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Quantum Billiards with Surface Scattering: Ballistic Sigma-Model Approach
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Statistical properties of energy levels and eigenfunctions in a ballistic system with diffusive
surface scattering are investigated. The two-level correlation function, the level number variance,
the correlation function of wave function intensities, and the inverse participation ratio are calculated.
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The statistical properties of spectra of disordered dif+esults are qualitatively different in some respects, which
fusive systems are now well understood. Using the sushows that systems with bulk and surface disorder are
persymmetrico-model approach it has been possible tonot equivalent. On the other hand, our findings are in
demonstrate the relevance of the random matrix theorggreement with general expectations for chaotic billiards
(RMT) and to calculate deviations from its predictionsbased on the trace formula treatment [12].
both for the level [1-3] and eigenfunction [4—6] statistics. To simplify the calculations, we consider a circular
Generalization of these results to the case of a chaatic  billiard. A similar problem was studied numerically in
listic system (i.e., quantum billiard) has become a topic ofRef. [13] for a square geometry. We consider only the
great research interest. For ballistic disordered systentase of unitary symmetry (broken time-reversal invari-
the o model has been proposed [7], with the Liouville ance); generalization to the orthogonal case is straight-
operator replacing the diffusion operator in the actionforward. The level statistics for the same problem were
It has also been conjectured that the sammenodel in  independently studied in Ref. [14].
the limit of vanishing disorder describes statistical proper- Properties of the Liouville operator—Our starting
ties of spectra of an individual classically chaotic systempoint is theo-model for ballistic disordered systems [7].
This conjecture was further developed in [8,9] where theThe effective action for this model has the form
o model was obtained by means of energy averaging, and Ty ) 1 )
the Liouville operator was replaced by its regularization— Flg(r,n)] = Tf dr St’(’“’Mg(r» - T(r)@(r»
the Perron-Frobenius operator.

However, a straightforward application of the results - 2up{AU " 'nVU) ). (1)
of Refs. [2—4,6] to the case of an individual chaotic . :
system is complicated by the fact that the eigenvalue5iere @8 X 8 supermatrixg depends on the coordinate
of the Perron-Frobenius operator are unknown, while it&nd direction of the momentum. The angular brackets
eigenfunctions are extremely singular. For this reason th§€note averaging over: (O (n)) = Jdn O (n) with the
o-model approach has so far failed to provide explicitiormalization/ dn - L The matrixg is constrained by
results for any particular ballistic system. the conditiong(r, n)” = 1, and can be representedgs-

To overcome this difficulty, we consider a model UAU ', with A =diagl,1,1,1,—1,—1,—1,—1); see
of a billiard with surface disorder leading to diffusive [1,9] for more detailed definitions. Since we are interested

scattering of a particle in each collision with the boundary.n the clean limit with no disorder in the bulk, the second
This models behavior of a quantum particle in a boxt€rm in the action (1) containing the elastic mean free

with a rough boundary which is irregular on the scaletime_T_ is zero everywhere except at the boundary where it
of the wavelength. Since the particle loses memor)mod'f'eS the_bqundary con_d|t|on (see below).

of its direction of motion after a single collision, this  Many statistical properties of energy levels [2,3] and
model describes a limit of an “extremely chaotic” ballistic €19enfunctions [4,6] are governed by the structure of the
system, with typical relaxation time being of order of the action in the vicinity of the h_qmogeneous configuration of
flight ime. (This should be contrasted with the case of dN€ field, g(r,n) = A. Writing U =1 = W/2 + -,
relatively slight distortion of an integrable billiard [10].) € find the action in the leading order W,

One might naively think that all results for such a model Fo[W] = _ﬂf dr dn St{Ws (K — iw)Wa]

could be obtained by setting= L in a system with bulk 4 ’
disorder. In fact, the level statistics in a system with bulk 2)
disorder and arbitrary relation between mean free path where the indicedl, 2 refer to the “advanced-retarded”
and system sizé, were studied in [11]. However, our decomposition of W, and the Liouville operator
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A

