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Bremsstrahlung in @ Decay
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We present the first fully quantum mechanical calculation of photon radiation accompanying charged
particle decay from a barrier resonance. The soft-photon limit agrees with the classical results, but
differences appear at next-to-leading order. Under the conditions d&cay of heavy nuclei, the
main contribution to the photon emission stems from Coulomb acceleration and may be computed
analytically. We find only a small contribution from the tunneling wave function under the barrier.
[S0031-9007(98)05949-3]

PACS numbers: 23.60.+¢, 41.60.—m

Nuclear fission andr decay are interesting processescharge of thex particle, andZ andA are the charge and
that involve both tunneling and the acceleration ofmass number of the decaying nucleus, respectively.
charged particles in Coulomb fields. This raises the We take the potential of the single-particle Hamiltonian
guestion of whether the tunneling process affects thas the Coulomb outside a radiusand a constant inside,
bremsstrahlung emission. A semiclassical theory with an
affirmative conclusion has been given by Dyakonov and (3)
Gornyi in Ref. [1]. In an experiment on the spontaneous

P 252 . . . .
fission of =“Cf, Luke et al.[2] found a null result and \ye will see later that the results are quite insensitive

Zze?
r

V(r) = O —ry) — Vo®(rg — r).

gave an upper limit to the bre_msstrahlung rate. In th§g the choice of parameter§, and r, provided the
case ofa decay of heavy nuclei, two recent experimentsyecay properties are reproduced. The initial stteis

by D’Arrigo et al.[3] and Kasagiet al.[4] detected
accompanying photon radiation.

a resonant state of zero angular momentum normalized

The latter authorgy g ynit outgoing flux of particles. Its radial wave

claimed to observe interference effects with a tunneling,nction is given in terms of, and G, Coulomb wave
contribution to the bremsstrahlung, interpreting theirf;nctions by(%)l/z[GO(77 kr) + iFo(n, kr)]/r outside

results in the framework of Ref. [1]. This gives urgency

ro and is proportional to theiy(«r) spherical Bessel

to carry out a full quantum mechanical calculation of thefnction inside. The Sommerfeld parametgis given by

bremsstrahlung. We describe here a calculation with th

following assumptions: a single-particle barrier model to?

describe thex-nucleus wave function, initial state treated
as a Gamov state with a complex energy, and perturbati
coupling of the photon to the current, taken in the dipol
approximation.

The perturbative expression for the photon emissio
probability during decay may be obtained from Fermi's

golden rule
(a9 e o

In what follows we treat the photon field in the
dipole approximation and use the identity|pli) =
(fI[H, plli)/E, = iR fIVV|i)/E,, whereH is the a-
particle Hamiltonian with potential. One obtains
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Here dP/dE, is the branching ratio to decay with a
photon emission, differential in the photon energy.
The wave functions®;(r) and ®¢(r) are the radial
wave functions of the initial and final states of the
particle, respectively, with normalization specified below.
The effective charge&.¢s for dipole transitions is given
by Zetr = [(A — 4)z — 4Z — 2)]/A wherez = 2 is the
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=1 it is much larger than one for heavy nuclei.
The wave numbersc and « satisfy k = i~ '\/2mE,

nd x = i~ '\2m(E, + V,) where E, is the a-decay
energy. Matching the wave functions at= r yields

the amplitude of the inner wave function as well as the

r(complex) energy of the resonant state.

Sin2kry
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The parameterg, and V, of our nuclear potential (3)
are fixed to reproduce the empirical decay endtgyand
mean lifer of the decay. The mean lifetime depends on
the parameters through the equation
2E, 7 kro GE(n.kro) (1 )
h 2 sirtkry
27
+ [ "apGim.p. @)

ro
In Eg. (4) and also in the wave function matching, we
neglect terms witlF, andF{, which are of ordeD (A) < 1
compared t@, andG). HereA = % is a small parame-
ter, and the primes denote derivatives with respeét-to

