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van der Waals Energies in Density Functional Theory
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In principle, density functional theory yields the correct ground-state densities and energies of elec-
tronic systems under the action of a static external potential. However, traditional approximations fail
to include van der Waals energies between separated systems. This paper proposes a practical proce-
dure for remedying this difficulty. Our method allows seamless calculations between small and large
intersystem distances. The asymptotic H-He and He—He interactions are calculated as a first illustration,
with very accurate results. [S0031-9007(98)05991-2]

PACS numbers: 34.30.+h, 31.15.Ew, 71.15.Mb

Density functional theory (DFT) [1-3] has become Since the vdW energies are due to the long range of
a useful tool for calculating ground-state energies andhe electron-electron interactiod/(r) = 1/r, we may
density distributions of atoms, molecules, and solidsseparate this interaction, as a preliminary step, into short-
particularly of systems consisting ohany atoms. The and long-range parts,
simplest approximation for practical purposes is the local-
denZity apgir)oximation (LDAE)) 2], baspedpon the properties U(r) = Us(r) + Un(r). 1)
of the uniform electron gas. The so-called generalizedror example, we can choodé(r) = e “"/r, with a
gradient approximations (GGA) are important refinementsuitably chosen value of. The calculated total energy
of the LDA [3]. is, in principle, independent of the choice af, in

In principle, DFT yields the exact ground-state energy practice—with appropriate approximations—nearly so.

including long-range van der Waals (vdW) energies, veryThis separation is not a necessity. The theory can also
important in organic chemistry and elsewhere. Howeverpe developed withk = o, i.e.,U;, = U andU = 0.)

the commonly used LDA and GGA, designed for nonuni- We now write the Hamiltonian as a function of a
form electron gases, fail to capture the essence of vdWoupling constantA that “turns on” Uy, such that the
energies. The latter reflect correlated motions of elecphysical Hamiltonian operator correspondsite= 1:

trons due to the Coulomb interactions between distant,

even nonoverlapping atoms, molecules, and solids. Thus HQ) =T + Vy + Uy, 0=a=1, (2

a new strategy Is needed.. o ~ whereT is the kinetic energyl/, = Uy, + AU, and the
Here we propose a f.|rst—pr|'nC|pIes a_lpproach, Wh_'C"bxternaI potentiaV, is chosen such that the ground-state
cpntglns_ the foII'owmg |n'gred|ents: (i) The density densityn,(r) of H () equals the exact physical density
distribution, n(r), is approximated by the LDA or GGA. ,,, _ (;)for all A [6]. Note that forA = 0, the interaction
(i) The Coulomb interaction is divided into short and jg entirely short range and that, far= 1, Va—y = Vex.
long-range parts, of which only the latter contributes\ye denote the ground-state energy Bf (A) by E(A).

range interactions to the energy is expressed by the s¢: = £(1), is given by

called adiabatic connection formula [see Eq. (3) below]. |

(iv) This expression is transformed into the time domain, p _— E©0) + j dA dE
avoiding the need to solve a self-consistent equation for 0 dA
the density-density response function. As an illustration 1 dv,(r)
we calculate the asymptotic vdW interaction between two = E(0) + [ d){d—/\
helium atoms and between hydrogen and helium atoms,

with excellent results. The method allows seamless _ E0) + ] dr[Vea(r) = Vo(r)In(r)
calculation of the interaction of two subsystems, e.g.,

) + (Ui |

an atom and a surface, from small to large separations. 1

Our work was carried out independently and differs t 5 f drdr' Uy (r — r')

substantially from recently published work by Andersson .

