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Is There a Landau Pole Problem in QED?

M. Göckeler,1 R. Horsley,2 V. Linke,3 P. Rakow,4 G. Schierholz,4,5 and H. Stüben6
1Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

2Institut für Physik, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
3Institut für Theoretische Physik, Freie Universität Berlin, D-14195 Berlin, Germany

4Deutsches Elektronen-Synchrotron DESY, HLRZ and Institut für Hochenergiephysik, D-15735 Zeuthen, G
5Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany

6Konrad-Zuse-Zentrum für Informationstechnik Berlin, D-14195 Berlin, Germany
(Received 5 January 1998)

We investigate a lattice version of QED with four flavors by numerical simulations. For the
renormalized charge (eR) and mass we find results which are consistent witheR vanishing in the
continuum limit. A detailed study of the relation between bare and renormalized quantities reveals tha
the Landau pole lies in a region of parameter space which is made inaccessible by spontaneous ch
symmetry breaking. [S0031-9007(98)06002-5]
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QED is the best tested of all quantum field theorie
But all its success is in the context of perturbation theo
It has long been known that there are potential proble
in the foundations of the theory due to the existence
the so-called Landau pole [1]. In the leading logarithm
calculation one finds

1

e2
R

2
1
e2 ­ b1 ln

L

mR
, b1 ­

Nf

6p2 , (1)

wheree (eR) is the bare (renormalized) charge,mR is the
renormalized fermion mass,Nf is the number of flavors,
andL is the ultraviolet cutoff. When one attempts to se
the cutoff to infinity while keepingeR fixed, one finds that
e diverges at

L ­ LL ; mRe1yb1e2
R , (2)

the location of the Landau pole. The problem can also
seen by looking at the gauge invariant part of the pho
propagator

Dskd
k2

­
1

k2 f1 2 sb1y2d lnsk2ym2
Rdg

, (3)

which has a ghost pole atk2 ­ L
2
L. This would mean that

the entire theory is applicable only for momenta smal
thanLL. On the other hand, when one keepse fixed and
sends the cutoff to infinity, the renormalized charge go
to zero, meaning that the theory is trivial. The situati
in two-loop perturbation theory is much the same. T
(renormalized)b function

bR ; mR
≠e2

R

≠mR

Ç
e2

­ b1e4
R 1 b2e6

R 1 . . . (4)

remains positive for alle2
R , and the Landau pole is

displaced to lower values

LL ­ mRe1yb1e2
R

√
b2e2

R

b1 1 b2e2
R

!b2yb2
1

. (5)
0031-9007y98y80(19)y4119(4)$15.00
.

.
s
f

c

d

e
n

r

s
n
e

QED is not the only theory with a Landau pole problem
Every theory which is not asymptotically free suffers fro
this problem. WhileLL . 10227 GeV if only the electron
is considered,LL . 1034 GeV in the standard model
In the minimal supersymmetric standard model (MSSM
LL . 1020 GeV, and in the MSSM with four Higgses
which offers a solution to the strong CP problem, th
Landau pole moves down toLL . 1017 GeV [2]. Thus
the Landau pole is by no means academic.

To find a solution to this problem, one must conside
nonperturbative formulation of QED. Thus it is natural
investigate the problem on the lattice. On the lattice t
inverse lattice spacing takes over the role of the ultravio
cutoff, a21 , L. Early calculations have shown that th
noncompact formulation of the theory using stagger
fermions undergoes a second order chiral phase trans
at strong coupling [3,4]:

The solid lineam ­ 0, m being the bare mass,e2 . e2
c

is a line of first order chiral phase transitions, whe
amR , s ; a3kccl fi 0, even though the bare mass
zero. The dashed lineam ­ 0, e2

c . e2 is a line of
second order phase transitions on whichamR , s ­ 0. A
meaningful continuum limit can be taken at the tricritic
point am ­ 0, e2 ­ e2

c, because here we can takea to
zero while keepingmR fixed.