As is well known, there are multiple solution sets

(ro, Vo) for a given decay energy and mean life, distin-
guished by the number of nodes of the inner wave function
[5-7]. Typical solution sets for the nuclei of interest are
shown in Table I. Our simple model gives reasonable radii
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TABLE I. Parameters of the nuclear potential. The table lists The continuum final stateB, are normalized to give the
the parameters,, and V, of the nuclear potential (3) that unit operator when integrated over energyr — r’) =

were used in the present calculations. For each listed nUCIel\ﬁ;dE ®.(r)®x(r'). The radial wave function is a stand-
the presented parameters reproduce the experimentally kno E EN m

values of thea-particle energyt, and the mean lifetime. Ing wave having the for'rmﬂ—ﬁZkf)l/z[Gl(n/’ k"r) sina +
Fi(n',k'r)cosa]/r outside r, and proportional to the

**Po *%Po ?*Ra j1(x'r) spherical Bessel function inside. Primed quantities
E/MeV 7.7 5.3 4.8 are defined similar to the corresponding unprimed quanti-
A=n/tE, 37x107" 73 X107 19X 107  ties, but with the energy diminished by the emission of a
ro/fm 9.19 8.76 9.75 photon. Matching the wave function at= ry yields ex-
Vo/MeV 12.1 16.7 12.9

pressions for tar and the amplitude of the inner wave
function. The final state is off resonance for almost all
final energies E, — E,), and thus taa ~ O(A) < 1;
close to or slightly larger than the nuclear radius ¥grin i.e., the final wave function does not penetrate the nucleus
the range 0 to 150 MeV [5-7]. The results presented bes!gnlflcantly and is a true continuum wave fun_ctlon. Out-
low do not depend on a specific choice of a solution. In the'd® the Coulomb barrier the wave function is very well
case of vanishing photon energy the parameters drop OLﬁt,pproxmated by the regular Coulomb wave function only.

for finite photon energies, the numerical results exhibit no  1N€ matrix element in Eq. (2) can now be written
dependence on the choice of parameters. down. It has a delta function contribution ig and an
integral over the derivative of the Coulomb field outside,

2m? 7Ze? L P
(Prlo,VID;) = 3 + Vo |[Fi(n', k'ro) + Gi(n', k'ro) tana]Go(n, kro)
mh kk’ ro

- zZeszdr rHF (' k'r) + Gi(n',k'r)tana][Go(n, kr) + iFo(n, kr)]}t + O(A).
(5)

We separate the expression (5) into real and imagin'aryvmit of the integral to zero, which only introduces an
contributions and consider the latter first. error of the orderO(A). The resulting integral may be
We may neglect the contribution of the term expressed interms of hypergeometric functions as [8,9]
Fo(n,kr)Gi(n',k'r)tana to the integral since it is
of order O(A). Thus, the imaginary part is an integral [~ dr
over two F; functions. Therefore it contains those J, ,2
contributions to the bremsstrahlung that stem from the
classical acceleration in the Coulomb field. It can be
treated analytically as follows. We first extend the Iowrer

Fi(n',k'r)Fo(n, kr)
= kk"{k'|1 + in'IMy — k1 + inIM;}, (6)

where
i(n+n") . . . . j
_ ( £ ) TG A1+ ig)ITG + 1+ i)l e(ﬂg)g(ﬂ’ﬁ)]

J

n+n (k — k)2(2j + 1! &
. o o n'n
XZFI(]-I-l—zn,]+1—zn’,2]+2;—gz). @)
Here ,F; denotes the hypergeometric function, and \Jvebremsstrahlung that are associated with tunneling. In the
have defined [10] limit of vanishing photon energy, this amplitude reduces

E=n— 7. (8 1o [12,13]

In the limit of vanishing photon energy the imaginary , N _ |mEq 1
part of the matrix element (5) may be computed directly, kl/link Re(®/la, VIP;) = mh 1T+ 2’ (10)
using [12]

mE Notice that the dependence on the inner barrier parameters
lim Im(®y|0,V|D;) = —1/ N — (9) has disappeared. A comparison with the imaginary part
=k mh 1+ 7?2 (9) shows that the real part (10) is suppressed by a factor
The real part of the matrix element (5) is a sum ofn. For nonzero photon energy we have to treat the real
two terms which, in contrast to the imaginary part,part of the matrix element (5) numerically. However,
involve contributions from the irregular Coulomb wave the numerical evaluation shows that the real part still is
functionsG;. Thus, it describes those contributions to thesuppressed in comparison to the imaginary part. This
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implies that only a smaller fraction of bremsstrahlung is FYXB(n,kr) = [K*/f(r)]"* sin ¢, (11)
emitted during tunneling. Note also that the contributions '

associated with classical acceleration and tunneling do nc\)'{/Ith

interfere since they differ in phase by f(r)y=k*>=2kn/r —j(j + )/r? and  (12)
We will now make the connection to semiclassical

and classical limits. For heavy nuclei, the Sommerfeld _m 4 , n1/2

parameters; are large and the Coulomb wave functions ¢ 4 * fzn/k driLf(r)] (13)

