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van der Waals Energies in Density Functional Theory
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In principle, density functional theory yields the correct ground-state densities and energies of el
tronic systems under the action of a static external potential. However, traditional approximations f
to include van der Waals energies between separated systems. This paper proposes a practical p
dure for remedying this difficulty. Our method allows seamless calculations between small and lar
intersystem distances. The asymptotic H-He and He–He interactions are calculated as a first illustrat
with very accurate results. [S0031-9007(98)05991-2]

PACS numbers: 34.30.+h, 31.15.Ew, 71.15.Mb
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Density functional theory (DFT) [1–3] has becom
a useful tool for calculating ground-state energies a
density distributions of atoms, molecules, and soli
particularly of systems consisting ofmany atoms. The
simplest approximation for practical purposes is the loc
density approximation (LDA) [2], based on the properti
of the uniform electron gas. The so-called generaliz
gradient approximations (GGA) are important refineme
of the LDA [3].

In principle, DFT yields the exact ground-state energ
including long-range van der Waals (vdW) energies, ve
important in organic chemistry and elsewhere. Howev
the commonly used LDA and GGA, designed for nonu
form electron gases, fail to capture the essence of v
energies. The latter reflect correlated motions of el
trons due to the Coulomb interactions between dista
even nonoverlapping atoms, molecules, and solids. T
a new strategy is needed.

Here we propose a first-principles approach, wh
contains the following ingredients: (i) The densi
distribution,nsrd, is approximated by the LDA or GGA
(ii) The Coulomb interaction is divided into short an
long-range parts, of which only the latter contribut
to vdW energies. (iii) The contribution of the long
range interactions to the energy is expressed by the
called adiabatic connection formula [see Eq. (3) below
(iv) This expression is transformed into the time doma
avoiding the need to solve a self-consistent equation
the density-density response function. As an illustrat
we calculate the asymptotic vdW interaction between t
helium atoms and between hydrogen and helium ato
with excellent results. The method allows seamle
calculation of the interaction of two subsystems, e.
an atom and a surface, from small to large separatio
Our work was carried out independently and diffe
substantially from recently published work by Anderss
et al. [4] and by Hult et al. [5], which depend critically
on a fitting parameter.
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Since the vdW energies are due to the long range
the electron-electron interaction,Usrd ­ 1yr, we may
separate this interaction, as a preliminary step, into sho
and long-range parts,

Usrd ­ Usr srd 1 Ulrsrd . (1)

For example, we can chooseUsr srd ; e2kr yr, with a
suitably chosen value ofk. The calculated total energy
is, in principle, independent of the choice ofk, in
practice—with appropriate approximations—nearly so
(This separation is not a necessity. The theory can al
be developed withk ­ `, i.e.,Ulr ­ U andUsr ­ 0.)

We now write the Hamiltonian as a function of a
coupling constantl that “turns on” Ulr , such that the
physical Hamiltonian operator corresponds tol ­ 1:

H sld ­ T 1 Vl 1 Ul, 0 # l # 1 , (2)

whereT is the kinetic energy,Ul ; Usr 1 lUlr , and the
external potentialVl is chosen such that the ground-stat
densitynlsrd of H sld equals the exact physical density
nl­1srd for all l [6]. Note that forl ­ 0, the interaction
is entirely short range and that, forl ­ 1, Vl­1 ­ Vext.
We denote the ground-state energy ofH sld by Esld.
Then the ground-state energy of the physical syste
E ; Es1d, is given by

E ­ Es0d 1
Z 1

0
dl

dE
dl

­ Es0d 1
Z 1

0
dl

∑
dVlsrd

dl
nsrd 1 kUlrll

∏
­ Es0d 1

Z
drfVextsrd 2 V0srdgnsrd

1
1
2

Z
drdr 0 Ulrsr 2 r 0d

3

"Z 1

0
kn̂srdn̂sr 0dlldl 2 nsrddsr 2 r 0d

#
, (3)
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where n̂ is the density operator andk· · ·ll means expec-
tation value in the ground state ofH sld; V0srd, defined
above, eventually drops out [see Eq. (5)].

From DFT, usingUl­0 ­ Usr , Es0d is given by

Es0d ­ Tsfnsrdg 1
Z

dr V0srdnsrd

1
1
2

Z
drdr 0 Usr sr 2 r 0dnsrdnsr 0d

1 Esr
xcfnsrdg , (4)

whereTsfnsrdg is the noninteracting kinetic energy func
tional and Esr

xcfnsrdg is the exchange-correlation energ
corresponding to densitynsrd and the interactionUsr .

