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The effect of dispersion or diffraction on zero-velocity solitons in studied for the generalized massive
Thirring model describing a nonlinear optical fiber with grating or parallel-coupled planar waveguides
with misaligned axes. The Thirring solitons existing at zero dispersion/diffraction are shown
numerically to be separated byfiaite gapfrom three isolated soliton branches. Inside the gap, there
is an infinity of multisoliton branches. Thus, the Thirring solitons strecturally unstable. In another
parameter region (far from the Thirring limit), solitons exist everywhere. [S0031-9007(98)05954-7]

PACS numbers: 42.65.Tg, 03.40.Kf

The massive Thirring model (MTM) [1] is a completely delimit the existence domain of fundamental solitons; see
integrable [2] Lorentz-invariant model of classical field Figs. 2 and 4 below.
theory, which supports exact soliton and multisoliton solu- The generalized MTM including dispersion terms is
tions [1]. A generalization of the MTM, which we call the
optical model (OM), was introduced in [3,4] to describe
interaction between right- and left-traveling waves in a
nonlinear optical fiber with a grating. Resonant Bragg
scattering and cross-phase modulation (CPM) give risewhereu(x,) and v(x, r) are the complex amplitudes of
respectively, to linear and nonlinear couplings betweerhe counterpropagating wavesand: are the coordinate
the two waves. OM additionally includes self-phase-and time,D is the coefficient of spatial dispersion, and
modulation (SPM) nonlinear terms, making ribninte- is the relative SPM coefficient, which is zero for MTM
grable and destroying Lorentz invariance. Neverthelessand% for the OM case. Besides fibers with grating, the
a family of exactone-solitons can be found [3,4] with ar- models (1) and (2) can be applied to stationary fields in
bitrary velocity and internal amplitude (“soliton” hereafter two parallel tunnel-coupled planar nonlinear waveguides.
means solitary wave, and-soliton” is one withn peaks). In that caser and x are the propagation distance and
Recently, Bragg solitons have been observed experimetthe transverse coordinate, respectively, the ternis,
tally in a fiber with grating [5]. account for misalignment of optical axes in the two cores,

Both MTM and OM neglect dispersion of the medium, D is an effective diffraction (not dispersion) coefficient,
solitons being supported by affective dispersiomduced and the CPM terms must be omitted (see, e.g., [8]).
by the linear coupling. In physical media, however, Actually, the latter realization of the model is closer to
material dispersion is present. The aim of this workexperiment, as optical axes misalignment is a powerful
is to examine the influence of such dispersibnon  control parameter enabling rescaling of physically realistic
the Thirring solitons (TS). This first study treats only systems into the forms (1) and (2) [8]. In contrast,
zero-velocity solitons, which are essentially the same iror fibers with grating, a simple estimate shows that
MTM and OM. Results for finite-velocitywalking [6])  dispersion may not be conspicuous, unless the spatial width
solitons, to be presented elsewhere, are more complicated the soliton is comparable to the grating period, i.e.,
technically but not drastically different (see below). Thethe wavelength of light, when Egs. (1) and (2) are not
zero-velocity solitons are most intriguing physically, asapplicable [9].
they imply complete dynamical self-trapping of light on  Essentially the same model governs interaction of two
the grating. We will conclude that TS amgructurally  circular polarizations of light in a nonlinear fiber, in which
unstable being separated by a finite gap from the nearesthe linear coupling is induced by the birefringence, and
branch of fundamental solitons fd» > 0, and with no the group-velocity difference by a fiber's twist (see the
solitary waves at all foD < 0. Within the gap, we find review [10]). In untwisted fibers, interaction between
infinite sequences of two-solitons that are bound statenear polarizations is described by similar models, but
(BS’s) of the fundamental ones. Although likely to be with linear coupling replaced by a cubic four-wave-mixing
dynamically unstable [7], BS's are worth studying toterm (see [11] for a family of walking solitons in the latter

iu; + iy + Duge + (olul* + [vP)u +v =0, (1)

iv, — ivy + Dug + (ul* + olvP)v + u=0, (2)
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solitons of decoupled nonlinear Schrodinger equations
with the couplings treated as perturbations, we start from
the TS of the strongly coupled system with dispersion or 1

diffraction being a perturbation.
Being interested here only in the zero-velocity soli- RV VN 1@ Le . D
t + i

model). Our approach is different; instead of starting from Voo
2 §
@

tons, we substitute into Egs. (1) and (2x,t) = 0
e ®'U(x), v = e '“'V(x) to obtain the coupled ordi-
nary differential equations (ODES)

o

DU" + iU’ + wU + (a|UP* + VU +V =0, ® T ®
3) B} -
DV" — iV + wV + ([UP? + o|V)V + U =0, / i
4)
the prime standing fo//dx. In this notation, the TS
occur atD = 0 and|w| < 1. Equations (3) and (4) are

equivalent to an eighth-order dynamical system with two -4
integrals of motion: the Hamiltonian

