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Human Balance out of Equilibrium: Nonequilibrium Statistical Mechanics in Posture Control
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During quiet standing, the human body sways in a stochastic manner. Here we show that the
fluctuation-dissipation theorem can be applied to the human postural control system. That is, the dy-
namic response of the postural system to a weak mechanical perturbation can be predicted from the
fluctuations exhibited by the system under quasistatic conditions. We also show that the estimated
correlation and response functions can be described by a simple stochastic model consisting of a pinned
polymer. These findings suggest that the postural control system utilizes the same control mechanisms
under quiet-standing and dynamic conditions. [S0031-9007(97)05009-6]
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Nonequilibrium statistical mechanics [1–4] provides
theoretical framework for studying stochastic systems
classic example being Brownian motion [5,6]. For ma
of these systems, there exists the fluctuation-dissipa
theorem (FDT) [2–4,7–9], which provides a relationsh
between the correlations of the fluctuations of a system
its relaxation to equilibrium. Besides many applicatio
in physics and chemistry, the FDT has been used
study protein dynamics [10], biochemical kinetics [11,12
and population risk mortality [13]. Here we apply th
FDT to the human postural control system and use it
test the hypothesis that the system’s dynamic respo
to a mechanical perturbation can be predicted from
fluctuations exhibited by the system under quasista
conditions. Our specific aims are to show that (1) hum
postural sway is an equilibrium stochastic process
which the FDT holds, and (2) the response function and
derivative of the correlation function can be modeled
the analytical solution of the recently considered pinne
polymer model of posture control [14].

The human postural control system is highly complex
it involves multiple sensory systems and motor comp
nents. Numerous studies have investigated human bal
control under quasistatic (unperturbed) conditions or d
namic (perturbed) conditions [15]. Despite these effor
it remains unclear as to how the various sensorimotor co
ponents are integrated into the postural control system
whether the system utilizes similar mechanisms and str
gies under quiet-standing and perturbed conditions [16

Given the intrinsic complexity of the postural contro
system, it is not surprising that its output is highly i
regular. For example, during quiet standing the cen
of pressure (COP) under an individual’s feet continua
fluctuates in a stochastic manner [see Fig. 1(b)]. R
cently, Collins and De Luca [17,18] analyzed correlati
functionsCst 2 t0d ­ kfystd 2 yst0 dg2l of quiet-standing
COP time series and demonstrated that quasistatic
0031-9007y98y80(2)y413(4)$15.00
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tural sway can be represented as a correlated stocha
process. Motivated by these findings, Chow and Colli
[14] proposed a pinned-polymer model to describe the s
chastic dynamics of the human postural control syste
This model is based on the assumption that the hum
body can be described by a continuum model analogo
to a flexible string or polymer that is elastically pinne
to an equilibrium position and under the influence of st
chastic fluctuations. The motion of the COP is assumed
be represented by the motion of a single point along t
polymer. The model can be justified given that (1) th
human body in an upright stance is able to assume an i
nite number of possible geometric configurations in equ
librium with external forces [17], and (2) the force outpu
of skeletal muscles is noisy [19]. We model the dynam
ics in one spatial dimensionysz, td with a Langevin equa-
tion [14]

b≠2
t y 1 ≠ty 2 n≠2

zy 1 ay ­ hsz, td , (1)

where the parameterb represents the onset-of-dampin
time scale,a21 represents the onset-of-pinning time scal
and n is an effective tension parameter. The stochas
driving force hsz, td is assumed to be uncorrelated
i.e., khsz, tdhsz0, t0dl ­ 2D dst 2 t0 ddsz 2 z0d. Similar
dynamics occur in widespread areas of physics, such
the surface variations of a granular aggregate [20], t
dynamic fluctuations of growing interfaces [21], and th
kinetic theory of flux-line hydrodynamics [22].

