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Bremsstrahlung in a Decay
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We present the first fully quantum mechanical calculation of photon radiation accompanying cha
particle decay from a barrier resonance. The soft-photon limit agrees with the classical results
differences appear at next-to-leading order. Under the conditions ofa decay of heavy nuclei, the
main contribution to the photon emission stems from Coulomb acceleration and may be comp
analytically. We find only a small contribution from the tunneling wave function under the barrie
[S0031-9007(98)05949-3]
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Nuclear fission anda decay are interesting process
that involve both tunneling and the acceleration
charged particles in Coulomb fields. This raises t
question of whether the tunneling process affects
bremsstrahlung emission. A semiclassical theory with
affirmative conclusion has been given by Dyakonov a
Gornyi in Ref. [1]. In an experiment on the spontaneo
fission of 252Cf, Luke et al. [2] found a null result and
gave an upper limit to the bremsstrahlung rate. In
case ofa decay of heavy nuclei, two recent experimen
by D’Arrigo et al. [3] and Kasagiet al. [4] detected
accompanying photon radiation. The latter autho
claimed to observe interference effects with a tunnel
contribution to the bremsstrahlung, interpreting th
results in the framework of Ref. [1]. This gives urgenc
to carry out a full quantum mechanical calculation of t
bremsstrahlung. We describe here a calculation with
following assumptions: a single-particle barrier model
describe thea-nucleus wave function, initial state treate
as a Gamov state with a complex energy, and perturba
coupling of the photon to the current, taken in the dipo
approximation.

The perturbative expression for the photon emiss
probability during decay may be obtained from Ferm
golden rule
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In what follows we treat the photon field$A in the
dipole approximation and use the identityk fj $pjil ­
k fj fH, $pg jilyEg ­ ih̄k fj=V jilyEg , whereH is the a-
particle Hamiltonian with potentialV . One obtains

dP
dEg

­
4Z2

effe2

3m2c3
jkFf j≠rV jFilj2

1
Eg

. (2)

Here dPydEg is the branching ratio to decay with
photon emission, differential in the photon energyEg.
The wave functionsFisrd and Ff srd are the radial
wave functions of the initial and final states of thea

particle, respectively, with normalization specified belo
The effective chargeZeff for dipole transitions is given
by Zeff ­ fsA 2 4dz 2 4sZ 2 2dgyA wherez ­ 2 is the
0031-9007y98y80(19)y4141(4)$15.00
s
f
e
e
n
d
s

e
s

s
g
r

e
e

o

ve
e

n

.

charge of thea particle, andZ andA are the charge and
mass number of the decaying nucleus, respectively.

We take the potential of the single-particle Hamiltonia
as the Coulomb outside a radiusr0 and a constant inside,

V srd ­
Zze2

r
Qsr 2 r0d 2 V0Qsr0 2 rd . (3)

We will see later that the results are quite insensiti
to the choice of parametersV0 and r0, provided the
decay properties are reproduced. The initial stateFi is
a resonant state of zero angular momentum normali
to a unit outgoing flux of particles. Its radial wav
function is given in terms ofF0 and G0 Coulomb wave
functions by s m

h̄k d1y2fG0sh, krd 1 iF0sh, krdgyr outside
r0 and is proportional to thej0skrd spherical Bessel
function inside. The Sommerfeld parameterh is given by
h ­

zZe2m
h̄2k ; it is much larger than one for heavy nucle

The wave numbersk and k satisfy k ­ h̄21p2mEa

and k ­ h̄21
p

2msEa 1 V0d where Ea is the a-decay
energy. Matching the wave functions atr ­ r0 yields
the amplitude of the inner wave function as well as t
(complex) energy of the resonant state.

The parametersr0 and V0 of our nuclear potential (3)
are fixed to reproduce the empirical decay energyEa and
mean lifet of the decay. The mean lifetime depends o
the parameters through the equation

2Eat

h̄
ø

kr0

2
G2

0 sh, kr0d
sin2 kr0

√
1 2

sin2kr0

2kr0

!
1

Z 2h

kr0

dr G2
0 sh, rd . (4)

In Eq. (4) and also in the wave function matching, w
neglect terms withF0 andF0

0 which are of orderOsDd ø 1
compared toG0 andG0

0. HereD ­
h̄

tEa
is a small parame-

ter, and the primes denote derivatives with respect tokr .
As is well known, there are multiple solution se

sr0, V0d for a given decay energy and mean life, disti
guished by the number of nodes of the inner wave funct
[5–7]. Typical solution sets for the nuclei of interest a
shown in Table I. Our simple model gives reasonable ra
© 1998 The American Physical Society 4141
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TABLE I. Parameters of the nuclear potential. The table li
the parametersr0 and V0 of the nuclear potential (3) tha
were used in the present calculations. For each listed nucl
the presented parameters reproduce the experimentally kn
values of thea-particle energyEa and the mean lifetimet.

