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Phase Separation in One-Dimensional Driven Diffusive Systems
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A driven diffusive model of three types of particles that exhibits phase separation on a ring is
introduced. The dynamics is local and comprises nearest-neighbor exchanges that conserve each of the
three species. For the case in which the three densities are equal, it is shown that the model obeys
detailed balance. The Hamiltonian governing the steady state distribution in this case is given and is
found to have long range asymmetric interactions. The partition sum and bounds on some correlation
functions are calculated analytically demonstrating phase separation. [S0031-9007(97)05113-2]

PACS numbers: 05.60.+w, 02.50.Ey, 05.20.-y, 64.75.+¢g

Driven diffusive systems have been a subject of exbound to the defect [6]. Recent numerical studies of a
tensive studies in recent years [1,2]. Being driven by ammodel associated with sedimentation of colloidal crystals
external field, these systems are governed by dynamidsave suggested that phase separation may even occur in
which generically does not obey detailed balance, leadingomogeneous nonequilibrium systems [7].
to steady states with nonvanishing currents. This class Phase separation is accompanied by coarsening phenom-
of systems provides a relatively simple framework withinena in which the typical domain size grows indefinitely
which collective phenomena far from thermal equilibriumwith time [8]. Examples of equilibrium 1D systems with
may be studied [3,4]. local dynamics which exhibit coarsening are the zero tem-

Theoretical studies of models of driven diffusive sys-perature limit of kinetic Ising models and the noiseless
tems reveal some basic differences between phase trankandau-Ginzburg equation. However, these systems do
tions taking place under equilibrium and nonequilibriumnot coarsen at finite temperature.
conditions. For example, it is well known that phase tran- In the present Letter we introduce a simple model of
sitions and spontaneous symmetry breaking are not exhase separation in a 1D driven diffusive system. This
pected to take place in one-dimensional (1D) systems iis a model of three species of particles on a ring in which
thermal equilibrium at finite temperatures, as long as the@earest neighbors on the lattice are exchanged with specific
interaction in the system is short range. Recently, it hasates. Thus the dynamics is local, is fully stochastic, and
been demonstrated that this is not the case in systems faonserves each of the three species. It is shown that for
from thermal equilibrium [5]. Indeed, a simple examplethe special case in which the average densities of the three
of an open system with nonconserved order parameter apecies are equal, the dynamics obeys detailed balance.
the boundaries was shown to exhibit spontaneous symmén this case the steady state distribution is shown to be
try breaking [4]. given by a Hamiltonian which has long range asymmetric

A closely related problem is that of phase separationinteractions. The phase separation which takes place in
An interesting question is whether 1D homogeneous syshe model is explicitly demonstrated for this case. It is
tems (i.e., with no boundary effects as in a ring geometrypargued that phase separation takes place in the general case
are capable of exhibiting phase separation, in cases whevehere the densities of the three species are unequal and
conserving dynamics is involved. It has been shown thathat the typical domain size coarsens as. InThe model
inhomogeneities, such as defect sites or particles may trigs easily generalized te species, and phase separation is
ger the formation of macroscopic regions of high densityfound provided: > 2.
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Definition of the modek-The model is defined on a distribution is found to have long range interactions. It
1D lattice of lengthiV with periodic boundary conditions. is demonstrated that phase separation takes place in the
Each site is occupied by either ay B, or C particle. thermodynamic limit. The simple considerations given
The evolution is governed by random sequential dynamicabove indicate that phase separation exists even when the
defined as follows: At each time step two neighboringnumber of particles of the three species are not equal.
sites are chosen randomly, and the particles of these sitesSpecial casely, = Np = Nc.—We specify a configu-
are exchanged according to the following rates: ration by the set of numbef;} = {A;, B;, C;}, whereA;,,

B;, andC; are equal to one if siteis occupied by particle
q A, B, or C, respectively, and zero otherwise. We show
AB _T’ BA, that the dynamics satisfies detailed balance with respect to
the Hamiltonian given by
BC = CB, 1)
1 N-1 N
HxD =D D [CiB; — CA; + BiA]]l, (2

i=1 j=i+1

q
CA—T’AC.

so that in the steady state the probability of finding the

The rates are cyclic iM, B, and C and conserve the system in a configuratiofX;} is given by

number of particles of each type.

