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The effect of dispersion or diffraction on zero-velocity solitons in studied for the generalized massiv
Thirring model describing a nonlinear optical fiber with grating or parallel-coupled planar waveguide
with misaligned axes. The Thirring solitons existing at zero dispersion/diffraction are show
numerically to be separated by afinite gapfrom three isolated soliton branches. Inside the gap, there
is an infinity of multisoliton branches. Thus, the Thirring solitons arestructurally unstable. In another
parameter region (far from the Thirring limit), solitons exist everywhere. [S0031-9007(98)05954-7]
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The massive Thirring model (MTM) [1] is a completel
integrable [2] Lorentz-invariant model of classical fie
theory, which supports exact soliton and multisoliton so
tions [1]. A generalization of the MTM, which we call th
optical model (OM), was introduced in [3,4] to describ
interaction between right- and left-traveling waves in
nonlinear optical fiber with a grating. Resonant Bra
scattering and cross-phase modulation (CPM) give r
respectively, to linear and nonlinear couplings betwe
the two waves. OM additionally includes self-phas
modulation (SPM) nonlinear terms, making itnoninte-
grable and destroying Lorentz invariance. Neverthele
a family of exactone-solitons can be found [3,4] with ar
bitrary velocity and internal amplitude (“soliton” hereafte
means solitary wave, and “n-soliton” is one withn peaks).
Recently, Bragg solitons have been observed experim
tally in a fiber with grating [5].

Both MTM and OM neglect dispersion of the medium
solitons being supported by aneffective dispersioninduced
by the linear coupling. In physical media, howeve
material dispersion is present. The aim of this wo
is to examine the influence of such dispersionD on
the Thirring solitons (TS). This first study treats on
zero-velocity solitons, which are essentially the same
MTM and OM. Results for finite-velocity (walking [6])
solitons, to be presented elsewhere, are more complic
technically but not drastically different (see below). Th
zero-velocity solitons are most intriguing physically,
they imply complete dynamical self-trapping of light o
the grating. We will conclude that TS arestructurally
unstable,being separated by a finite gap from the near
branch of fundamental solitons forD . 0, and with no
solitary waves at all forD , 0. Within the gap, we find
infinite sequences of two-solitons that are bound sta
(BS’s) of the fundamental ones. Although likely to b
dynamically unstable [7], BS’s are worth studying
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delimit the existence domain of fundamental solitons; s
Figs. 2 and 4 below.

The generalized MTM including dispersion terms is

iut 1 iux 1 Duxx 1 ssjuj2 1 jyj2du 1 y ­ 0 , (1)

iyt 2 iyx 1 Dyxx 1 sjuj2 1 sjyj2dy 1 u ­ 0 , (2)

whereusx, td and ysx, td are the complex amplitudes o
the counterpropagating waves,x and t are the coordinate
and time,D is the coefficient of spatial dispersion, ands

is the relative SPM coefficient, which is zero for MTM
and 1

2 for the OM case. Besides fibers with grating, th
models (1) and (2) can be applied to stationary fields
two parallel tunnel-coupled planar nonlinear waveguid
In that caset and x are the propagation distance an
the transverse coordinate, respectively, the terms6iux

account for misalignment of optical axes in the two core
D is an effective diffraction (not dispersion) coefficien
and the CPM terms must be omitted (see, e.g., [8
Actually, the latter realization of the model is closer
experiment, as optical axes misalignment is a power
control parameter enabling rescaling of physically realis
systems into the forms (1) and (2) [8]. In contras
for fibers with grating, a simple estimate shows th
dispersion may not be conspicuous, unless the spatial w
of the soliton is comparable to the grating period, i.
the wavelength of light, when Eqs. (1) and (2) are n
applicable [9].

