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Transition to Normal Fluid Turbulence in Helium 1l
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Turbulence in the heat flow of helium Il manifests itself as a tangle of quantized vortex lines. It has
been known for some time that there are two different forms of turbulence, calletthend theT-2
turbulent states. Experiments show that when a critical velocity is exceeded there is a large increase of
the superfluid vortex line density and a transition occurs fiorhto 7-2. Until now, the nature of the
two turbulent states and of the critical velocity has been a mystery. We present a model which solves
this problem by addressing for the first time the issue of the stability of the normal fluid. The computed
transition is found to be in good agreement with the observations. [S0031-9007(98)06114-6]

PACS numbers: 47.37.+q, 47.27.Cn, 67.40.Vs

Some of the most interesting problems in the hydro-p = p; + p, helium’'s total densityT the temperature,
dynamics of helium Il involve quantized vortex lines [1]. and S the entropy. According to Landau’s model, the
Vortex lines appear, for example, when a container fillecheat flux W = pTSwv, is carried by the normal fluid
with helium is set into rotation. In this case, the vor-away from the resistor, towards which some superfluid
tex configuration is ordered: The vortices align along themust flow in order to conserve mass. In this way, a
rotation axis and form a uniform array. There are alsarelative velocity (thermal counterflow),; = |v, — vl is
situations in which the vortex system is disordered, forset up between the two fluids, which is proportional to the
example, when the flow of helium is turbulent. Such turbu-driving heat flux,v,, = W/p,ST.
lence, which manifests itself asangleof quantized vortex We know from the pioneering experiments of Vinen [5]
lines, is receiving renewed experimental attention: At thethat if W exceeds a critical valu#,, (corresponding to a
University of Lancaster, McClintock and co-workers [2] critical velocityv,, = v.1), the frictionless, perfectly heat
use intense vortex tangles as models of the early universepnducting motion of the superfluid breaks down and a su-
and a superfluid wind tunnel is being built by Donnelly atperfluid vortex tangle is created. The vortex line density
the University of Oregon [3]. of the tangle can be easily determined by measuring the

Motivated by this experimental interest in hard turbu-attenuation of second sound or from temperature differ-
lence, we address the more basic but still open question @nces. These measurements show thatfor> v, the
what happens to turbulence at relatively low speed in theortex line densityL, in the tangle is approximately pro-
much-studied configuration callexbunterflow. Measure-  portional to the square of the driving counterflow velocity,
ments in different apparati and using different techniques _ 2,2

. Ly = Y Vnso (1)
clearly show that there exi$ivo separate states of turbu-
lence in a circular pipe, callel-1 andT-2 in the literature ~ Wherey = y(T) is some temperature dependent parame-
[4]. T-1 andT-2 are superfluid vortex tangles character-ter. Geometrically,L(;l/2 represents the average in-
ized by very different vortex line densitieg-2's being tervortex spacing in the tangle. A major difficulty of
much larger. If the flow speed exceeds a critical valuejnterpretation arises, however, becausevaries greatly
there is a transition frorf-1 to 7-2. The aim of this Let- from experiment to experiment. A very detailed analysis
ter is to explain for the first time the nature of the two of all experimental data available was carried out by
turbulent states and of the critical velocity, until now anTough [4], who discovered the existence of various
outstanding puzzle in the study of superfluid turbulence. turbulent states characterized by different valuesyof

The simplest experimental setup which has been widel{rough found that, in circular or almost square counterflow
used to study the superfluid vortex tangle is a counterflovchannels at increasing values of; above the threshold
pipe. One end of the pipe is closed and is providedraluev,, there is first a regime of moderate vortex line
with a resistor which dissipates a known heat fli#x density, called theT-1 turbulent state. IfW > W,
the other end of the pipe is open to the helium bath(corresponding taw,, > v,.;), another state is observed
What happens at smalf can be easily understood using with much larger vortex line density, callef-2. The
Landau’s two-fluid model. The model describes heliumlower density 7-1 state is absent in high aspect ratio
as the intimate mixture of a superfluid component (which(rectangular) channels, in which the line density has
flows without any friction) and a normal fluid component essentially the same value asTir.

(which carries the entropy and viscosity of the liquid). On the theoretical side, the phenomenological theory of
Using subscripts andr to indicate the super and normal Vinen [5] and scaling arguments justified Eqg. (1) with-
components, respectively, we call andp, the densities, out determiningy. Later the numerical simulations of
v, andyv, the velocities,j = p,v; + p,v, the mass flux, Schwarz [6] confirmed (1) and shed more light onto the
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problem. Schwarz demonstrated that,if; > v.;, a via the mutual friction force [13]

self-sustaining homogeneous vortex tangle driven by the B

counterflow is generated by the simple rules of vortex F,, = <M>gws(vn - v, (2)
dynamics. Schwarz’s theory, unlike Vinen’s, has no ad- 2p

justable parameters and makes quantitative predictiongnheres is the mutual friction coefficient [14p, = T'Lo
abouty. In applying the theory of Schwarz to the ex- 5 he superfluid vorticityl' = 9.97 X 10~ cm?/sec is

periments, there are, however, difficulties in understanding, o quantum of circulation, and is a constant of order
what is a homogeneous state of turbulence and what is ”QEnity which depends on ’the details for the flow and