Equation (1) obeys the FDT, which relates the line
response function to the correlation function [2,3,7].
we add a perturbation in the form of a spatiotempor
d distributionesz, td ­ edst 2 t0ddsz 2 z0d to the right-
hand side of Eq. (1), we can obtain the Fourier transfor
of the response functionRsz, td ; kdyydel [14]

R̃sk, vd ­
1

2bv2 2 iv 1 a 1 nk2 . (2)
© 1998 The American Physical Society 413



VOLUME 80, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 12 JANUARY 1998

e

i

i

e

e

i

e
a

o
e
l

s
e
r

p.
-
ure
or
es
ht:
as
re
on
ch
ns
n
d
al
the
al
P
at

d

],
e
-

ns
e,
an
].
The power spectrumSsk, vd of ysz, td, which is the
Fourier transform of the correlation functionSsz, td ­
kysz, tdys0, 0dl, is given by [14]

Ssk, vd ­
2D

j2bv2 2 iv 1 a 1 nk2j2
. (3)

Equations (2) and (3) immediately give Im̃Rsk, vd ­
ivy2DSsk, vd. Assuming causality, this leads in the tim
domain to the relation

Rsk, td ­ 2
1
D

dSsk, td
dt

, t . 0 , (4)

which is the FDT for the pinned-polymer model. In
our experimental measurements, we consider the quan
Cstd ­ 2 fSsz, 0d 2 Ssz, tdg, wherez ; const ­ 0. This
leads to the relationRstd ­ 1ys2Dd dCstdydt.

In our experiments, COP time series were record
from ten healthy young subjects. Subjects were stud
under quiet-standing and dynamic conditions (Fig. 1
During each dynamic test, a weak mechanical perturbat
was applied to the subject’s pelvis. An estimate for th
response function,̂Rstd, was calculated by averaging th
20 perturbed trials, using the time of the maximal-swa
amplitude following the perturbation as a trigger poin
Each trial was normalized to unity at the trigger poin
The derivative of the correlation function,cdCstdydt, was
obtained by estimating the autocorrelation functionSstd
[23] of each unperturbed trial, calculating its derivativ
(using a simple filter), averaging the resulting singl
trial estimations, and multiplying by21. As above, the
time of the maximal-sway amplitude of each trial wa
used as the trigger point for the averaging, and ea
trial was normalized by its trigger-point amplitude prio
to averaging.

Figure 2 displays the results for̂Rstd and cdCstdydt
for two subjects. It can be seen thatR̂std and cdCstdydt
were well matched for the first 4 s. We quantified th
ability to predict one curve from the other by a linea
regression [i.e., by fittinĝRstd ­ a 1 bsss cdCstdydtddd] with
errors in variables [24,25]. The errors in each time po
were estimated by the standard deviation of the mean
the single trials. (Note that the numerical results of th
parametersa andb are not of interest sincea only reflects
that there is an arbitrary zero COP, i.e., an undefin
coordinate origin in the perturbed trials, andb has an
arbitrary unit due to the normalization of all trials.) Th
goodness of the fit over the first 400 points (4 s) w
judged [26] by the estimated̂x2 quantity, which is the
sum of squared residuals weighted by the errors in b
data sets [25]. In seven of the ten subjects, this t
clearly indicated that the two curves were significant
well matched—thêx2 values were between300 and480.
( In the three other subjects, thêx2 values were820,
940, and 1100, respectively, indicating that the curve
were not significantly well matched.) Thus, in th
majority of cases, we were able to predict the gene
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FIG. 1. (a) A schematic diagram of the experimental setu
A Kistler 9287 force platform was used to record the time
varying anteroposterior displacements of the center of press
(COP) under the feet of the subjects. (See Ref. [17] f
additional details.) Ten healthy young subjects (five femal
and five males; age: 19–29 years; height: 162–188 cm; weig
54–87 kg) were included in the study. Each subject w
instructed to stand quietly and relaxed in an upright postu
on the platform. Three sets of 10 trials were conducted
each subject: 10 unperturbed trials of 90 s duration ea
and 20 perturbed trials of 60 s duration each. Perturbatio
(of ,7.35 N m) were applied (randomly in a range betwee
15 and 20 s after the initiation of a trial) in the backwar
direction to each subject’s pelvis by a triggered mechanic
device. Subjects were not provided with any precues about
occurrence of the perturbation. (b) A 60 s sample of a typic
COP times series for a quiet-standing trial. (c) A typical CO
time series for a perturbed trial; the arrow marks the time
which the perturbation was applied.

behavior ofR̂std (which was estimated from the perturbe
trails) from cdCstdydt (which was obtained from the quiet-
standing trials).