K = vpnV. This “linearized” action has the same 40.0

form as that of a diffusive system, with the diffusion

operator being replaced by the Liouville operator. This

enables us to use the results derived for the diffusive case 30.0 |

by substituting the eigenvalues and eigenfunctions of the

operatork for those of the diffusion operator. -
The operatork should be supplemented by a bound- £ 200t

ary condition, which depends on the form of the surface

roughness. As a model approximation we consider purely

diffusive scattering [15] for which the distribution func- 10.0 |

tion ¢(r,n) of the outgoing particles is constant and is R
fixed by flux conservation: 00% 0%,
0.0 S 7 Lo R
, ; , . . 4.0 6.0 8.0
or,n) = (NnYo(r,n')dn’, (Nn) <O0. Re &
(Nn")>0

Here the point lies at the surface, an¥ is an outward FIG. 1. First 11 X 11 (0 = k,/ < 11) eigenvalues of the
normal to the surface. This boundary condition should béiouville operatork'in units ofv/R, as given by Eg. (3).
satisfied by the eigenfunctions &f.

The eigenvalues: of the operatotk corresponding to

angular momentun obey the equation The first two terms correspond to the zero-mode approxi-

mation and are given by RMT, while the last one is the
~ _ 1 (7 . . . nonuniversal correction to the RMT results. The informa-
Ji§) = -1+ > fo d@'sin6 exp2il6 + 2¢ sinf] tion about the operatdt enters through the dimensionless
—0 3) constantd = Y &>, where the prime indicates that the
’ eigenvaluety, = 0 is excluded. The value of, as well
where £ = RA/vr, and R is the radius of the circle. as the high-frequency behavior 85(s) (see below), can

For each value of = 0,*=1,%2,..., Eqg. (3) has a set be extracted from the spectral function [16]

of solutions &y with & = é-1x = & &, Which can

be labeled withk = 0,+1,*2,... (evenl) or k = S(w) = ZSl(w); Si(w) = Z(/\kz —iw) % (6)
+1/2,%3/2,...(odd ). Forl = k = 0 we haveéy, = ] 3

0, corresponding to the zero modsr,n) = const. All  According to the Cauchy theorersi; can be represented
other eigenvalues have positive real part ge> 0  as an integral in the complex plane,
and govern the relaxation of the corresponding classical R\2 1 | JI()
system to the homogeneous distribution in the phase §,(w) = <_> —jé . Y% dz,
space. ve) 2mi Je (z — ioR/vp)? Ji(z2)

The asymptotic form of the solutions of Eq. (3) for where the contoulC encloses all zeros of the function
large |k| and/or|l| can be obtained by using the saddle-J;(z). Evaluating the residue at= iwR /v, we find

point method, pe
_ 2% 5
{0660 + 0.14In + 0557k, 0=k <1, Silw) = =R/vr)y iR /vy nai. (0
S =V (Ink)/4 + milk + 1/8), 0=1<k.

Considering the limitw — 0 and subtracting the contri-
(4)  bution of Aoy = 0, we get

Note that fork = 0 all eigenvalues are real, while for high A = —19/27 — 17572/1152 + 64/(97>) =~ —1.48.
values ofk they lie close to the imaginary axis and do not (8)
depend orl (see Fig. 1).

Level statistics, low frequencies-We define the level
correlation function in a standard way,

In contrast to the diffusive case, this constant is negative:
the level repulsion is enhanced with respect to the result
for RMT. Equation (5) is valid as long as the correction
Ry(w) = (AV)X(w(e + w)v(e)) — 1, is small compared to the RMT result, i.e., providedis
below the inverse time of flighiyr/R.

Level statistics, high frequenciesIn the rangew >
A the level correlation function can be decomposed into
the smooth Altshuler-Shklovskii (AS) pam®:>S(w) =
(A%/27%)ReS(w) [16] and the pariRy* which oscillates
on the scale of the level spacing. Evaluating the asymp-
Sir? 7rs A RA 2 i 5 totic behavior ofS;(w) from Eq. (7), we find in the high-
(75)2 ( > sit s (5) frequency regime whem > vy/R,

where v(e) is the density of statesA = (V)™ ! is
the mean level spacing, arld = 7R? is the area. In
the range of relatively low frequencies (which for our
problem meansw < vr/R; see below) the function
R>(w) quite generally has the form [2} (= w/A)

Ry(s) = 6(s) —

TUE
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ARN?( wvr \'? wR Taken together, they provide a complete description
_> <27TwR> C°§<4_ B _> of 2,(s). According to Eq. (15), the level number
(9) variance saturates at the vall) = 71 + y +
o _ ~In(16N'2/7%)], in contrast to the behavior found for
The oscillating part of the level correlation function giffusive systems [16] or ballistic systems with weak bulk