et al. [4] and by Hultet al. [5], which depend critically % |:] ARG rdA — n(r)s(r — r/):|, 3)
on a fitting parameter. 0
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wheresi is the density operator and--), means expec- where y is defined, as usual, as follows: Let
tation value in the ground state & (A); Vo(r), defined  V,(r, w)e '®’ be a small perturbing potential, acting

above, eventually drops out [see Eq. (5)]. on the ground state _oﬂ-[(A), and producing a density
From DFT, usingU,—o = U, E(0) is given by responser (r, w, A)e '®". Theny is defined by
E) = Tyn(r)] + f dr Vo(r)n(r) m(r,w,A) = f dr'y(r,r'; 0, )Vi(r',w).  (10)
1 , , , With simple approximations fory (Hartree or bet-
+ B f drdr' Us(r = r)n(r)n(r’) ter) Epo1 includes long-range vdW energies. For= 1,
o methods used to evaluate(r, r’; w,A) have been dis-
+ Exn(r)], (4)  cussedin the past [9,10], and can be formally carried over

whereT,[(r)] is the noninteracting kinetic energy func- 10 A < 1. x is the solution of the integral equation:

tional and Ei.[n(r)] is the exchange-correlation energy ) ) P )
corresponding to density(r) and the interaction; . x(r,rho,A) = xgs(r,r'; ) + [ dr''dr xxs(r,r"; o)
Substituting (4) into (3) we find, after simple manipula- ; o -
tions, the exact result: XU = ") + fre(r", 1" @, A)]
X x(r'" r'w, A), (11)
E =T, [n(r)] + ] dr Vex(#)n(r) . _
where yks(r,r’; w) is the response function of the
1 corresponding noninteracting Kohn-Sham system, jand
+ = | drdr’ U(r = r')n(r)n(r) describes exchange and correlation effects [see Eq. (6) of
2 Ref. [10]]
ef. .
+ EX[n(r)] — %UH(O)N + Epaln(r)], (5) Hrcl)wever,hexpepl)t for systﬁms olil‘c very.high ser|1njetry,f
such as spherical atoms, the self-consistent solution o
whereN is the number of electrons and (11) is computationally very forbidding. Here we propose
1 an equivalent but much less cumbersome procedure,
Epol = — rdr' Uy(r — r which avoids the solution of a self-consistent integra
b > drdr' Uy, ( ! hich ids th luti f If istent int I

equation for each value of and of w. We note that
x(r,r';w, A) is the Fourier transformy(r,r’; w, A) =
[ dt x(r,r';1,A)e'®", of the time-dependentresponse
function, x (r, r'; ¢, A), defined as follows:

1
x jo dALA() = (A — n()Da. (6)

Epo1 includes the long-range vdW energies.

To calculate the first four terms in Eq. (5) we use tradi- .y , , y
tional methods. Experience [3] has shown that the densit§f ("> 7 A) 2[ dridi’ x(r,rise = 0, )Vi(r 1), (12)
n(r) may be calculated to a very good approximation by

the LDA with the full U(r). Such a calculation also au- where V,(r',1) and n(r, 1, A) are, respectively, external
tomatically yields an approximat[n(r)] perturbing potential and density response. Equation (9)
' can be rewritten as

N
= - 1
=3 e [ vsomar. @) Y

J 27T
where vks is the Kohn-Sham (KS) effective potential 1 “ dt )
that reproduces:(r), and thee; are the single-particle X fo d/\fo TX(r,r ;A (13)
energies available from the LDA calculatiorest[n(r)] )
is available in the LDA [7]. Following Gross and Kohn [10], we can replace the den-

By means of the fluctuation-dissipation theorem we carity résponse of the physical system to the external per-
express the integral in Eq. (6) in terms of the imaginaryfUring potential by the response of the-iidependent)

part of the retarded linear susceptibiligy[8], KS system to an effective potentif",
([Aa@r) = n(r)][AG") = n(")Da m(r,t,A) = f dr'dt’ xyxs(r,r'st =, OVEE (1, Q)
— L [Tt o0, @ a4
7 Jo
giving V(1) = Vil ) + f dr'v,(r' — )
Epot = — [ drdr'Un(r = r') X m(r" 1, A) + Vi (0. (15)