214Po 210Po 226Ra

EyMeV 7.7 5.3 4.8
D ­ h̄ytEa 3.7 3 10219 7.3 3 10230 1.9 3 10233

r0yfm 9.19 8.76 9.75
V0yMeV 12.1 16.7 12.9

close to or slightly larger than the nuclear radius forV0 in
the range 0 to 150 MeV [5–7]. The results presented
low do not depend on a specific choice of a solution. In
case of vanishing photon energy the parameters drop
for finite photon energies, the numerical results exhibit
dependence on the choice of parameters.
,

a

m

a
e
th
b
e

w

ry
tly

o
rt
ve
h

4142
ts

us,
wn

e-
e
ut;
o

The continuum final statesFf are normalized to give the
unit operator when integrated over energy,dsr 2 r 0d ­R

dE FEsrdFEsr 0d. The radial wave function is a stand
ing wave having the forms 2m

p h̄2k0 d1y2fG1sh0, k0rd sina 1

F1sh0, k0rd cosagyr outside r0 and proportional to the
j1sk0rd spherical Bessel function inside. Primed quantit
are defined similar to the corresponding unprimed qua
ties, but with the energy diminished by the emission o
photon. Matching the wave function atr ­ r0 yields ex-
pressions for tana and the amplitude of the inner wav
function. The final state is off resonance for almost
final energiessEa 2 Egd, and thus tana , OsDd ø 1;
i.e., the final wave function does not penetrate the nuc
significantly and is a true continuum wave function. O
side the Coulomb barrier the wave function is very w
approximated by the regular Coulomb wave function on

The matrix element in Eq. (2) can now be writte
down. It has a delta function contribution tor0 and an
integral over the derivative of the Coulomb field outside
kFf j≠rV jFil ­

s
2m2

p h̄3kk0

(√
zZe2

r0
1 V0

!
fF1sh0, k0r0d 1 G1sh0, k0r0d tanagG0sh, kr0d

2 zZe2
Z `

r0

dr r22hfF1sh0, k0rd 1 G1sh0, k0rd tanag fG0sh, krd 1 iF0sh, krdgj

)
1 OsDd .

(5)
]

We separate the expression (5) into real and imagin
contributions and consider the latter first.

We may neglect the contribution of the ter
F0sh, krdG1sh0, k0rd tana to the integral since it is
of order OsDd. Thus, the imaginary part is an integr
over two Fj functions. Therefore it contains thos
contributions to the bremsstrahlung that stem from
classical acceleration in the Coulomb field. It can
treated analytically as follows. We first extend the low
ry

l

e
e
r

limit of the integral to zero, which only introduces an
error of the orderOsDd. The resulting integral may be
expressed in terms of hypergeometric functions as [8,9

Z `

0

dr
r2

F1sh0, k0rdF0sh, krd

­ kk0hk0j1 1 ih0jM0 2 kj1 1 ihjM1j , (6)

where
Mj ­

√
j

h 1 h0

!ish1h0d
jGs j 1 1 1 ih0dj jGs j 1 1 1 ihdj

sk 2 k0d2s2j 1 1d!
e2spy2dj

√
h0h

j2

!j

3 2F1

√
j 1 1 2 ih, j 1 1 2 ih0, 2j 1 2; 2

h0h

j2

!
. (7)
e

f
,

e

the
s

ters
art
tor

eal
r,
is

his
Here 2F1 denotes the hypergeometric function, and
have defined [10]

j ­ h0 2 h . (8)

In the limit of vanishing photon energy the imagina
part of the matrix element (5) may be computed direc
using [12]

lim
k0!k

ImkFf j≠rV jFil ­ 2

s
mEa

p h̄
hp

1 1 h2
. (9)

The real part of the matrix element (5) is a sum
two terms which, in contrast to the imaginary pa
involve contributions from the irregular Coulomb wa
functionsGj. Thus, it describes those contributions to t
,

bremsstrahlung that are associated with tunneling. In
limit of vanishing photon energy, this amplitude reduce
to [12,13]

lim
k0!k

RekFf j≠rV jFil ­

s
mEa

p h̄
1p

1 1 h2
. (10)

Notice that the dependence on the inner barrier parame
has disappeared. A comparison with the imaginary p
(9) shows that the real part (10) is suppressed by a fac
h. For nonzero photon energy we have to treat the r
part of the matrix element (5) numerically. Howeve
the numerical evaluation shows that the real part still
suppressed in comparison to the imaginary part. T
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implies that only a smaller fraction of bremsstrahlung
emitted during tunneling. Note also that the contributio
associated with classical acceleration and tunneling do
interfere since they differ in phase byi.

We will now make the connection to semiclassic
and classical limits. For heavy nuclei, the Sommerf
parametersh are large and the Coulomb wave functio
Fj may be approximated by their WKB wave functions
is
ns
not
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ld
s

FWKB
j sh, krd ­ fk2yfsrdg1y4 sin f , (11)

with

fsrd ­ k2 2 2khyr 2 js j 1 1dyr2 and (12)

f ­
p

4
1

Z r

2hyk
dr 0f fsr 0dg1y2. (13)

In leading order inh, h0 one finds [9]
Z `
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where e ­
sh213y4d1y2

h and h ­ sh0 1 hdy2. Knszd de-
notes the modified Bessel function andK 0

n its derivative
with respect to the argument.

