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New Nonlinear Evolution Equation for Steps during Molecular Beam Epitaxy
on Vicinal Surfaces
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A nonlinear evolution equation for a vicinal surface growing in the step flow mode is derived in
the limit of weak desorption. This limit turns out to be singular, and nonlinearities of arbitrary order
need to be taken into account. The meandering instability caused by step edge barriers leads to a step
morphology with a fixed meander wavelength, cusp singularities, and a step width increasjfig as
without bound. Full lattice gas simulations confirm this picture, and the observed step morphology is
derived analytically from the evolution equation. [S0031-9007(98)06044-X]

PACS numbers: 68.35.Ct, 81.15.Hi

Many semiconductors are produced by molecular bearthreshold provides a small parameter An expansion in
epitaxy (MBE). The ability to grow crystals with sharp powers ofe was performed, and to leading nontrivial order
interfaces on the atomic scale is of considerable importandie steps were found to obey an equation of the Kuramoto-
in the manufacturing of devices. One possibility for Sivashinsky type. Inthe absence of desorption—which is
achieving this goal is to grow a vicinal surface in thethe relevant case for MBE—meandering occurs at arbi-
step-flow mode, where deposited adatoms attach directlyarily small fluxes. We discover here that in this limit the
to preexisting steps. ldeally, the surface grows withouexpansion ine is singular, which is a nonstandard situa-
changing its shape, by the advancement of a uniformtjon in nonlinear dynamics. A careful analysis allows us
stable step train [1]. nevertheless to derive the appropriate evolution equation,

In reality, a number of additional effects interfere with which turns out to be highly nonlinear. The solutions of
this scenario. Fluctuations in the molecular beam leadhis equation show an in-phase step meander of fixed wave-
to the kinetic roughening of the surface [2], and impu-length, in agreement with recent experiments [10].
rities can pin the steps [3]. Here we focus on a deter- Let ¢ be the areal adatom density aARdhe deposition
ministic instability related to energy barriers suppressingate. Mass conservation implies
interlayer transport (the Ehrlich-Schwoebel effect [4—6]), DV + F =0 (1)
which induces step meandering. This phenomenon was o o ]
predicted on the basis of linear stability analysis [7,8],where the quasistatic approximation (valid for most prac-
and has been observed experimentally in several systerfi§al purposes) is adopted, afdis the diffusion constant.
[9,10]. An important parameter governing the behaviorAt the steps mass currents are related to departure from
is the ratio between the step spacitigand the distance €dquilibrium by
{p between nucleation centers on a singular surface; step ac
flow requirest/¢,, < 1. Otherwise, a transition to three- =D P v+(c — Ceq), (2)
dimensional growth can be triggered by nucleation on the
terraces [11,12], and the description in terms of step mowhere+ and — refer to the lower and upper terraces re-
tion breaks down. In this Letter we address the nonlineagPectively is a phenomenological kinetic coefficient, and
evolution in the regime prior to this secondary instability, ceq iS @n equilibrium concentration taking into account the
corresponding effectively to the limit/¢, — 0. step curvature effect.q = c2,(1 + «Qy/kgT), where

We present a systematic derivation of the step dyfcgq is the equilibrium concentration for a straight step,
namics from the underlying microscopic principles (con-is the step curvaturey the line tension{) the atomic area,
servation and kinetic laws). Our starting point is theandkgT the thermal energy. Finally, mass conservation
Burton-Cabrera-Frank (BCF) [13] model supplementedat the step yields
with noninstantaneous kinetic attachment at the steps. In 9c 9c
preceding works [14,15] this type of treatment was per- v, = DQ[(—) — <—> } 3
formed in a situation where desorption is not negligible. n/+ on/-
The meandering instability then sets in at a nonzero threslwhere v, is the step normal velocity, and/dn stands
old flux [7,8], and the dimensionless distance from thefor the normal derivative. Equations (1)—(3) completely
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specify the step dynamics. In general the resulting evolu- It is instructive to compare Eq. (5) to the phenomeno-
tion equations are nonlocal and nonlinear [15]; howeverlogical equation for the height(x,z,¢) of the surface
at sufficiently large scales local dynamics prevail. above the substrate plane [6,12,17]. It is written as