! * dw Vixe(r', 1, A) is defined by Egs. (14) and (15). Thus
X]O d’\]o Elm){(”’"/;“”)‘)’ ) ¥(r, 1, A) is the density response of the noninteracting
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KS system at timer to the V{''(+/,#/,A) at any time interaction of a pair of spherically symmetric atoms. We
' (0=t =1), induced by an external potential denote the atoms by and B, their nuclear coordinates
Vi, ¢ty = 8(r" — r)6(2). by R4 and Rp (taken to be on the axis), and write

To complete this procedure we need a practical apR = |[Rx — Rp|. We takeR > a4 + agp, the sum of the
proximation for Vy .., for which, following Ref. [9], we atomic radii and® ! < k <« a;};. The asymptotic vdW
set interaction is obtained from those parts Bf, [Eq. (6)]

in which » andr' are in different atoms. Taketo be in
anc(n’ /\) !, . . -1
ni(r',t',A), (16) A andr'in B. Sincex < ayp, Uy, can be treated as a
small perturbation, giving to first order

Vl,xc(r/»t/’)\) =
an no(r')
where ny is the unperturbed density and,. is the
static exchange-correlation potential in the LDA. Here, x(r i, ) = A [ dridry Uy (r; — 1)
in addition to the usual approximation of the LDA, the
frequency dependence (or retardationyqf is neglected.
The evaluation ofy now requires the calculation of
the evolution of the noninteracting KS system under thevhere y, 5 are the responses of the isolated atoms
action of Vi (+/,#/, ). At this point it is convenient to Or B. The integration overA is now trivial. Lastly,
change from the coordinate representation to an orthonote expand Uy (r — r') in 1/R and obtain the final

X xa(r,ri; o) xp(r, r'y o), (22)

mal basisf,(r), and use the notation expressionEyaw = —Ce/R°,
e'e] 3 oo}
F(r) = > Fufu(r), etc. (17) Co = —m f doyZ(w)yF(w)
m=1 0
o) 0 zZ t ZZ t
Thus Eq. (12) becomes _3 f dn ] dty XA (1) x5 (12) (23)
— - / /. eff (.1 TJo 0 htn
(s A) = 0 di % XS (= 3V (£, A). In the above,y% is defined as the component of the

(18) density response to a perturbation in thedirection,

= [ dridry x(r1,r2)z122. The first form is well
wn [11], the second is its Fourier transform into the
time domain.

We have calculated the time-dependent response for the
helium atom in DFT as follows. We begin with the exact
Vie(r) [12], which reproduces the exact ground-state
density no(r) (known from highly accurate independent
calculations), and the corresponding exact KS orbfigl

The following steps need to be carried out for each valu?f;;
of A: (i) Attime ¢t = 0~ the KS system is given by the
determinant(N) " 'Detl¢p ¢, - - - pn| of the occupied KS
orbitals ¢;. (i) At time 0%, after the action of a small
external perturbatior¥/ (r) = af,,(r)8(¢) (« small), each
of the KS orbitals is changedg;(r,t) — ¢;(r,1) —
iafu(r)¢;(r,t). [Effects of thefinite ur;fperturbed KS
Hamiltonian and of the induced parts Bf" in the infini- _ .
tesimalinterval (0~,0") are negligible.] ii) For: > 0* an_d (;e+n(te£gyeo. V\]{e t?kevl(.ﬁ’é) = —azd(n). At tme
we integrate the time-dependent Schrédinger equation fdr— € wave function witl be
gfi\jch ¢é ig a s_tepwisez faihiorﬁ el\::llzjati;gj the f(irs;t-order d(r,t =07) = po(r) — iazeo(r), (24)
induced densityan; ,(r,t) = >.; |¢;(r,1)|* — no(r) at L ,
each time step, to be able to t]:om';:)ute the induced parfs combination of andp functions. For > 0, we solve
of V' [Eq. (15)], which depend omy.(r,7). Writing, 1€ time-dependent Schrédinger equation dfr, 1) =
for eachm andA, ¢; = do; + ad,;, one has d)o(.r,'t) + ad).l(r, t), with the_lnltlal cond|t|on (24). Lin-
/ / / earizing ina gives the following equation fop :