Essentially the same model governs interaction of t
circular polarizations of light in a nonlinear fiber, in whic
the linear coupling is induced by the birefringence, a
the group-velocity difference by a fiber’s twist (see th
review [10]). In untwisted fibers, interaction betwee
linear polarizations is described by similar models, b
with linear coupling replaced by a cubic four-wave-mixin
term (see [11] for a family of walking solitons in the latte
© 1998 The American Physical Society 4169
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model). Our approach is different; instead of starting fro
solitons of decoupled nonlinear Schrödinger equatio
with the couplings treated as perturbations, we start fro
the TS of the strongly coupled system with dispersion
diffraction being a perturbation.

Being interested here only in the zero-velocity so
tons, we substitute into Eqs. (1) and (2)usx, td ­
e2ivtUsxd, y ­ e2ivtV sxd to obtain the coupled ordi-
nary differential equations (ODEs)

DU 00 1 iU 0 1 vU 1 ssjUj2 1 jV j2dU 1 V ­ 0 ,
(3)

DV 00 2 iV 0 1 vV 1 sjUj2 1 sjV j2dV 1 U ­ 0 ,
(4)

the prime standing fordydx. In this notation, the TS
occur atD ­ 0 and jvj , 1. Equations (3) and (4) are
equivalent to an eighth-order dynamical system with tw
integrals of motion: the Hamiltonian

H ­ DsjU 0j2 1 jV 0j2d 1 vsjUj2 1 jV j2d

1 ssy2d sjUj4 1 jV j4d

1 jUj2jV j2 1 sUV p 1 VUpd , (5)

and the “angular momentum,” generated by invarian
with respect to the continuous phase transformation,

M ­ DsUU 0p 2 UpU 0 1 VV 0p 2 V pV 0d

1 jV j2 2 jUj2. (6)

This Hamiltonian system has several discrete symmetr
the odd symmetryZ : sU, V d ! s2U, 2V d, two other
Z2 onesZ1 : U $ V p, Z2 : U $ 2V p, and four revers-
ibilities

R : sU, U 0, V , V 0d ! sUp, 2U 0p, V p, 2V 0pd, : x ! 2x ,

(7)

S : sU, U 0d $ sV , 2V 0d, : x ! 2x , (8)

along with their odd imagesZR andZS.
The first step in locating solitary waves is to solv

the linearized problem, assuming solutions,elx. This
problem, solvedexactly, gives a set of double eigenvalues

sD2l4 1 2Dvl2 1 l2 1 v2 2 1d2 ­ 0 . (9)

Equation (9) defines four regions on the planehD, vj
with different types of eigenvalues (see Fig. 1). Solita
waves with exponentially decaying tails are possible on
in regions I, II, and III (and their images forD , 0), where
eigenvalues with nonzero real part occur.

We notice that Eqs. (3) and (4) are compatible with th
reductionU ­ V p. This results in a single equation fo
Usxd,

DU 00 1 iU 0 1 vU 1 s1 1 sd jUj2U 1 Up ­ 0 ,

(10)
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FIG. 1. Parameter regions forD . 0 with different types of
eigenvalues of the linearized Eqs. (3) and (4), as illustrated
the insets. The curve delimiting region II isD 1 1y4D 2

v ­ 0. At the point D ­ 1
2 , the curve is tangent to the

horizontal v ­ 21. The picture forD , 0 is obtained by
rotating the figure by180±.

equivalent to a real four-dimensional ODE system. A
the zero-velocity solitons in MTM and OM obey exactl
the same reduction, and a simple argument based on c
sideration of the unstable manifolds shows thatall possi-
ble zero-velocity solitons to (1) and (2) within region I
are trivially related to solutions of (10) by rotation in th
sU, V d plane. Henceforth, we sets ­ 0, becauses can
be scaled out from Eq. (10). Furthermore, for Eq. (10
S ; R, and the angular momentum (6) identically van
ishes. The eigenvalues of the corresponding lineariz
equation are given by Eq. (9), but are all single; i.e
Fig. 1 remains fully relevant.