Substituting (4) into (3) we find, after simple manipul
tions, the exact result:

E ­ Ts fnsrdg 1
Z

dr Vextsrdnsrd

1
1
2

Z
drdr 0 Usr 2 r 0dnsrdnsr 0d

1 Esr
xcfnsrdg 2

1
2

Ulrs0dN 1 Epolfnsrdg , (5)

whereN is the number of electrons and

Epol ;
1
2

Z
drdr 0 Ulrsr 2 r 0d

3
Z 1

0
dlkfn̂srd 2 nsrdg fn̂sr 0d 2 nsr 0dgll . (6)

Epol includes the long-range vdW energies.
To calculate the first four terms in Eq. (5) we use tra

tional methods. Experience [3] has shown that the den
nsrd may be calculated to a very good approximation
the LDA with the full Usrd. Such a calculation also au
tomatically yields an approximateTsfnsrdg,

Tsfng ­
NX

j­1

ej 2
Z

yKSsrdnsrddr , (7)

where yKS is the Kohn-Sham (KS) effective potentia
that reproducesnsrd, and theej are the single-particle
energies available from the LDA calculation.Esr

xcfnsrdg
is available in the LDA [7].

By means of the fluctuation-dissipation theorem we c
express the integral in Eq. (6) in terms of the imagina
part of the retarded linear susceptibilityx [8],

kfn̂srd 2 nsrdg fn̂sr 0d 2 nsr 0dgll

­ 2
1
p

Z `

0
Imxsr , r 0; v, ld , (8)

giving

Epol ­ 2
Z

drdr 0Ulrsr 2 r 0d

3
Z 1

0
dl

Z `

0

dv

2p
Imxsr , r 0; v, ld , (9)
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where x is defined, as usual, as follows: Le
V1sr , vde2ivt be a small perturbing potential, actin
on the ground state ofH sld, and producing a density
responsen1sr , v, lde2ivt. Thenx is defined by

n1sr , v, ld ­
Z

dr 0xsr , r 0; v, ldV1sr 0, vd . (10)

With simple approximations forx (Hartree or bet-
ter) Epol includes long-range vdW energies. Forl ­ 1,
methods used to evaluatexsr , r 0; v, ld have been dis-
cussed in the past [9,10], and can be formally carried o
to l , 1. x is the solution of the integral equation:

xsr , r 0; v, ld ­ xKSsr , r 0; vd 1
Z

dr 00dr 000xKSsr , r 00; vd

3 fUsr 00 2 r 000d 1 fxcsr 00, r 000; v, ldg

3 xsr 000, r 0; v, ld , (11)

where xKSsr, r 0; vd is the response function of the
corresponding noninteracting Kohn-Sham system, andfxc

describes exchange and correlation effects [see Eq. (6
Ref. [10]].

However, except for systems of very high symmetr
such as spherical atoms, the self-consistent solution
(11) is computationally very forbidding. Here we propos
an equivalent but much less cumbersome procedu
which avoids the solution of a self-consistent integr
equation for each value ofl and of v. We note that
xsr , r 0; v, ld is the Fourier transform,xsr , r 0; v, ld ­R

dt xsr , r 0; t, ldeivt , of the time-dependentresponse
function,xsr , r 0; t, ld, defined as follows:

n1sr , t, ld ­
Z

dr 0dt0 xsr , r 0; t 2 t0, ldV1sr 0, t0d , (12)

where V1sr 0, td and n1sr , t, ld are, respectively, externa
perturbing potential and density response. Equation
can be rewritten as

Epol ­ 2
1

2p

Z
drdr 0 Ulrsr 2 r 0d

3
Z 1

0
dl

Z `

0

dt
t

xsr , r 0; t, ld . (13)

Following Gross and Kohn [10], we can replace the de
sity response of the physical system to the external p
turbing potential by the response of the (l-independent)
KS system to an effective potentialV eff

1 ,

n1sr , t, ld ­
Z

dr 0dt0 xKSsr, r 0; t 2 t0, ldV eff
1 sr 0, t0, ld ,

(14)

V eff
1 sr 0, t0, ld ; V1sr 0, t0d 1

Z
dr 00Ulsr 0 2 r 00d

3 n1sr 00, t, ld 1 V1,xcsr 0, t0, ld . (15)

V1,xcsr 0, t0, ld is defined by Eqs. (14) and (15). Thu
xsr , r 0; t, ld is the density response of the noninteracti
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KS system at timet to the V eff
1 sr 0, t0, ld at any time

t0 (0 # t0 # t), induced by an external potentia
V1sr 00, t0d ­ dsr00 2 rddstd.