RES(@) =

Vr VF 4

R3*(s) for frequencieso > A is given by [8] disorder [11]. The saturation occurs at energies N'/2,
0sC( ) — 2 or in conventional unit£ ~ vr/R. This saturation of
Ry*(s) = (1/2m7%) cos2ms)D(s), (10) 3,(s), as well as its oscillations on the scale set by short
whereD(s) is the spectral determinant, periodic orbits, is expected for a generic chaotic billiard
[12]. It is also in good agreement with the results for
D(s) =52 J] (0 = isA/a) ™' + isA/ )~ 3,(s) found numerically for a tight-binding model with
kl#(00) moderately strong disorder on boundary sites [13].

Eigenfunction statistics—Now we study correlations of
the amplitudes of an eigenfunction in two different points.
Following Ref. [6], we define

Since A™29%InD(s)/ds*> = —2ReS(w), we can restore

D(s) from Egs. (6) and (7) up to a factor of the form
explc; + czs), with ¢; and ¢, being arbitrary constants.
These constants are fixed by the requirement that Eq. (10) . 2 2 B

in the rangeA < w < vx/R should reproduce the low- a(ri.r, E) = AV % ur)dur)F8(E = €u) ).

frequency behavior (5). As a result, we obtain i i )
whereys,, are the eigenfunctions corresponding to the exact

D(s) = <1>6i [1- 1 (11) Single-particle statea. A calculation analogous to that of
2 ) N2 T(isN=2)J(=isN—1/2) Ref. [6] yields

HereN = (vr/RA)? = (prR/2)? is the number of elec- a(ri,r,E) =1+ Il(r,r), (16)
trons below the Fermi level. For high frequencies>  here T is the Green’s function of the opera-
vr/R this yields the following expression for the oscillat- tor R integrated over directions of momentum
ing part of the level correlation function: [(ri,r2) = [dnidnsg(ri,ni;r,ns). Here g is a ’
5 ; .
RY (w) — _<AR> 5<277—w> (12) SOllitlon of the equation

128 A Kg(ry,ni;ry, no)
It is remarkable that the amplitude of the oscillating part 1
does not depend on frequency. This is in contrast to = —[
the diffusive case, where in the AS regime (@bove ) , 77,,.
the Thouless energy) the oscillating pak™(») is  Direct calculation gives
exponentially small [3]. M(ri,r) = Hi(r,r) + Ma(ry,r), (17)

The level number variance-The smooth part of

the level correlation function can be best illustrated by
plotting the variance of the number of levels in an energy
interval of widthE = sA, Z,(s)

a4

UF

%u—@ﬂm—nﬁ—%]

200= [ 6-BR@da, @3
A direct calculation gives fos < N'/2 SO |
7235(s) = 1 + y + InQ27s) + As?/(2N) (14)

and fors > N!/2

16N'/?
m35(5) =1+ v + In 5
o
2 2 1/2\1/2 4
_W_<N ) s _1>_ (15)
16\ s N1/2 4
Here y = 0.577 is Euler's constant, and is defined 1 2 3 4 172

by Eqg. (8). The first three terms on the right-hand side sN

of Eq. (14) represent the RMT contribution (curve 1 iNgig 2 |evel number variancs,(E) as a function of energy:

Fig. 2). s = E/A. Curve 1 shows the RMT result, while curves 2 and
As seen from Fig. 2, the two asymptotics (14) and (15)3 correspond to asymptotic regimes of low (14) and high (15)

perfectly match in the intermediate regime~ N'/2.  frequencies. The saturation valag’ is given in the text.
4163



VOLUME 80, NUMBER 19 PHYSICAL REVIEW LETTERS 11 My 1998

i(ry,r) = ky(ry — r2) — V7! f dri kq(ri —ry) — V! f drykq(ry — ry) + V_zf dry dryk(ri —rb);
(18)

oo

1 4k — 1<r1r2>k
Iy(ry,rm) = —=| cosk(f; — 6,),
2(ry,12) 47 prR ]; 412 R2 (6 2)

wherek,(r) = 1/(wprlr]), and(r, 8) are the polar coor-| Sciences of the Cambridge University, where part of this
dinates. This formula has a clear interpretation. The funcwork was done, for hospitality and support.

tion II can be represented as a sum over all paths leading
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In particular,IT; corresponds to direct trajectories fram
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