0y £f
i—2L = Hod,; + V¢ . 19
g Tty T 4o i P03 + H 0ol
where H, is the unperturbed)-independent KS Hamil-
tonian andV{" is defined in Eq. (15), witha(r,?) = $1(r,07) = —irgo(r), (25)

2.2/' Re{¢o; 1] (iv) The projection ofni,, on f where ¢o(r, 1) = e ' ¢o(r), Hy is the KS unperturbed
GIVeS X' (¢), helium Hamiltonian,

Xmm’(t) = (fm’» nl,m(t))~ (20) g—[ B . I’ll(l’/, t) anc
From Eq. (13), we obtain 1)) = | dr = on e n(r,t), (26)
o 1
Epol = b dat f dA Z X' (s MUl - andn;(r,t) = 4Rd ¢o(r, 1) (r,1)]. Vy. was calculated
2mJo t Jo mom! 21) using the parametrization of Voslat al. [13]. Equations

(25) and (26) were solved by stepwise integration in time.

In practice, thex integration is replaced by a finite sum. The time evolution frony to + + At was carried out by
As a simple example of this general procedure, wehe fast Fourier transform method as used in Ref. [14].

now apply it to the calculation of the asymptotic vdW Since at each instark,; evolves under the action of the
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1.5 will not only give asymptotic van der Waals coefficients,

but the entire nuclear potential energy functioa(R),
including vdW energies.

We found that the results are sensitive to the choice
of a good KS potential for the unperturbed ground state.
Repeating the calculation by replacing the ex¥gt by
Ve in the local-density approximation, the result G
of the He-He system wag$.85, 28% too high. This
is qualitatively similar to the experience of Petersilka
et al. [18] with calculations of excited-state energies.

We are indebted to C. Umrigar for providing us with
the exact KS and the LDA KS data for helium. We also
thank Weitao Yang for helpful information. This project
was supported by the U.S. National Science Foundation,
Grants No. DMR-9630452, and No. PHY94-07194, and
by the U.S.-Israeli Binational Science Foundation, Grant
No. 94-00277/1.

total effective potential, the resulting response function
x(t) [and, if desired, the corresponding(w)] is auto-
matically self-consistentvithout the need to first solve a
self-consistent integral equatipas is the case in the di-

a(u) (atomic units)

0 2 4 6 8
u (atomic units)

10

FIG. 1. The imaginary-frequency susceptibilits(u) for he-
lium (solid line: direct evaluation; dashed line: extrapolation).

rect evaluation ofy(w) [see Eq. (11)].

In practice, the direct evaluation of the time integral

in (23) is inconvenient becausg(z) oscillates with
undiminishing amplitude at large However, it has been
noted [11] that, if we definex(u) = [, x¥(t)e “dt
[i.e., a(u) = y*(iw)], the vdW coefficientC¢ can be
written as

C6 =

% ]0 " con(w)apu). 27)

For helium, y(¢) was calculated up te = 15 atomic
units, which allows accurate calculation af(x) for
u>uy = 04. In the interval0 = u = uy, we repre-
senteda (1) by the expressioa + b/(1 + cu?), and fit-
teda, b, c to a(u) and its first two derivatives at = uy.

(We checked that the results are insensitive to the e
act choice ofuy or to the choice of the extrapolating

function.) Figure 1 shows ouw(u) for He. The cor-
rect asymptotic formp («) — 2/u? (the f-sum rule), is

automatically obeyed. The completeness sum rule re-

quires [ a(u)du = 2m{polz*|ho) = 2.50. Our a(u)
gives 2.33. An independent check on our(u) is the

static susceptibilitya(0). The best theoretical value is

1.383 241 [15], while we find1.38.

Our results for the He-He vdW constant@g = 1.45,
almost identical to the best theoretical value [16358.
For the H-He system we finds = 2.81 compared to the
best theoretical value [17] &f817.

We feel cautious about the significance of the hig
accuracy of our results for the He-He and the H—He[16]

systems in view of the fact that our calculatet) leads
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