A comparison of the semiclassically evaluated integ
(14) with the quantum mechanical result (6) show
that they deviate from each other by less than 1%
photon energiesEg up to 1 MeV. We recall that the
semiclassical computation neglects any contributions fro
the wave functions at radii smaller than the classic
turning point, i.e., any contribution from the tunneling
This clearly justifies the attribution of tunneling to the re
part of the matrix element, Eq. (5), alone.

Next we consider the classical and the soft phot
limit. The classical formula valid at all frequencies ca
be derived from [14]

dP
dEg

­
2aZ2

eff

3p

jIsvdj2

Eg

, (15)

with I the Fourier transform of the time-depende
acceleration,

Isvd ­ c21
Z `

0
dt

dy

dt
expsivtd . (16)

This integral can be expressed in terms of the dimensi
less parameter

z ­ h
h̄v

Ea

(17)

as

Isvd ­

s
2Ea

mc2

Z 1

0
dz exp

"
iz

√
z

1 2 z2
1 artanhz
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.

(18)

In the limit of small photon energy we find

dP
dEg

­
4aZ2

eff

3p

Ea

mc2
E21

g ; C , (19)

definingC. Because this depends only on the asympto
motion of the particles, the quantum result must coincid
Inserting the results (9) and (10) into Eq. (2) indeed yiel
the classical result, Eq. (19).

More interesting is to examine the next-to-leadin
Eg dependence and compare the quantum and class
behavior. It turns out that the classical parameterz in
Eq. (17) is essentially the same as the quantum sm
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parameterj defined in Eq. (8)fz ­ 2j 1 Osj2yhdg.
This parameter may also be identified with the produ
of the photon frequency and the modulus of the imagina
barrier tunneling time. Thez dependence of the classica
and quantum calculations are compared in Fig. 1. T
solid line shows the classical prediction (15). The dash
and dotted lines show the quantum result with and witho
tunneling contributions, respectively. We see that t
tunneling contributions remain small even at a fini
photon energy.

One might have expected that the classical curve wo
be tangent to the quantum atv ­ 0: in scattering
bremsstrahlung is determined by on-shell amplitudes
next-to-leading order [15]. We find that the two curve
are indeed very close in the neighborhoodv ­ 0, but
the slopes are not identical. For large photon energ
the classical result overestimates the photon emission
considerably since the classical formula (15) neglects a
energy loss of the escapinga particle. This point has

FIG. 1. Comparison of classical and quantum mechani
photon emission probability ina decay of 210Po. Curves
show the probabilities normalized to the low-energy express
C defined in Eq. (19), as a function of the scaled phot
frequency z defined in Eq. (17). The classical probability
Eq. (15), is shown as the solid line. The quantum probabilit
(nearly exponentially falling lines) are shown for the fu
quantum mechanical treatment (dashed line) and for
approximation that neglects contribution from tunneling (dott
line). z ­ 1 corresponds toEg ø 0.24 MeV.
4143
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FIG. 2. Photon emission probability comparing the quantu
calculation with experiment. Logarithmic plot ofdP

dEg
as

a function of photon energy for210Po (full line). The
experimental data for210Po (data points with error bars) are
taken from Ref. [4].

been discussed in the framework of photon emission
spontaneous fission by Lukeet al. [2], and earlier in the
framework of Coulomb excitation by Alderet al. [9].

The quantum mechanical results for214Po and226Ra
are practically identical to those for210Po when plotted as
in Fig. 1, normalized to thev ­ 0 rate (19) and plotted
as a function ofz . Since z is inversely proportional
to the decay energyEa , the rates are higher for higher
decay energies. Thus for214Po decay, with ana-decay
energy of 7.7 MeV, the predicted rate forEg ­ 0.6 MeV
is 65 times higher than for210Po.

Finally, we compare the results obtained in this wor
with experiment. In the case of210Po, our result dis-
played in Fig. 2 is consistent with the experimental resu
obtained by Kasagiet al. [4] suggesting that no interfer-
ence resulting from photon emission during tunneling
needed for an explanation of the experiment. In the ca
of 214Po and226Ra, D’Arrigo et al. [3] reported photon
emission rates that are larger than expected from the cl
sical formula (15). Thus, their results are also more tha
1 order of magnitude larger than our mechanically com
4144
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puted quantum rate. We cannot trace the origin of th
difference.

In summary, we have used Fermi’s golden rule to com
pute the emission of bremsstrahlung ina decay of heavy
nuclei. The dominant contribution to the photon emi
sion rate stems from classical acceleration and is given
closed form. Only a smaller fraction of bremsstrahlung
emitted during tunneling. This finding is consistent wit
experimental data on210Po.
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