FIG. 1. Parameter regions f@» > 0 with different types of

_ 2 n2 2 2
H=D(UT" + V) + «(UF + V) eigenvalues of the linearized Egs. (3) and (4), as illustrated by
4 4 the insets. The curve delimiting region Il B + 1/4D —
+ (a/2)((UI" + VI o = 0. At the point D = % the curve is tangent to the
S . . horizontal @ = —1. The picture forD < 0 is obtained by
+ UV + (UV* + VUY), (5)  rotating the figure by 80°.

and the “angular momentum,” generated by invariance . | | four-di ional ODE Al
with respect to the continuous phase transformation, equivalent to a real four-dimensiona system.
the zero-velocity solitons in MTM and OM obey exactly

M = DUU™ — U*U" + vw"™ — vV the same reduction, and a simple argument based on con-
5 ) sideration of the unstable manifolds shows thktpossi-
+ [VI* = |UI" (6)  ble zero-velocity solitons to (1) and (2) within region II

This Hamiltonian system has several discrete symmetrieg'® trivially related to solutions of (10) by rotation in the
the odd symmetryZ: (U,V) — (=U, —V), two other (U, V) plane. Henceforth, we set = 0, becauser can

Z, onesZ,: U — V*, Z,: U < —V*, and four revers- De scaled out from Eq. (10). Furthermore, for Eq. (10),
ibilities S = R, and the angular momentum (6) identically van-

ishes. The eigenvalues of the corresponding linearized
R: (U, U,V,V)— (U",-U",V",=V"),:x = —x,  equation are given by Eq. (9), but are all single; i.e.,
(7)  Fig. 1 remains fully relevant.
The soliton is a homoclinic-to-zero solution to Eq. (10).
8) According to general theorems [12], in region Ill, where
U = 0 is a saddle-center fixed point, homoclinic trajecto-
along with their odd image&R andZs. ries that are symmetric under a reversibility are of codi-
The first step in locating solitary waves is to solve mension one (nonsymmetric homoclinic trajectories are of
the linearized problem, assuming solutiong?*. This  codimension two). Hence, solutions can exist only on iso-
problem, solveexactly gives a set of double eigenvalues: lated curves in théD, v} parameter plane, the number of
(D?A* + 2D + A% + w® — 1 = 0 ©) which may be finite or infinite. Moreover, given a sign
: condition on the quadratic part of the Hamiltonian, each

Equation (9) defines four regions on the plafie, w} curve will be accompanied by an infinite accumulation of

with different types of eigenvalues (see Fig. 1). Solitarycurves on which BS’s exist [12]. In contrast, in regions |

waves with exponentially decaying tails are possible onlyand Il, where the fixed point/ = 0 is hyperbolic, homo-

in regions |, I1, and Il (and their images f@& < 0), where clinic trajectories are generic, i.e., they occur uniformly in

eigenvalues with nonzero real part occur. two-dimensional parameter regions [13]. But region lll is
We notice that Egs. (3) and (4) are compatible with theof most interest, as it abuts the segmint= 0, |o| < 1}

reductionU = V*. This results in a single equation for on which the TS solitons exist.

S (U, U)~ (V,=-V),:x — —x,

Ul(x), To obtain solutions, we use robust numerical methods
b 5 . for solving two-point boundary-value problems on a trun-
DU" +iU' + wU + (1 + o) |UI'U + U" =0, cation of an infinitex interval with boundary conditions

(10) placing the solution in the stable or unstable eigenspaces
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at the origin; see [14], and references therein. ContinuaBS branches 9-12 and 4 and 5 accumulating on branch 1
tion of solutions, with respect to parameters, is carried oufrom the right and left, respectively). Branches 9—-12 are
using the softwar@auTo [15], specifically exploiting the also part of a larger sequence we have computed which for
reversible structure of (10). fixed D accumulates ow = 1.

Our main findings are summarized in Fig. 2. Here, three Three-solitons and higher-order BS of the primary soli-
solid curves represent the isolated loci of fundamental otons can also be found, the three-humped ones accumu-
primary (single humped, in one component) solitons, andating on two-solitons, etc. in accord with the theory [12].
the dashed curves are a small sample of loci of their two¥We do not describe these objects, because it is unlikely
humped BS’s. All primary solitons are reversible with that even the two-solitons may be dynamically stable in
respect to the transformatianr, see Eq. (7); we have systems (1) and (2), while stability of the primary solitons
found no evidence of ang-reversible solutions. In panel is quite feasible [7]. However, stability analysis is deferred
(b), we use, instead of the frequenay, the soliton’s to another work. Homoclinic solutions were also sought
energyE = [2|U(x)|*dx. Typical examples of one for D < 0 and|w| < 1, but no evidence of primary or
solitons are displayed in Fig. 3, and typical two-humpedmultihumped ones was found.