To understand the continuum limit of the theory, w
need to know the renormalized charge as a function of
cutoff in the critical region. We have recently compute
the chiral condensate on large lattices [5]. In this Let
© 1998 The American Physical Society 4119
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we computeamR and eR with the aim to understand the
fate of the Landau pole in QED.

Fermion mass.—Let us begin with the renormalized
mass. We obtainamR from the fermion propagator a
outlined in [6]. We are using staggered fermions whi
in the continuum limit correspond toNf ­ 4 flavors of
dynamical Dirac fermions. The results are shown
Fig. 1.

We have made the phenomenological observation in
that the chiral condensates is a function ofamR alone in
the critical region, and in [5] we have found an equation
state (EOS) which describess very well. Therefore we
choose to expressamR indirectly in terms ofsse2, amd
rather than directly as a function ofe2, am. In Fig. 2 we
plot s againstamR. We see that the data from alle lie
on the same curve. We find thats is well described by
a polynomial. Combining the EOS with the polynomi
gives the curves shown in Fig. 1 and the extrapolation
am ­ 0. (Here we have used fit 1 of [5]. Our resul
do not change qualitatively if we use any of the oth
fits described there.) For1ye2 , 1ye2

c chiral symmetry
is broken, and even atam ­ 0 the renormalized mass i
nonzero. This means there is an excluded region sho
in white in Fig. 1 (the accessible region being show
in gray).

Renormalized charge.—The renormalized charge i
obtained from the residue of the photon propagator,e2

R ­
Z3 e2 and Z3 ­ limk!0 limV!` Dskd. We can compute
Dskd on the lattice, but not atk ­ 0. The smallest
momentum that we can reach is2pyaL, whereL is the
lattice size (L ­ 16 and12 in our case). To extrapolate
to k ­ 0 we need to make a fit to the photon propagat
Thek dependence of the photon propagator is given by

FIG. 1. The renormalized mass against the bare coupling
124 and164 lattices in the critical region.
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e2Dskd

2
1
e2

­ 2Psk, mR, Ld , (6)

where P is the polarization function. In the infinite
volume limit we then have

1

e2
R

2
1
e2 ­ 2Ps0, mR, `d . (7)

We have already seen that the nonperturbativeP is
actually very close to the result of one-loop renormalize
perturbation theory [6]. So it is reasonable to mak
an ansatz which is inspired by renormalization grou
improved two-loop perturbation theory. In [7] it is shown
that to next-to-leading logarithmic order the polarizatio
function can be written

P ­ U 2
V
U

lns1 2 e2Ud , (8)

where U is the one-loop perturbative result, andV the
two-loop one. The lattice result forU is known [6]. For
V we make the ansatz

V ­ y0 1 y1U . (9)

This is motivated by the smallk2 and m2
R lim-

its. For a2m2
R ø a2k2 ø 1 we should have

V . sb2y2d ln a2k2, and for a2k2 ø a2m2
R ø 1 we

should haveV . sb2y2d ln a2m2
R . The one-loop result

U has these properties. We fit this ansatz to a total
52 photon propagators on164 and124 lattices for various
values of am, e2 in the range 0.005 # am # 0.16,
0.17 # 1ye2 # 0.22 close to the critical point at
1ye2

c ­ 0.190 40s9d [5]. A plot for one particular param-
eter set is shown in Fig. 3. For the fit parameters w
obtainy0 ­ 20.002 07s2d andy1 ­ 20.032 8s7d, giving

FIG. 2. The chiral condensate against the renormalized m
on 124 and 164 lattices for 0.17 # 1ye2 # 0.22 and 0.005 #
am # 0.16. The curve is a polynomial fit.
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FIG. 3. The residue of the photon propagator against t
momentum for1ye2 ­ 0.20, am ­ 0.005 on the 164 lattice.
The open symbols are the data, the solid symbols are the fit

x2yd.o.f. ­ 1.7. Two-loop continuum perturbation
theory would give y1 ; b2yb1 ­ 3y16p2 ­ 0.0190.
In Fig. 4 we show the resultingb function for e2 ­ e2

c.
We compare this with the one-loop result. We see th
the b function is a little smaller than the one-loop valu
and is positive. In particular this means that there is
ultraviolet stable zero in theb function out toe2

R ­ e2
c,

the maximal valuee2
R can take becauseZ3 # 1 [8,9]. As

FIG. 4. Theb function against the renormalized charge. Th
solid curve is our result; the dashed curve is the lattice one-lo
result.
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amR ! ` fermion loops are suppressed ande2
R ! e2, so

that theb function vanishes. But this is of course not a
interesting zero of theb function.

