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Adaptive Mesh Refinement for Singular Solutions of the Incompressible Euler Equations
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Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany

(Received 3 December 1997)

The occurrence of a finite time singularity in the incompressible Euler equations in three dimensions
is studied numerically using the technique of adaptive mesh refinement. As opposed to earlier treat-
ments, a prescribed accuracy is guaranteed over the entire integration domain. A singularity in the vor-
ticity could be traced down to five levels of refinement which corresponds to a resolution of20483 mesh
points in a nonadaptive treatment. The growth of vorticity fits a power law behavior proportional to
1ysT p 2 td whereT p denotes the time when the singularity occurs. [S0031-9007(98)06038-4]

PACS numbers: 47.11.+ j, 03.40.Gc, 47.10.+g, 47.15.Ki
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The question whether the three-dimensional inco
pressible Euler equations,

≠tu 1 u ? =u 1 =p  0, = ? u  0 , (1)

develop a finite time singularity in the vorticity is stil
a controversial issue. This is not only a mathematica
open issue but may also be relevant for the proper
of small scale structures in viscous turbulent flows (s
Frisch [1], Chaps. 7 and 9). In the last years, there h
been several high-resolution numerical experiments
4] studying the possible formation of a finite time sing
larity. Unfortunately, not all simulations agree in the
conclusions. An explanation could be related to the fin
ings in two-dimensional quasigeostrophic flows studi
by Constantin, Majda, and Tabak [5]. They found th
whether a finite time singularity develops or whether vo
ticity grows only exponentially in time depends strong
on the geometry of the initial conditions. A similar stat
ment may be relevant for the three-dimensional inco
pressible Euler equations which could explain why t
Taylor-Green vortex used as initial condition in the sim
lations by Brachetet al. [4] shows only exponential
growth due to its high degree of symmetry.

The main issue in performing simulations of th
three-dimensional incompressible Euler equations is
achieved numerical resolution limited by the availab
computer resources. The simulations presented in [3
use a fixed grid of given resolution. The spatial res
lution of 2563 nodes is impressive documenting th
enormous progress in computer resources. In addit
these calculations use spatial symmetries to enlarge
effective resolution. However, this resolution is still to
low to conclude about the scaling behavior of a fin
time blowup. To overcome this difficulty, Pumir an
Siggia [6] used some sort of adaptivity to enlarge the n
merical resolution. Their method consists of introduci
coordinate transformations such that inside a small b
the numerical resolution is sufficient. The drawback
this method is that the flow is not resolved outside t
maximum vorticity region, and therefore the global flo
loses energy by a factor of 30.
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In this Letter, we use a technique of adaptive me
refinement similar to the method introduced by Berg
and Collela [7] for shock hydrodynamics. The applicatio
of adaptive mesh refinement to incompressible flows w
demonstrated in Friedel, Grauer, and Marliani [8] for two
dimensional magnetohydrodynamics and by Howell a
Bell [9] to the two-dimensional Navier-Stokes equations

The idea of adaptive mesh refinement is very natur
One starts with an initial grid of given resolution (her
we chose643 mesh points) and integrates the Euler equ
tions (1) using some appropriate numerical scheme. T
numerical resolution is checked after a certain number
time steps: Grid points where local gradients (we use
matrix normjj=ujj, so shear and rotational effects are a
counted for) exceed a given threshold are marked as crit
points, i.e., points where the local numerical resolutio
is not sufficient. Additionally, the trajectories of thes
points are estimated using local velocities and used to m
prospective critical points. This enables the grid hiera
chy to follow moving structures. Next, the marked poin
are covered with rectangular grids of finer resolution b
an algorithm very similar to that of Berger and Rigoutso
[10] and which was described in Friedelet al. [8]. On
the grids of the newly built level the spatial discretizatio
length and the time step are reduced by a factor of2 re-
sulting in no change of the Courant-Friedrichs-Lewy co
dition. The new grids are filled with data of the vorticity
interpolated from the preceding level. This procedure
different from the approach of Howell and Bell [9] wher
the velocity fields are interpolated. On both levels int
gration advances until the resolution again becomes loca
insufficient. The rebuilding of the grid hierarchy startin
with the current level and proceeding on all subseque
levels begins when the above-mentioned criterion is f
filled, e.g., if local gradients have developed such that t
prescribed accuracy is not guaranteed. Next, the po
are marked on all grids of each level. On the basis of t
resulting lists of critical points new grids are generate
Before they can be filled with data it has to be check
whether they are correctly embedded in grids of the prec
ing level. If data existed on grids of the same level befo
© 1998 The American Physical Society 4177
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FIG. 1. Volume rendering ofjvj at time 0.06.

the regridding, these have to be taken instead of the inte
lated data.

Having explained the strategy of adaptive mesh refi
ment, it remains to comment on the integration sche
which is used on all grids involved. It is a projectio
method combined with second order upwinding as int
duced in Bellet al. [11].