BS'’s are shown in Fig. 4 (only half of each two-soliton is Looking at Fig. 2, there remains the crucial question
shown in this figure). whether there are any more primary branches to the left of

Each of the primary branches in Fig. 2 (labeled 1-3)that labeled 3. A seemingly plausible conjecture is that
appears to bifurcate at zero soliton amplitude from thehere is a self-similar structure of primary branches as one
line w = 1, although there are numerical difficulties in moves to the left in Fig. 2, i.e., infinitely many branches
computing right up to this singular limit. The values of accumulating on the TS segmefD = 0, |w| < 1},
these three bifurcations at = 1 areD = 0.50, 0.20, and the branches 1, 2, and 3 being but the first three in the
0.11 to two decimal places. A straightforward calculationstructure (note that, at least f@ < 2, there cannot be
of the sign condition in [12] on the Hamiltonian (5) implies any further primary solutions to theght of branch 1,
that curves oZR-reversible BS’s must accumulate on eachbecause here the two-soliton curves 9—-12 form a barrier
of the primary curves from both sides (e.g., we have foundor them). However, careful numerical scanning of the

parametric plane of Fig. 2 to the left of branch 3 has
strongly indicated that the above hypothesidakse in

e region 1l there beingno primary branches other than 1,
' 2, and 3. Fom sufficiently close to—1, this assertion is
0.754 substantiated as follows.
0.50 Figure 4 reports the results of a thorough numerical in-
vestigation of other possible solution brancheswat=
02 —0.99, varying D between 0 and. We find that, to the
0.00{ left of branch 3, an infinite sequence milltisolitonBS’s
-0.25] occurs. Even though, because of numerical problems in
; the singular limit, we have computed only the correspond-
-0.50 { ing two-solitons down td = 0.2, Fig. 4 clearly suggests
-0.75 VXA accumulation of the sequence As— 0. The energy of
L0 0 \ : the two-solitons remains finite, while the separation be-
00 025 0% 075 L0 125 150 L75 200 tween the two bound pulses diverged /D as D — 0
E (b) D (which explains the existence of TS in the I.irm)t = 0).
25 Thus, what does accumulate on the TS manifold at> 0
is an infinite sequence of multisoliton branches, with no
2. |
15, » (a) D=1.34759  , (b) D=0.53350  , (c) D=0.30595
IIIIﬁ%B: IIIIﬁ%H: Vlllllliin%IH:
15 15 15
10, 1 1 1
05 05 / 05
5. 0 0 0
05 \/ 05 05
0 AL 5.2 % % 0 5 10 15,20 25 3 AER) 15,20 25 3 3

00 025 050 075 100 125 L' 175 200

FIG. 3. The fundamental solitons at the points of intersection
FIG. 2. A two-parameter bifurcation diagram for fundamentalof the primary-soliton branches (Fig. 2) by the lime= —0.8.
solitons (solid curves) and two-soliton bound states (dashe¢r), (b), and (c) correspond to 1, 2, and 3 branches, respectively,
curves) on the plane®, w) (a), and D, energy) (b). in Fig. 2.
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80 — ———— Since the original submission of this paper, we have
2-pulses - . S
70! A become aware of the_ preprint [18] containing new results
. ¢ 2 S on thedyna}m|calstab|llty of the solitons in OMwithout

605 | E 8 Im U~ _the dlsperS|or_1 terms. They demonstrate that, except fo_r the
5 5oP2 Jgt T\ 08 mtegr._’;\ble T_h_lrrlng _mO(_jeI case, all the solitons are subject
8 b5 ” %,  -05 ] to an instability which is too weak to have been observed
§ 40| '6zos0T0U THO “orozopoausoeo  in earlier numerical simulations. Note that a similar
o 1 I *. instability mechanism for solitons of OM was predicted

30'0_; J\ A’L . / nonrigorously in [19] using a variational approximation.

2000 O ’l( A dynamical stability analysis for the new solitons in the

‘0 2020808000120 presence of dispersion found in the present work will be

000501 0:150:2 U.ZB 0'30.35 04 0:450.5 presented elsewhere.
We appreciate valuable discussions with Y. S. Kivshar,

FIG. 4. A sequence of two-soliton solutions B&t— 0 for ~ G.G. Luther, and D. E. Pelinovsky.
o = —0.99. The insets show the shape of the solutions.

fundamental-soliton branch closer to the TS manifold than[1] W.E. Thirring, Ann. Phys. (N.Y.B, 91 (1958).

the branch 3 in Fig. 2. [2] A.V. Mikhailov, Pis'ma Zh. Eksp. Teor. Fiz23, 356
To support this numerical finding with qualitative ar- §\|1§v?/2|)| [f_gPNILeot\tf):))E:iSrﬁgn(tgg?]z;sD(i *375?“9 and A.C.