Consider a system wittv, particles of typeA, Np
of type B, and N¢ of type C. For ¢ = 1 the particles Wy ({X;}) = zy ' gD, 3)
undergo symmetric diffusion, and the system is disordered.

However, forg # 1 the particle exchange rates are biased.

Since the model is invariant, for example, under thewhere the partition sum is given by = >y, g%/ X
exchangel — B andg — 1/g¢, it is sufficient to consider and the sum runs over all states in whish = Nz =

g < 1. In this case the bias drives, say, Arparticle to N¢. Although expression (2) for the Hamiltonian is not
move to the left inside & domain, and to the right inside manifestly translationally invariant, a form that is clearly
a C domain. Therefore, starting with an arbitrary initial invariant under translations can be simply obtained from
configuration, the system reaches after a relatively shoi2) but is less convenient for our purposes.

transient time a state of the type AABBCCAAAB. .. In Before proving Egs. (2) and (3) let us make a few com-
which A, B, andC domains are located to the right 6f ments. TheV-fold degenerate zero energy ground states
A, and B domains, respectively. Because of the hjas of the Hamiltonian (2) comprise the fully separated con-
the domainwalls..AB...,...BC...,and...CA...are figurationA---AB---BC ---C and any translation of this
stable, and configurations of this type are long lived. Inconfiguration. Starting from a ground state, any other con-
fact, the domains in these configurations diffuse into eacfiguration may be obtained by successive permutations of
other and coarsen on a time scale of the ordegof, nearest-neighbor particles. The energy of such configura-
whereL is a typical domain size in the system. This leadstion may be calculated by noting that any particle exchange
to the growth of the typical domain size da¢)/|Ing|.  against the bias costs one unit of energy while an exchange
Eventually the system phase separates into three domaiisthe direction of the bias results in a gain of one unit.
of the different species of the form---AB---BC---C.  The maximal energy of this Hamiltonian 6> /9 and cor-

A finite system does not stay in such a state indefinitelyresponds to a fully separated stdte -AC---CB---B. It

For example, thd domain breaks up into smaller domains is of interest to note that although the dynamics defined in
in a time of orderg ™nWeNcl  |n the thermodynamic (1) is local, the resulting Hamiltonian (2) is long range, in
limit, however, when the density of each type of particle iswhich each particle interacts with all other particles. Also
nonvanishing, the time scale for the breakup of extensivéhe interactions are asymmetric in the sense that the Hamil-
domains diverges, and we expect the system to phadenian is notinvariant under space inversion. The tempera-
separate. Generically the system supports particle currentisre of the system is given by = 1/[Ing|.

in the steady state. This can be seen by considering, say, To prove Egs. (2) and (3) one can check that({X;})
the A domain in the phase separated state. The rate antisfies detailed balance with respect to the dynamics (1).
which anA particle traverses & (C) domain to the right For example, it is easy to see that an exchange of particles
(left) is of the order ofy"s (¢"c). The net current is then in the bulk of the lattice ..AB... — ...BA... satisfies

of the order ofg"s — g"¢, vanishing exponentially with gWy(...AB...) = Wx(...BA...). Similarly, particle ex-

N. This simple argument suggests that for the special casghange between site 1 and say,A---C — C --- A satis-

N4 = Np = Nc the current is zero for any system size. fiesgWy(A---C) = Wy(C---A),aslong aidvy, = Nz =