As the initial condition we used a perturbed cylindric
shear flow which had been introduced by Bell and Marc
[12]. The initial velocity is given by

u0 

√
tanh

"
sr 2

p
y2 1 z2d
d

#
, 0, ee2bsx21y2d

!
,

with r  0.15, d  0.0333, e  0.05, and b  15.
This represents a hollow-cored vortex tube around

FIG. 2. Volume rendering ofjvj at time 0.99.
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FIG. 3. Volume rendering ofjvj at time 1.18.

x axis, subject to a Gaussian-shaped perturbation in
z direction. This slight perturbation (characterized b
e) breaks the cylindrical symmetry so that only a mi
ror symmetry with respect toy remains. Figures 1–4
show volume renderings of the absolute value of vort
ity for progressing times. Initially, vorticity is concen
trated only in the region of shear resulting in a tubul
structure. The resolution of the coarsest grid is giv
by 643 mesh points. Figure 1 shows part of the inte
gration domain where the tube of vorticity is covere
by one level of refinement. In Fig. 2 the developme
of a Kelvin-Helmholtz instability is shown which forms
from the slight transverse perturbation in the initial co
dition. At the same time the resolution is automatical

FIG. 4. Volume rendering ofjvj at time 1.32. Only level 3,
4, and 5 grids are shown.
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FIG. 5. Volume rendering ofjvj at time 1.32.

enlarged in those regions where steep gradients deve
Figure 2 shows two levels of refinement corresponding
2563 mesh points in a nonadaptive treatment. Figures
and 4 show the formation of a hairpinlike structure. Th
is the region where the finite time singularity occurs. Fig
ures 3 and 4 contain three and five levels (respectively)
refinement corresponding to5123 and20483 mesh points.
Since the vortex structure in Fig. 4 is hidden by the hie
archically nested grids, we show the same picture witho
boxes in Fig. 5. The hairpin vortex visible in the uppe
right part is magnified in Fig. 6. It shows the isosur
face of 60% maximum vorticity; in addition, the cov-
ering with the finest level is depicted. To demonstra
that the flow is sufficiently resolved we show in Fig. 7
a two-dimensional cut through the hairpin vortex in th
y-z plane as a contour plot. Both plots in Fig. 8 are ob
tained as one-dimensional cuts in they direction through
the maxima of Fig. 7. The absolute value of vorticity i
shown as a function ofy in units of the finest level’s mesh

FIG. 6. Hairpin structure at time 1.32.
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FIG. 7. Two-dimensional cut ofjvj at time 1.32.

FIG. 8. One-dimensional cuts ofjvj at time 1.32.
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FIG. 9. Growth of vorticity versus time using a linear and
logarithmicy axis, respectively.

spacing. The lower graph shows part of the spa
domain containing only the left peak in the vorticity. On
can clearly see that the vorticity peaks are well resolve

Using a second order upwind scheme has the advan
that one can detect whether the flow is resolved
monitoring the energy conservation. Upwind schem
produce substantial energy dissipation if steep gradie
are not sufficiently resolved. Therefore, the conservat
of energy is a measure whether the flow is correc
resolved. During the whole calculation the energy
conserved within less than 1%.

It is important to comment on the alignment properti
of the flow. In our calculations we found perfect align
ment between the eigenvalue corresponding to the mid
eigenvalue of the deformation matrixs=u 1 T =udy2 and
the vorticity vectorv.

In Fig. 9 we show the temporal evolution of theL`

norm of the vorticity. The semilogarithmic plot rules ou
an only exponential growth of vorticity. For compariso
we include a fit of the forma 1 bysTp 2 td. The
constanta  14.9 corresponds to the global backgroun
vorticity introduced by the shear flow initial condition
This type of blowup is consistent with the result of Bea
4180
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et al. [13] which is a necessary (not sufficient) chec
whether the simulations produce numerical artifacts.

In conclusion, we have presented numerical simulatio
which strongly support the existence of a finite time si
gularity in the vorticity. Using the technique of adaptiv
mesh refinement, it is possible to reach an effective n
merical resolution of20483 mesh points using less tha
1% of the resources that would be necessary for a nonad
tive simulation of the same effective resolution. Howeve
many questions remain open; for example, we are not
able to link our results to the theorem of Constantin, Feff
man, and Majda [14]. This theorem states that for cert
smoothly directedsets a finite time singularity can be rule
out if the vorticity direction field=vyjvj is smooth. In
addition, one has to understand why the highly symm
ric Taylor-Green initial condition does not show a finit
time singularity [4], whereas the Kida flow initial condition
which possesses even higher symmetry leads to the for
tion of a finite time singularity [3]. We are currently trying
to repeat those initial conditions as well as Kerr’s collidin
vortex tubes using our adaptive mesh refinement code
order to understand the mechanism for singular vortic
production.
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