guments, COﬂSlder.What happens to the primary brafnChe?B] D.N. Christodoulides and R.I. Joseph, Phys. Rev. Lett.

as they cross the line = —1 from above. FoD > 3 62, 1746 (1989).

this is a “harmless” transition, because the real eigenval- 4] A. Aceves and S. Wabnitz, Phys. Lett. %1, 37 (1989).

ues of the linearized equations that govern the decay ofi5] B.J. Eggleton, R.E. Slusher, C. Martijn de Sterke, P.A.

the homoclinic solution afx| — « behave smoothly, and Krug, and J.E. Sipe, Phys. Rev. Let6, 1627 (1996).
they are bounded away from zero. A well-defined pri- [6] L. Torner, D. Mazilu, and D. Mihalache, Phys. Rev. Lett.
mary branch safely crosses = —1 in this case, which 77, 2455 (1996).

for o < —1 describes a curve of “orbit-flip” bifurcations [7] Y. Silberberg and Y. Barad, Opt. Le®0, 246 (1995).
(cf. [16]). However, forD < 1, the corresponding eigen- [8] W- Mak, B. A. Malomed, and P.L. Chu, Phys. Rev5
values vanish as — —1, hence, no smooth transition 6134 (1997).

: enli [9] E. Granot, S. Stenklar, B. Malomed, Y. Isbi, and
can take place. Thus, there may be primary-soliton A. Lewis, Opt. Lett.22, 1290 (1997).

branches af < l+o<1D< 2 . [10] M. Romagnoli, S. Trillo, and S. Wabnitz, Opt. Quantum
The most important result of this work is that there Electron.24, S1237 (1992).

is a finite gap separating TS, existing in the singular [11] J.M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz,

limit D =0, from new solitons atD # 0. Thus, the Phys. Rev. B51, 3547 (1995); L. Torner, D. Mihalache,
Thirring solitons arestructurally unstableagainst adding D. Mazilu, and N. Akhmediev, Opt. Commui38 105
the dispersion or diffraction. A natural question is if (1997).

there is a gap for solitons at a finite velocity. Preliminary[12] A. Mielke, P. Holmes, and O. O'Reilly, J. Dyn. Differ.
numerical results give a positive answer, which is further _ EQu.4, 95 (1992). .

supported by an argument that solutions to the ODE&S3] R.L. Devaney, J. Differ. Equ2l, 431 (1976); B. Buffoni,
describing the soliton’s shape continuously depend on A:R- Champneys, and J.F. Toland, J. Dyn. Differ. Egu.

) . . ; 221 (1996).
the parameters (including velocity), except at a Slngula[14] E.J. Doedel, M.J. Friedman, and B.l. Kunin, Numer.

ppint. The additiqn of dispersilon to MTM is, obviously, a Algorithms 14, 103 (1997); A.R. Champneys, Yu.A.
singular perturbation because it doubles the system’s order; g\ znetsov, and B. Sandstede, Int. J. Bifurcation Chaos
however, nonzero velocity is not a singular perturbation. 6, 867 (1996), and references therein.

We mention finally results for solitons in regions | and [15] E.J. Doedel, A.R. Champneys, T.R. Fairgrieve, Yu.A.
Il. As stated, here homoclinic solutions are generic, and a  Kuznetsov, B. Sandstede, and W. Wang, AUTO97 Con-
primary-soliton branch can be path followed continuously tinuation and Bifurcation Software for Ordinary Differen-
for all @ andD inside regions | and Il. Inside region Il it tial Equations, 1997. Available by anonymous ftp from
develops oscillations in its tails due to the complex eigen- _ ftp.cs.concordia.ca, directory pub/doedel/auto.
values. At the boundaries between regions | and Il and 1[16] B. Sandstede, C.K.R.T. Jones, and J.C. Alexander, Phys-

. . ) . ica (Amsterdam)LO6D, 167 (1997); A.R. Champneys and
and 1V, the solution disappears through a zero-amplitude M.D. Groves, J. Fluid MechB42, 199—229 (1997).

bifurcation, as predicted by the appropriate normal—form[l?] G. looss, Fields Inst. Commd, 201 (1995)
analysis [17]. Other primary-soliton solutions have morey; g V. Barashenkov. D.E. Pelinovsky. and E.V.

complicated bifurcation diagrams; in both regions | and I, Zemlyanaya (to be published); JINR Report No.
two- and multisoliton BS’s also occur. A detailed descrip- E17-98-7 (Dubna, Russia).

tion of the complete bifurcation structure will be given [19] B.A. Malomed and R.S. Tasgal, Phys. Rev4g 5787
elsewhere. (1994).

4172