To complete this procedure we need a practical
proximation forV1,xc, for which, following Ref. [9], we
set

V1,xcsr 0, t0, ld ­
≠Vxcsn, ld

≠n

Ç
n0sr 0d

n1sr 0, t0, ld , (16)

where n0 is the unperturbed density andVxc is the
static exchange-correlation potential in the LDA. He
in addition to the usual approximation of the LDA, th
frequency dependence (or retardation) ofVxc is neglected.

The evaluation ofx now requires the calculation o
the evolution of the noninteracting KS system under
action of V eff

1 sr 0, t0, ld. At this point it is convenient to
change from the coordinate representation to an ortho
mal basis,fnsrd, and use the notation

Fsrd ­
X̀

m­1

Fmfmsrd, etc. (17)

Thus Eq. (12) becomes

n1,mst, ld ­
Z `

0
dt0

X
m0

xKS,mm0st 2 t0; ldV eff
1,m0st0, ld .

(18)

The following steps need to be carried out for each va
of l: (i) At time t ­ 02 the KS system is given by th
determinantsNd21Detjf1f2 · · · fN j of the occupied KS
orbitals fj. (ii ) At time 01, after the action of a smal
external perturbation,V srd ­ afmsrddstd (a small), each
of the KS orbitals is changed,fjsr , td ! fjsr , td 2

iafmsrdfjsr, td. [Effects of thefinite unperturbed KS
Hamiltonian and of the induced parts ofV eff in the infini-
tesimalinterval s02, 01d are negligible.] (iii ) For t . 01

we integrate the time-dependent Schrödinger equation
eachfj in a stepwise fashion, evaluating the first-ord
induced densityan1,msr , td ­

P
j jfjsr , tdj2 2 n0srd at

each time step, to be able to compute the induced p
of V eff

1 [Eq. (15)], which depend onn1,msr, td. Writing,
for eachm andl, fj ­ f0j 1 af1j, one has

i
≠f1j

≠t
­ H0f1j 1 V eff

1 f0j , (19)

whereH0 is the unperturbed,l-independent KS Hamil-
tonian andV eff

1 is defined in Eq. (15), withn1sr , td ­
2

P
j Reffp

0jf1jg. (iv) The projection ofn1,m on fm0

givesxmm0 std,

xmm0 std ­ sss fm0 , n1,mstdddd . (20)

From Eq. (13), we obtain

Epol ­ 2
1

2p

Z `

0

dt
t

Z 1

0
dl

X
m,m0

xmm0st, ldUlr;mm0 .

(21)

In practice, thel integration is replaced by a finite sum.
As a simple example of this general procedure,

now apply it to the calculation of the asymptotic vdW
p-

,

e

or-

e

for
r

rts

e

interaction of a pair of spherically symmetric atoms. W
denote the atoms byA and B, their nuclear coordinates
by RA and RB (taken to be on thez axis), and write
R ­ jRA 2 RBj. We takeR ¿ aA 1 aB, the sum of the
atomic radii andR21 ø k ø a21

A,B. The asymptotic vdW
interaction is obtained from those parts ofEpol [Eq. (6)]
in which r andr 0 are in different atoms. Taker to be in
A and r 0 in B. Sincek ø a21

A,B, Ulr can be treated as a
small perturbation, giving to first order

xsr , r 0; v, ld ­ l
Z

dr1dr2 Ulrsr1 2 r2d

3 xAsr , r1; vdxBsr2, r 0; vd , (22)

where xA,B are the responses of the isolated atomsA
or B. The integration overl is now trivial. Lastly,
we expand Ulrsr 2 r 0d in 1yR and obtain the final
expression,EvdW ­ 2C6yR6,

C6 ­
3
p

Im
Z `

0
dvxzz

A svdxzz
B svd

­
3
p

Z `

0
dt1

Z `

0
dt2

x
zz
A st1dxzz

B st2d
t1 1 t2

. (23)

In the above,xzz is defined as thez component of the
density response to a perturbation in thez direction,
xzz ­

R
dr1dr2 xsr1, r2dz1z2. The first form is well

known [11], the second is its Fourier transform into t
time domain.