F; may be approximated by their WKB wave functions| In leading order ing. 5’ one finds [9]
i

/ — NV
kk i e(7r/2)§|:Ki/§(§6) + % Kif(‘ff):| , (14)

k+k 75

* dr
fz 3 AP K F P (k) =
n

where e = /4" and7 = (' + 1)/2. K,(z) de- ! parameteré defined in Eq. (8)[{ = 2¢& + 0O(£%/7)].

notes the modified Bessel function ak( its derivative = This parameter may also be identified with the product
with respect to the argument. of the photon frequency and the modulus of the imaginary
A comparison of the semiclassically evaluated integrabarrier tunneling time. Thé dependence of the classical
(14) with the quantum mechanical result (6) showsand quantum calculations are compared in Fig. 1. The
that they deviate from each other by less than 1% fosolid line shows the classical prediction (15). The dashed
photon energies, up to 1 MeV. We recall that the and dotted lines show the quantum result with and without
semiclassical computation neglects any contributions frontunneling contributions, respectively. We see that the
the wave functions at radii smaller than the classicatunneling contributions remain small even at a finite
turning point, i.e., any contribution from the tunneling. photon energy.
This clearly justifies the attribution of tunneling to the real One might have expected that the classical curve would
part of the matrix element, Eq. (5), alone. be tangent to the quantum aé = 0: in scattering
Next we consider the classical and the soft photorbremsstrahlung is determined by on-shell amplitudes to
limit. The classical formula valid at all frequencies cannext-to-leading order [15]. We find that the two curves
be derived from [14] are indeed very close in the neighborhoad= 0, but
dP 272 ()2 the slope;s are not |dent|cgl. For large photon_er_lergles
E - 3 £ (15)  the C_Iassmal rgsult overestimates the photon emission rate
Y Y considerably since the classical formula (15) neglects any

with I the Fourier transform of the time-dependentenergy loss of the escaping particle. This point has
acceleration,

H(w) = ¢! fow di Cfi—’; explior) . (16)

— ' ' classical ——
This integral can be expressed in terms of the dimension- " approx. gm —
less parameter ol
how '
= _ 17 (&]
{=n E. 17) g
as % 0.01 }
LE, (! S
I(w) = B f dz exp ig| — > +artante | |. ©
me=Jo =z 0.001 }
(18)
In the limit of small photon energy we find 0.0001 . . . .
dP 4aZ% E. o 05 1 15 2 25
_:M_‘YEIEC’ (19) ¢

dE, 37 mc? 7
- . .FIG. 1. Comparison of classical and quantum mechanical
definingC. Because this depends only on the asymptotic),o:00 emisslioon probability i decay gleopo_ curves

motion of the particles, the quantum result must coincideshow the probabilities normalized to the low-energy expression

Inserting the results (9) and (10) into Eq. (2) indeed yieldsC defined in Eqg. (19), as a function of the scaled photon

the classical result, Eq. (19). frequency ¢ defined in Eq. (17). The classical probability,
More interesting is to examine the next—to—leadingEq' (15), is shown as the solid line. The quantum probabilities

Z(nearly exponentially falling lines) are shown for the full
E, dependence and compare the quantum and Class'c'%lﬁmtum mechanical treatment (dashed line) and for the

behavior. It turns out that the classical parameten  approximation that neglects contribution from tunneling (dotted
Eqg. (17) is essentially the same as the quantum smalihe). ¢ = 1 corresponds t&, =~ 0.24 MeV.
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puted quantum rate. We cannot trace the origin of this

107 2M0p, 7 :
Exp. 21%Pp —— difference.

10 1 In summary, we have used Fermi’s golden rule to com-
- 9 pute the emission of bremsstrahlungandecay of heavy
3 10 nuclei. The dominant contribution to the photon emis-
} 10710 ] sion rate stems from classical acceleration and is given in
S —]— closed form. Only a smaller fraction of bremsstrahlung is
S 10 ] emitted during tunneling. This finding is consistent with

experimental data ofi°Po.
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