In the following, we show that the dynamics of the Nco. Note that when the three densities are not equal, the
model satisfies detailed balance for the special dgse=  system supports a current, and thus it cannot satisfy de-
Np = N¢. The Hamiltonian governing the steady statetailed balance.
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In order to demonstrate phase separation it is sufficientA AAAABBBBBBBCCCCCCCAA
to show that for large finitek the two point density 1 I N

correlation function satisfies
. FIG. 1. Thel = 5 ground state for awv = 21 system.
1M ((A1Ae) = (A1) (A) > 0. (4) ’ Y

In our case this implies lig.(A1A;) > 1/9 for largek.
In fact, we show below that in the limit of largé and for e wyritten aszy = NZ + ¢~ °W) whereZ is the partition

any finitek sum obtained by summing over one of theé sets of
(A1AL) = 1/3 — O(k/N), (5)  configurations. We now turn to calculating. Consider
] . ~an excitation of energyn created only at one domain
demonstrating the existence of phase separation in thgoundary, sayAB. The excitation can be formed by one or
model. This result indicates that the phase separation igore B particles moving into thet domain (equivalently
complete, in the sense that the probability of finding, say4 particles moving into the domain). A movingB
a B or aC particle a large distance inside thedomain  particle may be considered as a walker. The energy of

vanishes in the thermodynamic limit. 3 the system increases linearly with the distance traveled by
We proceed by first calculating the partition suk,  the walker inside the domain. An excitation of energy
showing that forg < 1 and to leading order itV at theAB boundary is formed by walkers passing a total
Znv = N/[(¢)=T, (6a) distance ofn. Hence, th_e total number of states of energy
m at the AB boundary is equal to the number of ways
where P(m) of partitioning an integem into a sum of (positive)
(@) = lim(1 = ¢)(1 — g¥)---(1 = ¢"). (6b) integers. When considering all three interfaces in t_he
n— ground state, the number of states composed of excitations

The partition sum forg > 1 is obtained by replacing  of energym;, i = 1,2,3 at the three interfaces is given
by 1/g in this expression. Note that the partition sumby P(m)P(m,)P(m3). Note that since only excitations
(6) is proportional toN rather than being exponential in with total energy smaller thaN /3 — 1 are considered, a
N. This is a consequence of the long range interactionsyalker cannot travel from one boundary to another, and
low energy excitations are localized about the domairocal excitations at the three boundaries are independent.
boundaries, and their degeneracy does not increase witfhe partition suniZ, after taking the thermodynamic limit,
system size (in contrast to short range models)g At 1,  is given by
however, all configurations are equally probable and the
partition sum is exponential iV. - -

The calculation of the partition sum is greatly simplified Z =2 4" X Pm)P(m)Pm3)dy smymm- (7)
by noting that configurations with energy larger than  "~° ™%
aN, wherea > 0 is a constant, can be neglected in theThis sum may be rewritten as
thermodynamic limit. Here we show that this is the case w
for ¢ < (1/3)/. A more detailed analysis completes 7 = (
the proof for allg # 1 [9]. Consider the sunZ,,~,y = P
ZZZSNH D(m)q™, where D(m) is the number of states
of energym. Noting thatD(m) is bounded from above
by the total number of states which in turn is bounde
by 3", one finds thaZ,,~.y decays exponentially witly
as long asg < (1/3)'/%. Hence, the partition sum may
be replaced by the truncated one as long as exponential
small corrections irNV are of no interest.

To calculate the truncated partition sum we note tha§

states with energin < N/3 — 1 may be uniquely decom- that these contributions are unimportant fpr< (1/3)3.

posed intaV disjoint sets, where each set Correspon_ds_t(%\ more detailed analysis [9] confirms that for gll<< 1
one of theW ground states of the system. Any state within gs. (6) give the partition sum up to corrections exponen-
a given set may be obtained from the corresponding groun hally small in N

state by successive permutations of nearest-neighbor Par* |1 order to calculate the correlation function considered

ticles, Inaway that the energy always increases along thl% the next paragraphs, it is useful to introduce a partial
path of intermediate states.