The Landau pole.—Having calculated the renormalize
mass and charge, we are now able to discuss the map
from the bare parametersam, e to the renormalized
parametersamR, eR. Qualitatively this is displayed in
Fig. 5. One can choose anye2 $ 0, am shown in the top
part of the figure by the gray region. This is then mapp
onto the corresponding gray region in the bottom part
the figure. The lineam ­ 0, 0 # e2 # e2

c is mapped
onto the pointamR ­ e2

R ­ 0. For e2 . e2
c we have

already seen in Fig. 1 thatamR . 0, even whenam ­
0, because of chiral symmetry breaking. Thus the li
am ­ 0, e2

c # e2 # ` is mapped onto the border line o
the gray regions, and the white area is inaccessible
any combination of bare parameters. From this figure

FIG. 5. A sketch of the mapping from the bare parame
plane (top) to the renormalized parameter plane (bottom).
4121
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FIG. 6. The (quantitative) mapping of the bare parame
plane (top) to the renormalized parameter plane (bottom).

evidently have triviality. Removing the cutoff (a ! 0) is
only possible ate2

R ­ 0. At any finite value ofe2
R there is

a minimal possible value forjamRj, namely the boundary
of the gray region. The position of the Landau pole
sketched by the dotted line.

We now turn to the quantitative analysis of the pro
lem. In Fig. 6 we plot again the bare and renormaliz
planes, this time using1ye2 and1ye2

R, respectively, as the
horizontal variables because this displays the asympto
behavior best. The curves are lines of constant1ye2

R (top
part) and lines of constantam (bottom part), respectively.
All lines of constante2

R end on the first order phase tran
sition line, and only the linee2

R ­ 0 goes into the criti-
cal point. This is another expression of triviality of th
4122
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theory. In the bottom part of the figure the gray regio
is again the allowed region, and the white region is i
accessible. The border line is the lineam ­ 0. From
Eq. (7) we find the Landau pole by setting the bare char
to infinity. This gives the dotted line. We see that
completely lies in the inaccessible region. It runs rough
parallel to the border lineam ­ 0.

We also want to be sure that the photon propagator
no ghost pole for anyk2. Beyond leading logarithmic
order the extra pole in the photon propagator and t
divergence ine2 need not appear at the same place. T
ghost pole position (in the infinite volume) is given b
1yk2Dskd ­ 0. It has a solution if

1

e2
R

, max
k

Psk, mR , `d 2 Ps0, mR , `d . (10)

The solution is given by the dashed line in the bottom p
of Fig. 6. This lies close to the Landau pole, even deep
in the inaccessible region.

In conclusion, from Figs. 5 and 6 we see that th
triviality of QED is intimately connected with chiral
symmetry breaking. Any attempt to remove the cuto
is always thwarted by the dynamically generated fermi
mass. In particular this means that spinor QED (with fo
flavors) does not exist as an interacting theory, similar
what Coleman and Weinberg [10] found for scalar QED

We have restricted our analysis to pure QED. If the
were a non-Gaussian fixed point there might be oth
relevant or marginal operators which could be added
the action. This is a subject for further study.

We have also seen that chiral symmetry breaki
allows QED to escape the Landau pole problem. Wh
the bare parameters of the theory can take any values,
renormalized parameters are restricted. The Landau p
and ghost problem only occur deep in the inaccessiblee2

R ,
amR region. Chiral symmetry breaking is always stron
enough to push the Landau pole above the cutoff.
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