The soliton is a homoclinic-to-zero solution to Eq. (10
According to general theorems [12], in region III, wher
U ­ 0 is a saddle-center fixed point, homoclinic trajecto
ries that are symmetric under a reversibility are of cod
mension one (nonsymmetric homoclinic trajectories are
codimension two). Hence, solutions can exist only on is
lated curves in thehD, vj parameter plane, the number o
which may be finite or infinite. Moreover, given a sig
condition on the quadratic part of the Hamiltonian, ea
curve will be accompanied by an infinite accumulation
curves on which BS’s exist [12]. In contrast, in regions
and II, where the fixed pointU ­ 0 is hyperbolic, homo-
clinic trajectories are generic, i.e., they occur uniformly
two-dimensional parameter regions [13]. But region III
of most interest, as it abuts the segmenthD ­ 0, jvj , 1j
on which the TS solitons exist.

To obtain solutions, we use robust numerical metho
for solving two-point boundary-value problems on a tru
cation of an infinitex interval with boundary conditions
placing the solution in the stable or unstable eigenspa
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at the origin; see [14], and references therein. Contin
tion of solutions, with respect to parameters, is carried
using the softwareAUTO [15], specifically exploiting the
reversible structure of (10).

Our main findings are summarized in Fig. 2. Here, th
solid curves represent the isolated loci of fundamenta
primary (single humped, in one component) solitons, a
the dashed curves are a small sample of loci of their tw
humped BS’s. All primary solitons are reversible wi
respect to the transformationZR, see Eq. (7); we have
found no evidence of anyR-reversible solutions. In pane
(b), we use, instead of the frequencyv, the soliton’s
energy E ­

R1`

2` jUsxdj2 dx. Typical examples of one
solitons are displayed in Fig. 3, and typical two-hump
BS’s are shown in Fig. 4 (only half of each two-soliton
shown in this figure).

Each of the primary branches in Fig. 2 (labeled 1–
appears to bifurcate at zero soliton amplitude from
line v ­ 1, although there are numerical difficulties
computing right up to this singular limit. TheD values of
these three bifurcations atv ­ 1 areD ­ 0.50, 0.20, and
0.11 to two decimal places. A straightforward calculati
of the sign condition in [12] on the Hamiltonian (5) implie
that curves ofZR-reversible BS’s must accumulate on ea
of the primary curves from both sides (e.g., we have fou

FIG. 2. A two-parameter bifurcation diagram for fundamen
solitons (solid curves) and two-soliton bound states (das
curves) on the planessD, vd (a), and (D, energy) (b).
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BS branches 9–12 and 4 and 5 accumulating on branc
from the right and left, respectively). Branches 9–12 a
also part of a larger sequence we have computed which
fixed D accumulates onv ­ 1.

Three-solitons and higher-order BS of the primary so
tons can also be found, the three-humped ones accu
lating on two-solitons, etc. in accord with the theory [12
We do not describe these objects, because it is unlik
that even the two-solitons may be dynamically stable
systems (1) and (2), while stability of the primary soliton
is quite feasible [7]. However, stability analysis is deferr
to another work. Homoclinic solutions were also soug
for D , 0 and jvj , 1, but no evidence of primary or
multihumped ones was found.

Looking at Fig. 2, there remains the crucial questi
whether there are any more primary branches to the lef
that labeled 3. A seemingly plausible conjecture is th
there is a self-similar structure of primary branches as o
moves to the left in Fig. 2, i.e., infinitely many branche
accumulating on the TS segmenthD ­ 0, jvj , 1j,
the branches 1, 2, and 3 being but the first three in
structure (note that, at least forD , 2, there cannot be
any further primary solutions to theright of branch 1,
because here the two-soliton curves 9–12 form a bar
for them). However, careful numerical scanning of th
parametric plane of Fig. 2 to the left of branch 3 h
strongly indicated that the above hypothesis isfalse, in
region III there beingno primary branches other than 1
2, and 3. Forv sufficiently close to21, this assertion is
substantiated as follows.