In order to introduce the small parametewhose value )
is a measure of locality, we write first the linear dispersion oh _ _ [ FQEpVh
relation for small fluctuations around a regular train of 97 1 + (€p/a)*(Vh)?

straight steps [7,8]. For ease of presentation we ConSid%hereK >0 is a constant. Inserting the profile with
an in-phase train, corresponding to the fastest growingn in-phase step train [12]x, z,7) = (a/€)[Z(x, 1) — 2]
linearly unstable mode [8], and one-sided attachment gf; (6) and taking the IimitéﬂD . 0 one finds that
f[he steps (only atoms coming from_lowe_r terraces arg,. first term on the right hand sif:le of (6) exactly
"},?gg?rated)' We look for perturbations in the form of i ciges with the corresponding term in Eq. (5). In
¢ ’ whe'r.ek IS the wave ”“”ﬁber alqng th? step, andcontrast, the second term on the right hand side of (5)
w the amplification rate. The linear dispersion relation . +-ins nonlinearities not present in (6). While the non-
takes the form linearity inside the curly brackets is the standard form for
eD the chemical potential of a stepped surface [18], the pre-
w = 7"2 - DIk = ak® — Bk, (4)  factor B[1 + (9,£)*]" is new: It describes a reduction
of the mobility due to the crowding of the deformed steps.
wheree = QF¢*/D < 1 is the Péclet number [1 is e will see below that this term qualitatively changes the
the interstep distance, adtdl= yQ>c{,/ksT. The steps step dynamics.
are morphologically unstable against modes with wave- Figure 1 shows a typical step profile starting from a ran-
lengths larger than. = 27/B/a. The fastest growing dom initial condition. (The final profile is found to be in-
mode has a wavelength, = 27/28/a ~ € /2, and  dependent of the initial conditions; its basin of attraction is
the time for development of instability scalesas. large enough.) The step develops a cuspy ordered struc-
In the spirit of a multiscale expansion [14] this suggestsure whose amplitude grows unstably with time. The rms
the introduction of slow spatial and temporal variablesstep width grows asymptotically ag& (Fig. 2). This pic-
X = €'2x andr = €1, as in the case where desorptionture shares many features with that observed on Si(111)
is present [14,15]. One would then naively be temptedand Si(001) [9].
to expand both the concentratienand the step position  The method used to obtain Eq. (5) is based on an asymp-
{(x,1) in power series ine'/2. This standard analysis totic expansion ine. To check its range of validity, we
leads to the conclusion that there is no nonlinear term thave performed a numerical study of the full BCF model
counterbalance the linear terms. A close inspection [16fepresented by Egs. (1)—(3). We simulate a vicinal face
shows that the leading term in the step position must beith steps running on average in thedirection. Fluc-
singular, in the sense that= H/e'/2, where H is of  tuations of the step in the direction are assumed to
order 1. It might seem that this behavior is pathologicalbe described by a single-value function, i.e., overhangs
and that therefore the expansion looses its meaningind voids are excluded in the step configuration [19,20].
However, the problem is resolved by noting that due toAtoms deposit on a square lattice of siZ28 X 256, and
translational invariance only derivatives ofshould enter  diffuse on the vicinal surface containing four steps. We
the final equation. Indeed, since space scales @8,  neglect the desorption process, corresponding to the MBE
thendal/ax = dH/3dX ~ O(1), i.e., the slope is of order
1. As a consequence we expect nonlinearities of arbitrary
order to enter the final equation. After the recognition 15000
of the singular behavior, and upon introduction of the
“intrinsic” variable 9/dx as a natural representation

of the step, the calculation follows the same route as
in Ref. [14]. At the nontriviale’/? order a solvability lOOOOMW\/W\AMWVWWV\W/WV\W

+ KV(V%)} . (6)

condition must be satisfied which results in the evolution

equation we are seeking [16]: 4 W
@ 0.l P VYY)

