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A nonlinear evolution equation for a vicinal surface growing in the step flow mode is derived in
the limit of weak desorption. This limit turns out to be singular, and nonlinearities of arbitrary orde
need to be taken into account. The meandering instability caused by step edge barriers leads to a
morphology with a fixed meander wavelength, cusp singularities, and a step width increasing as

p
t

without bound. Full lattice gas simulations confirm this picture, and the observed step morphology
derived analytically from the evolution equation. [S0031-9007(98)06044-X]

PACS numbers: 68.35.Ct, 81.15.Hi
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Many semiconductors are produced by molecular be
epitaxy (MBE). The ability to grow crystals with shar
interfaces on the atomic scale is of considerable importa
in the manufacturing of devices. One possibility f
achieving this goal is to grow a vicinal surface in th
step-flow mode, where deposited adatoms attach dire
to preexisting steps. Ideally, the surface grows with
changing its shape, by the advancement of a unifo
stable step train [1].

In reality, a number of additional effects interfere wi
this scenario. Fluctuations in the molecular beam le
to the kinetic roughening of the surface [2], and imp
rities can pin the steps [3]. Here we focus on a det
ministic instability related to energy barriers suppress
interlayer transport (the Ehrlich-Schwoebel effect [4–6
which induces step meandering. This phenomenon
predicted on the basis of linear stability analysis [7,
and has been observed experimentally in several sys
[9,10]. An important parameter governing the behav
is the ratio between the step spacing,,, and the distance
,D between nucleation centers on a singular surface;
flow requires,y,D ø 1. Otherwise, a transition to three
dimensional growth can be triggered by nucleation on
terraces [11,12], and the description in terms of step m
tion breaks down. In this Letter we address the nonlin
evolution in the regime prior to this secondary instabili
corresponding effectively to the limit,y,D ! 0.

We present a systematic derivation of the step
namics from the underlying microscopic principles (co
servation and kinetic laws). Our starting point is t
Burton-Cabrera-Frank (BCF) [13] model supplemen
with noninstantaneous kinetic attachment at the steps
preceding works [14,15] this type of treatment was p
formed in a situation where desorption is not negligib
The meandering instability then sets in at a nonzero thre
old flux [7,8], and the dimensionless distance from t
0031-9007y98y80(19)y4221(4)$15.00
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threshold provides a small parametere. An expansion in
powers ofe was performed, and to leading nontrivial orde
the steps were found to obey an equation of the Kuramo
Sivashinsky type. In the absence of desorption—which
the relevant case for MBE—meandering occurs at ar
trarily small fluxes. We discover here that in this limit th
expansion ine is singular, which is a nonstandard situa
tion in nonlinear dynamics. A careful analysis allows u
nevertheless to derive the appropriate evolution equat
which turns out to be highly nonlinear. The solutions
this equation show an in-phase step meander of fixed wa
length, in agreement with recent experiments [10].

Let c be the areal adatom density andF the deposition
rate. Mass conservation implies

D=2c 1 F ­ 0 (1)

where the quasistatic approximation (valid for most pra
tical purposes) is adopted, andD is the diffusion constant.
At the steps mass currents are related to departure f
equilibrium by

6D
≠c
≠n

­ n6sc 2 ceqd , (2)

where1 and2 refer to the lower and upper terraces r
spectively,n is a phenomenological kinetic coefficient, an
ceq is an equilibrium concentration taking into account th
step curvature effect:ceq ­ c0

eqs1 1 kVgykBTd, where
c0

eq is the equilibrium concentration for a straight step,k

is the step curvature,g the line tension,V the atomic area,
and kBT the thermal energy. Finally, mass conservati
at the step yields

yn ­ DV

∑µ
≠c
≠n

∂
1

2

µ
≠c
≠n

∂
2

∏
, (3)

where yn is the step normal velocity, and≠y≠n stands
for the normal derivative. Equations (1)–(3) complete
© 1998 The American Physical Society 4221



VOLUME 80, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 11 MAY 1998

l
e

o
o
id
in
t
a
o
n
o

v

s
e
n
e

1

a
in
t

a
o
h
n
a

o

k

o-

y
n
(5)
n-
or
re-

s.
e

n-

is
uc-
s

11)

p-

el
ce

gs
0].

e
BE
specify the step dynamics. In general the resulting evo
tion equations are nonlocal and nonlinear [15]; howev
at sufficiently large scales local dynamics prevail.

In order to introduce the small parametere whose value
is a measure of locality, we write first the linear dispersi
relation for small fluctuations around a regular train
straight steps [7,8]. For ease of presentation we cons
an in-phase train, corresponding to the fastest grow
linearly unstable mode [8], and one-sided attachmen
the steps (only atoms coming from lower terraces
incorporated). We look for perturbations in the form
eikx1vt, wherek is the wave number along the step, a
v the amplification rate. The linear dispersion relati
takes the form

v ­
eD
2

k2 2 DG,k4 ; ak2 2 bk4, (4)

wheree ­ VF,2yD ø 1 is the Péclet number [1],, is
the interstep distance, andG ­ gV2c0

eqykBT. The steps
are morphologically unstable against modes with wa
lengths larger thanlc ­ 2p

p
bya. The fastest growing

mode has a wavelengthlu ­ 2p
p

2bya , e21y2, and
the time for development of instability scales ase22.