We also fit, by a Levenberg-Marquardt algorithm [26
R̂std and cdCstdydt to the analytically calculated respons
function for the pinned-polymer model (for a spatiotem
porald distribution) [14]

Rstd ­ Qstd
e2ty2b

2
p

nb
J0

√p
4ab 2 1

2b
t

!
, (5)

where Q is the step function andJ0sxd is the zeroth-
order Bessel function. For4ab , 1, J0 is replaced by
the zeroth-order modified Bessel functionI0. We made
the assumption that the estimated standard deviatio
displayed in Fig. 2 are normally distributed. In this cas
the errors for the parameters of the fitted functions c
be obtained from the covariance matrix of the fit [26
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FIG. 2. Estimated response functionsR̂std (solid lines) and
derivatives of the correlation functionscdCstdydt (dotted lines)
for two subjects. The error bars (plotted on every tenth poin
represent the standard error of the mean of the single-t
estimations. For the two subjects shown, the estimatedx̂2

quantities for the fitR̂std ­ a 1 b sss cdCstdydtddd (see text) are
x̂2 ­ 340 (subject 1) andx̂2 ­ 371 (subject 2), indicating
that in each case one can linearly predict one function fro
the other.

The goodness of the fit was again estimated using ax2

statistic. In nine of the ten subjects, we obtained go
fits for both R̂std and cdCstdydt (e.g., see Fig. 3). These
results indicate that the model holds for the majori
of subjects.

These novel results demonstrate that the dynam
observed in human postural sway can be described
an equilibrium stochastic process for which the FD
applies and that the proposed pinned-polymer mod
well describes the correlation and response functions
the data. The existence of the FDT (which does n
necessarily imply that the stochastic process is linear [
leads to physiological conclusions that are independent
the analytical model. One such conclusion is that if th
postural control system at a timet0 is in a nonequilibrium
state, then it cannot distinguish whether it was broug
into that state by an external, perturbating force
an intrinsic, random fluctuation. From a physiologica
standpoint, this implies that the postural control syste
may use the same neuromuscular control mechanis
under quiet-standing and dynamic conditions.

The discrepancy between the response and correla
functions found in three of the ten subjects may ha
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FIG. 3. Results of the fit of̂Rstd and cdCstdydt, respectively,
to the pinned-polymer posture model Eq. (5) for the tw
subjects of Fig. 2. Since one is unable to define a “mea
or “zero” position in the perturbed trials, an arbitrary dc offs
is present. To account for this offset, we fit a fourth “dc
parameter to Eq. (5), which corresponded simply to adding
constant to the equation. Therefore, the zero level in ea
plot does not correspond to the equilibrium state. Note th
for subject 1, who exhibited a more “oscillating” behavio
the parametera was approximately twice as large as that fo
subject 2.

been due to compensatory or learned strategies that w
adopted by the subjects during the experiments. For
ample, if a subject voluntarily introduced a compensato
movement during a trial, this would appear as an ind
pendent, nonstationary, biased perturbation acting on
system. If this were the case, then the FDT, which
assumed to hold without such “additional fluctuations
would not be seen in the associated response and corr
tion functions.

The response function should exhibit a dynamical stru
ture for times as long as 20–30 s after a perturbatio
since this is the longest time over which significant co
relations are found in quiet-standing postural-sway da
[17,18]. (Physiologically, this means that the postur
control system takes 20–30 s to recover fully from
weak perturbation.) However, the data, in general, on
showed strong observance of the FDT for relatively sh
times (e.g.,,4 s). This result is likely due, in part, to the
nonstationary effects of voluntary movements (as me
tioned above) and the sensory feedback systems which
415
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on the body. It is also related to the fact that as the r
sponse function approaches zero the signal-to-noise ra
of the data worsens, so the points become more unrelia
as one goes to longer times. We are limited in the amou
of averaging that can be done since, during long tria
subjects tire and the system changes. Under such circu
stances, we cannot obtain reliable results. Note that t
long correlation times mentioned above are not in contr
diction to the 4 s for which the FDT holds. The respons
and correlation functions are nonparametric estimatio
from empirical data. Therefore, it might be thatR̂std andcdCstdydt deviate after a few seconds for the above re
sons, butĈstd andR̂std both exhibit some significant, but
different dynamical structure.

From a clinical standpoint, this work suggests that
may be possible to use the FDT to predict the impairme
of the postural control system under dynamic condition
from data recorded in quiet-standing experiments. Such
development would simplify and improve clinical balanc
testing by eliminating the need for introducing potentiall
deleterious perturbations to frail patients.
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