The original calculation of Schwarz assumes that the drivy,e tangle. We know little of this tangle, only that its

ing applied normal fluid and superfluid velocity profiles  gensity L, corresponds to the less intengel turbulent
andv, are constant, and therefore soug. Tough [4] ga4e  For the sake of simplicity, we assume that Z,
found that Sphwarzs/ agrees fairly well .to the measured that is to say the tangle is isotropic. In writing (2),
values ofy in the T-2 state. lon trapping experiments hysically we assume that, although the superfluid is
[7] probgdLo across the_ channel and.deternjmed that th urbulent, the mutual friction acts on the vortex lines of
superfluid vortex tangle in the-2 state is spatially homo- tangle in the same way as it does on vortex lines in

. . 1 y . .
tghenteso uhs to W,'tht'r?ﬁ ofthe clhantnetl; \éva![Ist. Th'ﬁ C(I)_nftlrms the uniform array of lines in rotation. We also neglect the
at schwarz's theory applies {o tihez state well. Later, g4 1ar, nondissipative part of the mutual friction force.

an even better agreement was found between the homc’glg('quation (2) is a key approximation about the superfluid

neous theory qf Schwarz and measur.ements in pure SUP&{irbulent state present in a nonuniform flow, and has been
flow [8]. This is expected, because, in pure superflow, recently discussed and tested by Tough [9].

must be constant (the superfluid velocity need not satisfy The equations which govern the motion of the normal

no-slip boundary conditions), arv = 0 by definition. In fluid in the presence of the tangle are
conclusion, we know little about thg-1 superfluid vortex
tangle, because it is not described by Schwarz’s theory. A Pn

T%e outstanding questions are t)r/1e following: W)P/1y Pn gy T PnVn Ve = _XVP — pSVT
are there two different kinds of superfluid vortex tangles Y uVlv. _ F 3
T-1 and T-2? What is the nature of these tangles? KV Vn e (3)
What determines the critical velocity at which there is aand the incompressibility conditio¥ - v, = 0, where
transition from7-1 to 7-2 with a dramatic increase of the ,, is helium’s viscosity. The experiments indicate that
superfluid vortex line density? the 7-1 state is macroscopically [15] steady and that it

The discussion above leads us to conjecture that the exxists at Reynolds numbers of the normal fluid in the
istence off'-1 must be linked to some inhomogeneitywgf  range from approximately 20 to 200, which is at least
and that the transition at., is caused by some instability 1 order of magnitude below the transition to turbulence
of the normal fluid. There have been speculations in thén classical pipe flow [16]. It is therefore fair to assume
literature [4,9] about the nature of, but nobody has ever that the solution of the normal fluid [Eq. (3)] in theé-1
investigated whether an instability can take place. The eXstate is some time-independent laminar functn cor-
isting numerical simulations of Schwarz [6], Samuels andespondingly, the superfluid profile is some other function
co-workers [10], and deWaele and co-workers [11] have,%. Our aim is to determine the stability of the normal
all studied the effects which a prescribegdhas on the su- fluid v© under the increasing forcing due to the tangle
perfluid tangle. Various forms of, have been considered, at higher and higher values @f. To achieve the aim,
ranging from a simple uniform flow to Poiseuille flow, and we use standard linear stability theory.
from a single normal vortex to the vortex tubes of more We perturb the basic state’ by introducing small
complexABCflows. The approach which we take here is disturbances which are proportional to a small parameter
novel and opposite: We ask what the effect is which thes, Then we enforce the condition that the total velocity
tangle has on the normal fluid itself. v? + ev! is a solution to Eq. (3), neglect terms which

The model which we have developed is the following.are proportional ta2, and subtract the equation satisfied
According to the observations [12], the channel's lengthpy the basic statev’. In order to compare results
is not critical for the existence of the second superfluidrom different experiments, it is convenient to write the
turbulent stateT-2, so we consider a cylindrical pipe of resulting linearized equation for the perturbatiorjsin
infinite length and calR the radius. At velocityv,; <  dimensionless form. To do so, we scale distances with the
v1, in the regime of thermal counterflow, the normalradiusR of the pipe and time with the viscous diffusion
flow in the pipe is the Poiseuille profile, = vp =  time scalerR?/v,, wherev, = u/p, is the normal fluid’s
Vax(1 = r?)2, where the peak velocity,,, is proportional  kinematic viscosity. We have then
to the prescribed heat flug, is the unit vector along the

pipe, and we have used cylindrical coordinatesp, z. A + v WO VWY = V) + VY - BY,
If v, > ve1, the superfluid field is destabilized and the 9t e " "
vortex tangle appears. The tangle affects the normal fluid 4
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where ism = 1, followed bym = 2, m = 3, etc. We consider
Bp,T now the moden = 1. For a given value ok, we find
B = 3/)—;,, LoR?, (5) that there is a threshold valy® = Bmin below which the

