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Adaptive Mesh Refinement for Singular Solutions of the Incompressible Euler Equations
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The occurrence of a finite time singularity in the incompressible Euler equations in three dimensions
is studied numerically using the technique of adaptive mesh refinement. As opposed to earlier treat-
ments, a prescribed accuracy is guaranteed over the entire integration domain. A singularity in the vor-
ticity could be traced down to five levels of refinement which corresponds to a resolutddd&f mesh
points in a nonadaptive treatment. The growth of vorticity fits a power law behavior proportional to
1/(T* — 1) whereT* denotes the time when the singularity occurs. [S0031-9007(98)06038-4]

PACS numbers: 47.11.+j, 03.40.Gc, 47.10.+g, 47.15.Ki

The question whether the three-dimensional incom- In this Letter, we use a technique of adaptive mesh
pressible Euler equations, refinement similar to the method introduced by Berger
. . and Collela [7] for shock hydrodynamics. The application
gutu-Vu+Vp=0  V-u=0 () adaptive mesh refinement to incompressible flows was
develop a finite time singularity in the vorticity is still demonstrated in Friedel, Grauer, and Marliani [8] for two-
a controversial issue. This is not only a mathematicallydimensional magnetohydrodynamics and by Howell and
open issue but may also be relevant for the propertieBell [9] to the two-dimensional Navier-Stokes equations.
of small scale structures in viscous turbulent flows (see The idea of adaptive mesh refinement is very natural.
Frisch [1], Chaps. 7 and 9). In the last years, there hav®ne starts with an initial grid of given resolution (here
been several high-resolution numerical experiments [2we choses4® mesh points) and integrates the Euler equa-
4] studying the possible formation of a finite time singu-tions (1) using some appropriate numerical scheme. The
larity. Unfortunately, not all simulations agree in their numerical resolution is checked after a certain number of
conclusions. An explanation could be related to the find{ime steps: Grid points where local gradients (we use the
ings in two-dimensional quasigeostrophic flows studiedmatrix norm||Vu||, so shear and rotational effects are ac-
by Constantin, Majda, and Tabak [5]. They found thatcounted for) exceed a given threshold are marked as critical
whether a finite time singularity develops or whether vor-points, i.e., points where the local numerical resolution
ticity grows only exponentially in time depends strongly is not sufficient. Additionally, the trajectories of these
on the geometry of the initial conditions. A similar state- points are estimated using local velocities and used to mark
ment may be relevant for the three-dimensional incomprospective critical points. This enables the grid hierar-
pressible Euler equations which could explain why thechy to follow moving structures. Next, the marked points
Taylor-Green vortex used as initial condition in the simu-are covered with rectangular grids of finer resolution by
lations by Brachetet al.[4] shows only exponential an algorithm very similar to that of Berger and Rigoutsos
growth due to its high degree of symmetry. [10] and which was described in Friedet al.[8]. On
The main issue in performing simulations of the the grids of the newly built level the spatial discretization
three-dimensional incompressible Euler equations is th&ength and the time step are reduced by a factor of-
achieved numerical resolution limited by the availablesulting in no change of the Courant-Friedrichs-Lewy con-
computer resources. The simulations presented in [3,4]ition. The new grids are filled with data of the vorticity
use a fixed grid of given resolution. The spatial reso-nterpolated from the preceding level. This procedure is
lution of 256 nodes is impressive documenting the different from the approach of Howell and Bell [9] where
enormous progress in computer resources. In additiorthe velocity fields are interpolated. On both levels inte-
these calculations use spatial symmetries to enlarge ttgration advances until the resolution again becomes locally
effective resolution. However, this resolution is still too insufficient. The rebuilding of the grid hierarchy starting
low to conclude about the scaling behavior of a finitewith the current level and proceeding on all subsequent
time blowup. To overcome this difficulty, Pumir and levels begins when the above-mentioned criterion is ful-
Siggia [6] used some sort of adaptivity to enlarge the nufilled, e.g., if local gradients have developed such that the
merical resolution. Their method consists of introducingprescribed accuracy is not guaranteed. Next, the points
coordinate transformations such that inside a small boare marked on all grids of each level. On the basis of the
the numerical resolution is sufficient. The drawback ofresulting lists of critical points new grids are generated.
this method is that the flow is not resolved outside theBefore they can be filled with data it has to be checked
maximum vorticity region, and therefore the global flow whether they are correctly embedded in grids of the preced-
loses energy by a factor of 30. ing level. If data existed on grids of the same level before
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FIG. 1. Volume rendering ofew]| at time 0.06. FIG. 3. Volume rendering ofw| at time 1.18.