Figure 4 reports the results of a thorough numerical
vestigation of other possible solution branches atv ­
20.99, varyingD between 0 and12 . We find that, to the
left of branch 3, an infinite sequence ofmultisolitonBS’s
occurs. Even though, because of numerical problems
the singular limit, we have computed only the correspon
ing two-solitons down toD ø 0.2, Fig. 4 clearly suggests
accumulation of the sequence asD ! 0. The energy of
the two-solitons remains finite, while the separation b
tween the two bound pulses diverges,1yD as D ! 0
(which explains the existence of TS in the limitD ­ 0).
Thus, what does accumulate on the TS manifold atD ! 0
is an infinite sequence of multisoliton branches, with

FIG. 3. The fundamental solitons at the points of intersecti
of the primary-soliton branches (Fig. 2) by the linev ­ 20.8.
(a), (b), and (c) correspond to 1, 2, and 3 branches, respectiv
in Fig. 2.
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FIG. 4. A sequence of two-soliton solutions atD ! 0 for
v ­ 20.99. The insets show the shape of the solutions.

fundamental-soliton branch closer to the TS manifold th
the branch 3 in Fig. 2.

To support this numerical finding with qualitative ar
guments, consider what happens to the primary branc
as they cross the linev ­ 21 from above. ForD .

1
2

this is a “harmless” transition, because the real eigenv
ues of the linearized equations that govern the decay
the homoclinic solution atjxj ! ` behave smoothly, and
they are bounded away from zero. A well-defined pr
mary branch safely crossesv ­ 21 in this case, which
for v , 21 describes a curve of “orbit-flip” bifurcations
(cf. [16]). However, forD ,

1
2 , the corresponding eigen-

values vanish asv ! 21, hence, no smooth transition
can take place. Thus, there may beno primary-soliton
branches at0 , 1 1 v ø 1, D ,

1
2 .

The most important result of this work is that ther
is a finite gap separating TS, existing in the singula
limit D ­ 0, from new solitons atD fi 0. Thus, the
Thirring solitons arestructurally unstableagainst adding
the dispersion or diffraction. A natural question is
there is a gap for solitons at a finite velocity. Prelimina
numerical results give a positive answer, which is furth
supported by an argument that solutions to the OD
describing the soliton’s shape continuously depend
the parameters (including velocity), except at a singu
point. The addition of dispersion to MTM is, obviously,
singular perturbation because it doubles the system’s ord
however, nonzero velocity is not a singular perturbation

We mention finally results for solitons in regions I an
II. As stated, here homoclinic solutions are generic, an
primary-soliton branch can be path followed continuous
for all v andD inside regions I and II. Inside region II it
develops oscillations in its tails due to the complex eige
values. At the boundaries between regions I and III and
and IV, the solution disappears through a zero-amplitu
bifurcation, as predicted by the appropriate normal-for
analysis [17]. Other primary-soliton solutions have mo
complicated bifurcation diagrams; in both regions I and
two- and multisoliton BS’s also occur. A detailed descrip
tion of the complete bifurcation structure will be give
elsewhere.
4172
n

-
es

al-
of

i-

e
r

f
y
er

s
on
ar

er;
.

a
ly

n-
II

de
m
e
I,
-

Since the original submission of this paper, we hav
become aware of the preprint [18] containing new resul
on thedynamicalstability of the solitons in OMwithout
the dispersion terms. They demonstrate that, except for t
integrable Thirring model case, all the solitons are subje
to an instability which is too weak to have been observe
in earlier numerical simulations. Note that a simila
instability mechanism for solitons of OM was predicted
nonrigorously in [19] using a variational approximation
A dynamical stability analysis for the new solitons in the
presence of dispersion found in the present work will b
presented elsewhere.

We appreciate valuable discussions with Y. S. Kivsha
G. G. Luther, and D. E. Pelinovsky.
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