In the spirit of a multiscale expansion [14] this sugge
the introduction of slow spatial and temporal variabl
X ­ e1y2x andt ­ e2t, as in the case where desorptio
is present [14,15]. One would then naively be tempt
to expand both the concentrationc and the step position
z sx, td in power series ine1y2. This standard analysis
leads to the conclusion that there is no nonlinear term
counterbalance the linear terms. A close inspection [
shows that the leading term in the step position must
singular, in the sense thatz ­ Hye1y2, where H is of
order 1. It might seem that this behavior is pathologic
and that therefore the expansion looses its mean
However, the problem is resolved by noting that due
translational invariance only derivatives ofz should enter
the final equation. Indeed, since space scales ase21y2,
then≠z y≠x ­ ≠Hy≠X , Os1d, i.e., the slope is of order
1. As a consequence we expect nonlinearities of arbitr
order to enter the final equation. After the recogniti
of the singular behavior, and upon introduction of t
“intrinsic” variable ≠zy≠x as a natural representatio
of the step, the calculation follows the same route
in Ref. [14]. At the nontriviale3y2 order a solvability
condition must be satisfied which results in the evoluti
equation we are seeking [16]:

≠tz ­ 2≠x

∑
a ≠xz

1 1 s≠xz d2
1

b

1 1 s≠xz d2

3 ≠x

Ω
≠xxz

s1 1 s≠xz d2d3y2

æ∏
. (5)

Because of our assumption of an in-phase train it ta
the form of a conservation law,≠tz 1 ≠xJ ­ 0, where
the currentJ is the expression between braces.
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It is instructive to compare Eq. (5) to the phenomen
logical equation for the heighthsx, z, td of the surface
above the substrate plane [6,12,17]. It is written as

≠h
≠t

­ 2=

∑
FV,2

D=h
1 1 s,Dyad2s=hd2 1 K=s=2hd

∏
, (6)

where K . 0 is a constant. Inserting the profile with
an in-phase step train [12]hsx, z, td ­ say,d fz sx, td 2 zg
into (6) and taking the limit,y,D ! 0, one finds that
the first term on the right hand side of (6) exactl
coincides with the corresponding term in Eq. (5). I
contrast, the second term on the right hand side of
contains nonlinearities not present in (6). While the no
linearity inside the curly brackets is the standard form f
the chemical potential of a stepped surface [18], the p
factor bf1 1 s≠xz d2g21 is new: It describes a reduction
of the mobility due to the crowding of the deformed step
We will see below that this term qualitatively changes th
step dynamics.

Figure 1 shows a typical step profile starting from a ra
dom initial condition. (The final profile is found to be in-
dependent of the initial conditions; its basin of attraction
large enough.) The step develops a cuspy ordered str
ture whose amplitude grows unstably with time. The rm
step width grows asymptotically as

p
t (Fig. 2). This pic-

ture shares many features with that observed on Si(1
and Si(001) [9].

The method used to obtain Eq. (5) is based on an asym
totic expansion ine. To check its range of validity, we
have performed a numerical study of the full BCF mod
represented by Eqs. (1)–(3). We simulate a vicinal fa
with steps running on average in thex direction. Fluc-
tuations of the step in thez direction are assumed to
be described by a single-value function, i.e., overhan
and voids are excluded in the step configuration [19,2
Atoms deposit on a square lattice of size128 3 256, and
diffuse on the vicinal surface containing four steps. W
neglect the desorption process, corresponding to the M

0.0 100.0 200.0
x

0

5000

10000

15000

ζ

FIG. 1. A typical solution at different times.
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FIG. 2. The rms step width as a function of time.

situation. To realize the step-flow growth mode, nucl
ation on terraces is forbidden in the simulation. Period
boundary conditions are assumed in thex direction, and he-
lical ones in thez direction. The steps are initially straight
We assume (as in the analytical part) that the attachm
occurs only from the lower terrace. The values of p
rameter sets are chosen to be the same as previously [
D ­ 1, F ­ 1024, c0

eq ­ 0.119, and the reciprocal of the
step stiffnesskBTyga ­ 0.362.