the regridding, these have to be taken instead of the interpo- i ) o
lated data. x axis, subject to a Gaussian-shaped perturbation in the
Having explained the strategy of adaptive mesh refineZ direction. Th|s_ sllght perturbation (characterized _by
ment, it remains to comment on the integration schem&) breaks the cylindrical symmetry so that only a mir-
which is used on all grids involved. It is a projection fOr Symmetry with respect tg remains. Figures 1-4
method combined with second order upwinding as introShow volume renderings of the absolute value of vortic-
duced in Bellet al. [11]. ity for progressing times. Initially, vorticity is concen-
As the initial condition we used a perturbed cylindrical fratéd only in the region of shear resulting in a tubular
shear flow which had been introduced by Bell and Marcustructure. The resolution of the coarsest grid is given

[12]. The initial velocity is given by by 643 mesh points. Figure 1 shows part of the inte-
gration domain where the tube of vorticity is covered
o = (tam{(p — Ayt 22)i| 0 Eeﬁ(xzﬂ,z)> by one level of refinement. In Fig. 2 the development

) T ’ of a Kelvin-Helmholtz instability is shown which forms

from the slight transverse perturbation in the initial con-

Wit.h p = 0.5, 6 =10.0333, € =005 and B =15 giion At the same time the resolution is automatically
This represents a hollow-cored vortex tube around the

FIG. 4. Volume rendering ofw| at time 1.32. Only level 3,
FIG. 2. Volume rendering ofw| at time 0.99. 4, and 5 grids are shown.
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FIG. 5. Volume rendering ofw| at time 1.32.

enlarged in those regions where steep gradients develop.

Figure 2 shows two levels of refinement corresponding to
256% mesh points in a nonadaptive treatment. Figures 3
and 4 show the formation of a hairpinlike structure. This
is the region where the finite time singularity occurs. Fig-
ures 3 and 4 contain three and five levels (respectively) of
refinement corresponding fd2* and20483 mesh points.
Since the vortex structure in Fig. 4 is hidden by the hier-
archically nested grids, we show the same picture without
boxes in Fig. 5. The hairpin vortex visible in the upper
right part is magnified in Fig. 6. It shows the isosur-
face of 60% maximum vorticity; in addition, the cov-
ering with the finest level is depicted. To demonstrate
that the flow is sufficiently resolved we show in Fig. 7
a two-dimensional cut through the hairpin vortex in the
y-z plane as a contour plot. Both plots in Fig. 8 are ob-
tained as one-dimensional cuts in thalirection through
the maxima of Fig. 7. The absolute value of vorticity is
shown as a function of in units of the finest level's mesh

FIG. 6. Hairpin structure at time 1.32.

\

FIG. 7. Two-dimensional cut dfw| at time 1.32.
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FIG. 8. One-dimensional cuts ¢f| at time 1.32.
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et al.[13] which is a necessary (not sufficient) check
| — usasn/aa | whether the simulations produce numerical artifacts.
500 In conclusion, we have presented numerical simulations

which strongly support the existence of a finite time sin-
gularity in the vorticity. Using the technique of adaptive
mesh refinement, it is possible to reach an effective nu-
merical resolution 0R048° mesh points using less than
900 1% of the resources that would be necessary for a nonadap-
tive simulation of the same effective resolution. However,
100 many questions remain open; for example, we are not yet
able to link our results to the theorem of Constantin, Feffer-
man, and Majda [14]. This theorem states that for certain
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 . .. . . .
time smoothly directedets a finite time singularity can be ruled
out if the vorticity direction fieldVw/|w| is smooth. In
500 | — 14.9-+10.7/(1.355-1) addition, one has to understand why the highly symmet-
ric Taylor-Green initial condition does not show a finite
time singularity [4], whereas the Kida flow initial condition
which possesses even higher symmetry leads to the forma-
tion of a finite time singularity [3]. We are currently trying
to repeat those initial conditions as well as Kerr’s colliding
vortex tubes using our adaptive mesh refinement code in
order to understand the mechanism for singular vorticity
production.
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FIG. 9. Growth of vorticity versus time using a linear and a
logarithmicy axis, respectively.
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