We have calculated the time-dependent response for
helium atom in DFT as follows. We begin with the exa
Vxcsrd [12], which reproduces the exact ground-sta
density n0srd (known from highly accurate independen
calculations), and the corresponding exact KS orbitalf0
and energye0. We takeV1sr , td ; 2azdstd. At time
t ­ 01 the wave function will be

fsr, t ­ 01d ­ f0srd 2 iazf0srd , (24)

a combination ofs andp functions. Fort . 0, we solve
the time-dependent Schrödinger equation forfsr, td ;
f0sr, td 1 af1sr, td, with the initial condition (24). Lin-
earizing ina gives the following equation forf1:

i
≠f1sr, td

≠t
­ H0f1sr, td 1 H1stdf0sr, td,

f1sr, 01d ­ 2irf0srd , (25)

wheref0sr, td ­ e2ie0tf0srd, H0 is the KS unperturbed
helium Hamiltonian,

H1std ­
Z

dr 0 n1sr 0, td
jr 2 r 0j

1
≠Vxc

≠n

Ç
n0srd

n1sr , td , (26)

andn1sr , td ­ 4 Reff0sr, tdfp
1sr , tdg. Vxc was calculated

using the parametrization of Voskoet al. [13]. Equations
(25) and (26) were solved by stepwise integration in tim
The time evolution fromt to t 1 Dt was carried out by
the fast Fourier transform method as used in Ref. [1
Since at each instantf1 evolves under the action of th
4155



VOLUME 80, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 11 MAY 1998

a

e

r

i
c

,

ice
te.

a

h
o
t
on,
d
nt

s,
m

s.

-

n,
o

te,

s.

ys.
FIG. 1. The imaginary-frequency susceptibilityasud for he-
lium (solid line: direct evaluation; dashed line: extrapolation).

total effective potential, the resulting response functio
xstd [and, if desired, the correspondingxsvd] is auto-
matically self-consistentwithout the need to first solve a
self-consistent integral equation, as is the case in the di-
rect evaluation ofxsvd [see Eq. (11)].

In practice, the direct evaluation of the time integr
in (23) is inconvenient becausexstd oscillates with
undiminishing amplitude at larget. However, it has been
noted [11] that, if we defineasud ­

R`
0 xzzstde2utdt

[i.e., asud ­ xzzsivd], the vdW coefficientC6 can be
written as

C6 ­
3
p

Z `

0
du aAsudaBsud . (27)

For helium,xstd was calculated up tot ­ 15 atomic
units, which allows accurate calculation ofasud for
u . u0 ­ 0.4. In the interval 0 # u # u0, we repre-
sentedasud by the expressiona 1 bys1 1 cu2d, and fit-
ted a, b, c to asud and its first two derivatives atu ­ u0.
(We checked that the results are insensitive to the
act choice ofu0 or to the choice of the extrapolating
function.) Figure 1 shows ourasud for He. The cor-
rect asymptotic form,asud ! 2yu2 (the f-sum rule), is
automatically obeyed. The completeness sum rule
quires

R`

0 asuddu ­ 2pkf0jz2jf0l . 2.50. Our asud
gives 2.33. An independent check on ourasud is the
static susceptibilityas0d. The best theoretical value is
1.383 241 [15], while we find1.38.

Our results for the He-He vdW constant isC6 ­ 1.45,
almost identical to the best theoretical value [16]1.458.
For the H-He system we findC6 ­ 2.81 compared to the
best theoretical value [17] of2.817.

We feel cautious about the significance of the hig
accuracy of our results for the He-He and the H-H
systems in view of the fact that our calculatedasud leads
to a 7% error in the completeness sum rule. At the sam
time, our results demonstrate the soundness and feasib
of our approach. We are optimistic that our approa
4156
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will not only give asymptotic van der Waals coefficients
but the entire nuclear potential energy functionesRd,
including vdW energies.

We found that the results are sensitive to the cho
of a good KS potential for the unperturbed ground sta
Repeating the calculation by replacing the exactVxc by
Vxc in the local-density approximation, the result forC6
of the He-He system was1.85, 28% too high. This
is qualitatively similar to the experience of Petersilk
et al. [18] with calculations of excited-state energies.
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was supported by the U.S. National Science Foundati
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by the U.S.-Israeli Binational Science Foundation, Gra
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