1, and
thus the sum

PNy3
l­1 kA1Bkll is bounded in the thermody-

namic limit. Similar considerations yield a bound fo
the remaining2Ny3 terms in (10) demonstrating that
kA1Bkl ­ OskyNd. We have thus shown thatkA1Akl ­
1y3 2 OskyNd for largeN and any finitek, demonstrat-
ing phase separation in the model.

So far we have presented some results and bounds
the thermodynamic limit. It is also of interest to obtain
exact results for finite rings to investigate how the lim
is approached. We do this by applying a matrix ansa
method which has recently been introduced for studyin
1D nonequilibrium systems [11]. Generalizing this ap
proach to replace the matrix product used as steady st
ansatz by a tensor product we found that we could app
the method to the model (1) for the caseNA ­ NB ­ NC .
Details of these calculations will be presented elsewhe
[9]; however, we would like to present some exact resu
for small systems obtained by this method. We have c
culated the correlation functionkA1ANy2l which provides
a measure of phase separation. In a disordered state
428
en

s
in

-
ch

r

in

it
tz
g
-
ate
ly

re
lts
al-

this

FIG. 2. The correlation functionC ­ kA1ANy2l as a function
of the scaled variableN ln q for N ­ 30, 36, 42, . . . , 84. The
inset shows the same data plotted againstq. Note that atq ­ 1
the curves approach1y9 asN increases (see text).

correlation function is equal tosN 2 3dy9sN 2 1d and ap-
proaches1y9 in the largeN limit. It should be smaller for
a phase separated state. In fact, we find it approaches z
over a range ofq values which increases withN (Fig. 2,
inset). To investigate the finite size scaling near th
q ­ 1 (infinite temperature) critical point it seems natura
to chooseN ln q as a scaling variable. This variable repre
sents the ratio of domain wall widths1yj ln qjd to domain
size sNy3d. In Fig. 2 the scaling collapse for small sys-
tems is illustrated.

The analysis presented above dealt with the caseNA ­
NB ­ NC . In the general case where the densities o
the three species are not equal, detailed balance is n
satisfied. However, the heuristic arguments for phas
separation given at the beginning of the Letter are expect
to hold for the general case provided that none of th
densities is zero. Namely, configurations of the typ
. . . AAABBBBCCAAA . . . are stable, and the time for a
totally phase separated state to break up grows exponen
in N. Numerical simulations of the model supports the
existence of phase separation [9].

We thank D. Kandel, J. L. Lebowitz, S. Ramaswamy
and E. R. Speer for interesting discussions. The suppo
of Minerva Foundation, Munich, Germany (D. M.), The
Royal Society, and The Einstein Center (M. R. E.) ar
gratefully acknowledged.

Note added.—After this work was completed, we have
learned that Arndtet al. have reached similar results in a
different model [12].
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