The sets are labeled by= 1,....N, the position of sum ZS-. It is defined as the partition sum under the
) . . L constraint that one of the walkers at tA8 interface has
the rightmostA particle in theA domain in the ground

state configuration of that set (Fig. 1). Because of thetraveled a distance. One can show that

translational invariance of the model the partition sum can Zi=q'Z. (9)
427

3
61’"P(m)> - (8)

=0

Using the classical result for the generating function of
(m) [10], attributed to Euler, we obtain Egs. (6). Note
hat excitations of energy up t8/3 — 2 are properly ac-
counted for. Once excitations of greater energy are con-
idered, triplets of the form..ABC ... can be formed.
hese triplets can be moved around the lattice with no
nergy cost so that the degeneracy is not accounted for
orrectly in Egs. (6). However, our results above imply
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We now turn to the correlation functidA;) = 1/3 — c
(A1By) — (A1Cy). In order to prove Eq. (5) we show o10f ©
that the correlation functionéA;B,) and (A,;C;) are of 010
O(k/N). This is done explicitly for(A;By). Similar
considerations yield the same result far C;). Define 0.05
(A1By); as the correlation function calculated within the 0.05|
set of states related to the ground state Neglecting
corrections exponentially small iN we can write 0%
1 N
(A1By) = N ;<A13k>l~ (10) 000

N Inq

. N . _
We now outline the pf09f thaz_l:1<AlBk>l 1S f,'n'te SO FIG. 2. The correlation functio€ = (A1Ay /) as a function
that for largeN, (A, B;) vanishes likec/N. Consider first  of the scaled variableVIng for N = 30,36,42,...,84. The

thel = 1,...,N/3termsinthe sum (10) for which; = 1 inset shows the same data plotted agajnsNote that a = 1
in the ground state. The sum of these terms may be brokehe curves approacty9 asN increases (see text).
into two parts in the following way:

N/3 N/3

Z<A B — Z<AlBk>l n Z<AlBk>l (11) correlation function is equal t&v — 3)/9(N¥ — 1) and ap-

proached /9 in the largeN limit. It should be smaller for
a phase separated state. In fact, we find it approaches zero
To bound this sum we note that the first term contain®ver a range of values which increases with (Fig. 2,
contributions from states corresponding to ground states imset). To investigate the finite size scaling near the
whichA; = B, = 1. Herewe usethe bourd;B;), =1 ¢ = 1 (infinite temperature) critical point it seems natural
forl = 1,...,k — 1. The second term contains contribu- to chooseV In g as a scaling variable. This variable repre-
tions from states corresponding to ground states in whickents the ratio of domain wall widtfi/]In ¢|) to domain
A; = 1 but B, = 0. Here, only excited states in which size (N/3). In Fig. 2 the scaling collapse for small sys-
one of theB walkers travels at least a distance- k + 1 tems is illustrated.
into the A domain may contribute t@4,B;),;. Thus, for The analysis presented above dealt with the ¢gse=
k =1 = N/3 the correlation function{A;B;); may be Nz = N¢. In the general case where the densities of
bounded from above by';_, .., Z,/Z. Combining the the three species are not equal, detailed balance is not
bounds for the two parts one finds satisfied. However, the heuristic arguments for phase
separation given at the beginning of the Letter are expected
& & < to hold for the general case provided that none of the
Z<AlBk>l =k- 1+ Z Z - (2 yensities is zero, Namely, configurations of the type
..AAABBBBCCAAA... are stable, and the time for a
The geometrical series in (12) converges o< 1, and totaIIy phase separated state to break up grows exponential
thus the sum /1 (A|By); is bounded in the thermody- in N. Numerical simulations of the model supports the
namic limit. Similar considerations yield a bound for existence of phase separation [9].
the remaining2N/3 terms in (10) demonstrating that We thank D. Kandel, J.L. Lebowitz, S. Ramaswamy,
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