The time evolution of one of the steps is shown
Fig. 3, and the associated variation of the rms step wid
w is shown in Fig. 4. In the early stage the step wid
seems to cross over from the random detachment beha
w , t1y2, to the Edwards-Wilkinson behaviorw , t1y4

[21]. So far, each step has small fluctuations and beha
as an isolated one. Att ø 103, the width becomes of
order unity, and the step begins to sense the neighbor
ones. The fluctuations increase abruptly in order to adj

0 64 128x
0

1000

2000

3000

ζ

FIG. 3. Time evolution of one step in a step train.
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the phase to the neighbors. After the phase adjustm
t . 105, all the steps are synchronized in phase and
wavelength of fluctuation appears to remain constant [2
The step profile is asymmetric in thez direction with
flat tops and sharp valleys in contrast to Fig. 1. Th
suggests that symmetry-breaking terms [23] may app
in Eq. (5) at higher order. Still the step width increases
w ~ t1y2 as shown in Fig. 4. It must be emphasized th
this behavior is different from what is observed in som
s1 1 1d-dimensional growth models with strong step-edg
barriers [23,24] where it is essentially due to shot noise.
contrast, here the behavior reflects the interaction of st
through the diffusion field.

These simulations suggest that the evolution equat
(5) captures the essential features. Next, we explain
observed behavior through the study of Eq. (5). In a stea
state,J ­ 0, it leads to Newton’s equation for a ficti-
tious particle with a coordinatemsxd ­ ≠xz y

p
1 1 s≠xz d2

moving in time x as bd2mydx2 ­ 2dUydm with the
potentialUsmd ; 2a

p
1 2 m2. Using energy conserva-

tion, the amplitudeA and the wavelengthl of the step
profile can be evaluated as functions of the turning po
m0 of the particle (corresponding to the largest slope in t
step profile), giving the results:

A ­
q

8bsa 1 E dya , (7)

l ­ 4
q

bya f2Esss sinsu0y2dddd 2 Ksss sinsu0y2ddddg , (8)

whereE andK are complete elliptic integrals of the firs
and second kind, respectively,E ­ Usm0d is the particle
energy, andu0 is defined through the relationm0 ­ sinu0.
The amplitude is an increasing function ofE (2a # E #

0) and remains finite even for a maximal slope≠xz going
to infinity (i.e., form0 ­ 1, E ­ 0): A !

p
8bya. Con-

versely,l is a decreasingfunction of the maximal slope,
varying fromlc for E ­ 2a to

p
8bya

Rpy2
0 du

p
cosu

for E ­ 0. In other words, stationary profiles exist onl
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FIG. 4. Time dependence of the step width in double log
rithmic scale. Full lines are guides to the eye.
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for values ofl where the straight step isstableagainst
small fluctuations. In marked contrast to the standard p
nomenological equations [6,12,17], there are no statio
ary configurations in the linearly unstable regimel .

lc, which could support a coarsening process towar
larger wavelengths. Instead, the most unstable wavelen
lu is frozen in during the further evolution of the step
Indeed, using normalized variables (x, z , t !

p
ayb x, z

and a2tyb) lu ­ 23y2p ­ 8.89, which is very close to
the value (8.7–8.8) displayed in Fig. 1.

Solutions of fixed l are described by the ansat
z sx, td ­ Astdgsxd, whereAstd is an increasing function
of time. Inserting this into (5) it is seen that the secon
equilibrium contribution to the current vanishes asA23

relative to the first, nonequilibrium term. Fort ! `, A !

` and the equation reduces toÙAA ­ ag00yfgsg0d2g ­
C where C . 0 is a constant andÙA ­ dAydt, g0 ­
dgydx. It follows immediately that the amplitude grows
as

p
t. To solve the equation forg appropriate boundary

conditions have to be specified. By symmetry the curre
J has to vanish at the maxima and minima of the profi
SinceJ , 1yg0 this implies thatg0 diverges atx ­ 0 and
x ­ ly2. The relevant solution reads [25]

gsxd ­ lys2
p

p d erf21s4xyl 2 1d , (9)

where erfsxd is the error function. This is consistent with
the numerical profiles shown in Fig. 1, and the predictio
for the step width

p
kz 2l ­ s2atd1y2 is in good agreement

with the data in Fig. 2.
In summary, we have shown that, as in the case w

desorption [14], we can extract from the full BCF mode
the step evolution equation during MBE. The absence
desorption is subtle and completely changes the mat
matical structure of the problem. This difficulty could
nevertheless, be circumvented. The results show that th
is no coarsening, but rather the step develops a spike
ordered pattern. The overall shape together with the te
poral behavior of the width of the step obtained from th
continuum evolution equation and MC simulations agr
well. A striking feature, a finite time singularity within
the continuum approach, appeared. A physical cutoff m
intervene. Does the next order contribution ine capture
that effect, or does the singularity survive at higher order
This question must be elucidated in the future. Anoth
subject of further investigation is the transient behavior
the out-of-phase train before the steps become synch
nized. Of interest might also be to elucidate the effect
the ES effect at the step corners [24]. Finally when a
lowance is made for nucleation (low temperature or sm
misorientation angle) this should give rise to a rich inte
play between unstable step-flow and 2D island formatio
It is of importance to specify the time scale beyond whic
nucleation competes with step flow.
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