5.6 = —g + 5000 VY VN VIVAAANAANAARAY)
& "[1 + (907 1+ (9:0)? WAAAYAAMAMAAAMAMAN
VWAAAYWAAAMNAANANAN
X 0l 71 |- 5
x{(1 + (8,0)?)3/? ©) Ovvvvvvwmwvwv»wvvvvv
Because of our assumption of an in-phase train it takes 00 100.0 200.0
the form of a conservation lawj,¢ + 9,J = 0, where X
the current/ is the expression between braces. FIG. 1. A typical solution at different times.
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10° the phase to the neighbors. After the phase adjustment
t > 10°, all the steps are synchronized in phase and the
wavelength of fluctuation appears to remain constant [22].
The step profile is asymmetric in the direction with
flat tops and sharp valleys in contrast to Fig. 1. This
suggests that symmetry-breaking terms [23] may appear
in Eqg. (5) at higher order. Still the step width increases as
w o« t1/2 as shown in Fig. 4. It must be emphasized that
this behavior is different from what is observed in some
(1 + 1)-dimensional growth models with strong step-edge
barriers [23,24] where it is essentially due to shot noise. In
contrast, here the behavior reflects the interaction of steps

6 through the diffusion field.

t These simulations suggest that the evolution equation

(5) captures the essential features. Next, we explain the

observed behavior through the study of Eg. (5). Inasteady

state,J = 0, it leads to Newton’s equation for a ficti-

situation. To realize the step-flow growth mode, nucle-tious particle with a coordinate(x) = a.¢/v1 + (9.¢)*

FIG. 2. The rms step width as a function of time.

ation on terraces is forbidden in the simulation. Periodidnoving in timex as fd’m/dx* = —dU/dm with the
boundary conditions are assumed in.ttdirection, and he- potentialU(m) = —a+/1 — m?. Using energy conserva-

lical ones in the: direction. The steps are initially straight. tion, the amplituded and the wavelengthh of the step
We assume (as in the analytical part) that the attachmemtofile can be evaluated as functions of the turning point
occurs only from the lower terrace. The values of paZno Of the particle (corresponding to the largest slope in the
rameter sets are chosen to be the same as previously [1fep profile), giving the results:

D =1,F =104 ¢% = 0.119, and the reciprocal of the A=z s ;
step stiffnesskBT/yaq= 0.362. V8B(a ) e, (7

The time evolution of one of the steps is shown in _ ; _ ;

Fig. 3, and the associated variation of the rms step width A= 4yB/a2E(sin60/2)) — K(sino/2)].  (8)

w is shown in Fig. 4. In the early stage the step widthwhereE andK are complete elliptic integrals of the first

seems to cross over from the random detachment behaviafd second kind, respectivel, = U (my) is the particle

w ~ t/2 to the Edwards-Wilkinson behavior ~ ¢!/4 energy, and), is defined through the relation, = siné,.

[21]. So far, each step has small fluctuations and behavelhe amplitude is an increasing functionBf(—a = £ =

as an isolated one. At~ 103, the width becomes of 0) and remains finite even for a maximal slopg going

order unity, and the step begins to sense the neighborirfg infinity (i.e., formg = 1, £ = 0): A — /88 /a. Con-

ones. The fluctuations increase abruptly in order to adjustersely,A is adecreasingunction of the maximal slope,
varying froma, for £ = —a to+/88/a fg” d6 /cosh

for £ = 0. In other words, stationary profiles exist only
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FIG. 4. Time dependence of the step width in double loga-
FIG. 3. Time evolution of one step in a step train. rithmic scale. Full lines are guides to the eye.
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for values of A where the straight step stableagainst der von Humboldt Stiftung. The work of J. K. was sup-
small fluctuations. In marked contrast to the standard pheported by DFG within SFB 23TUnordnung und grosse
nomenological equations [6,12,17], there are no stationFluktuationen

ary configurations in the linearly unstable regime>

As, which could support a coarsening process towards
larger wavelengths. Instead, the most unstable wavelength
A, is frozen in during the further evolution of the step.
Indeed, using normalized variables, {,t — Ja/B x,{
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Solutions of fixed A are described by the ansatz Japan.

(x,1) = A(r)g(x), whereA(r) is an increasing function *Also at Dipartimento di Fisica dell'Universita di Firenze
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