flow is always stable no matter what the value\gf is;
and p’ is the rescaled efficient pressure. Equation (4)at8 = Bmin a particular axial flowV,, can destabilize the
must be solved together witR - v/ = 0 and the no- perturbation of that particular wave numbler We find
slip boundary conditions! = 0 at » = 1. We have no that the smallek is, the larger the required,, becomes
direct information about?, but we argue that in the first (see Fig. 1). It is apparent from Fig. 1 that below a criti-
approximationv® will be rather similar to the Poiseuille cal valueg =~ 13 no perturbation will grow. The critical
profile vp. The argument is the following. Although we value is slightly larger, 14 rather than 13Vif, < 10, but
do not know the precise shape of the superfluid velocityn the first approximation we takg., = 13 as the stabil-
vY, we can use the counterflow conditign= 0 to find ity boundary.

an approximate average value df in terms ofv® and From B., and Eq. (5), we compute the quantily =

then solve (3). In the parameter regime of interest hereg; /g1 that is the critical dimensionless tangle inten-
we find that the solutiorv) differs only slightly from ity which destabilizes the normal fluid. Geometrically,
the parabolic profilevp, the only difference being a mild A is the average vortex line spacing expressed in units of
flattening of the shape [17]. It is therefore justified tothe pipe’s radius. Note that, despite its simple geometrical
usevp as the approximate basic state which we perturb ifmeaning,A does not depend ofi because of the compli-
the linear stability calculation. A similar approximation cated temperature dependence of the terms which enter the
to the basic state is used, for example, in the study ofiefinition of 3.
the stability of the flow between two rotating concentric  Figure 2 compares our to experimental measurements
cylinders, when one determines the appearance of TaylgpQ] of the transition from the stat&-1 to the statel-2
vortex flow by perturbing the azimuthal Couette velocity in cylindrical pipes. The quantitative agreement between
profile while neglecting the small axial and radial flow theory and experiments is very good, more so if one con-
induced by the ends. siders the relative simplicity of our model. It is not clear
To solve Eq. (4) we make the standard assumption thaiow much significance should be attached to the slight
the perturbations have the dependence(@xpt im¢ +  difference between the temperature dependenck aifid
ikz). Inthis way, we obtain an eigenvalue problem for thethe observations. This dependence arises from the vari-
growth rates as a function of the dimensionless axial flow ous terms on the definition g8: Some of these terms,
Vax, the forcing paramete$, and the axial and azimuthal individually, change rapidly with temperature, but, taken
wave numberg andm. If Re(or) > 0, the basic flow,  together, almost compensate each otheyd s sensitive
is unstable. Note that, iB = 0, the problem which we on the individual values. The large scatter of the data
consider reduces to an Osborne Reynolds’ classical prolguggests that more precise experiments are needed. For
lem of the stability flow in a cylindrical pipe [15]; in this each experimental data set, the pipe’s diaméter 2R
case, we know that the flow is linearly stable, and the onseind the critical Reynolds numbers Ref the normal fluid
of turbulence which is observed in the experiments is deat the transition are indicated in the figure caption, where
termined by finite amplitude disturbances which can vangRe., = V2R /vy, vy = Weo/pST, and W, is the ob-
from one experiment to the other. The eigenvalue probserved critical heat flux. It is apparent that the agreement

lem is solved by using a Chebyshev collocation methoghetween theory and observations covers a wide range of
[18]. We expand the perturbations over spectral functionparameters.

which satisfy both the boundary conditions and the regular-
ity conditions on the axis (the latter depending both on the
particular variable in consideration and on the azimuthal 10000

wave number). The spectral functions are built using QL ,H@
suitable combinations of Chebyshev polynomig)ér) of 1000 ¢ stable ]
degreej. The spectral expansions are truncated after a '//j:;fﬁ/!{
sufficiently high numbenN of terms and tested for spectral X 100 T k=20 ]
accuracy. Typically ranges from 20 to 30. The resulting > —
equations for the unknown coefficients in the spectral ex- or
pansions form a matrix eigenvalue problem which is solved il : 3'Ounstab‘e )
using a NAG (Numerical Algorithms Group, Inc.) routine.

We explore the parameter space and look for the mar- 01 . , . ,
ginal states, which are defined by the condition that 0. 0 5 10 15 20 25
We find that axisymmetric perturbatioig = 0) are al- B

ways stable, but nonaxisymmetric modes # 0) can be- FIG. 1. Stability boundary ofn = 1 for different values of

come unstgble i3 is large _e-nough [19]. Atany value of axjal wave numbek. The basic state is stable on the left of
V., If we increaseB, the first mode to become unstable each curve and unstable to the right.
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0.6 ‘ - , - to turbulence oboth the superfluid and the normal fluid
05 | components. This is consistent with the good agreement
' between Schwarz’s calculations and the measurements in
0.4 | : the T-2 state: The uniform profiler, used by Schwarz
< o3 o corresponds to the uniform turbulent profile in the pipe.
. + o D.J.M. is supported by an earmarked EPSRC grant,
02 | G& f///”L/' N and C. F. B. by a Royal Society equipment grant.
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