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Is There a Landau Pole Problem in QED?
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We investigate a lattice version of QED with four flavors by numerical simulations. For the
renormalized chargeef) and mass we find results which are consistent withvanishing in the
continuum limit. A detailed study of the relation between bare and renormalized quantities reveals that
the Landau pole lies in a region of parameter space which is made inaccessible by spontaneous chiral
symmetry breaking. [S0031-9007(98)06002-5]

PACS numbers: 12.20.—m, 11.10.Gh, 11.15.Ha

QED is the best tested of all quantum field theories. QED is not the only theory with a Landau pole problem.
But all its success is in the context of perturbation theoryEvery theory which is not asymptotically free suffers from
It has long been known that there are potential problemghis problem. WhileA; = 10?*” GeV if only the electron
in the foundations of the theory due to the existence ofs considered,A; = 103 GeV in the standard model.
the so-called Landau pole [1]. In the leading logarithmicln the minimal supersymmetric standard model (MSSM)
calculation one finds A = 10%° GeV, and in the MSSM with four Higgses,

| ] A N, which offers a solution to the strong CP problem, the

= - = =Bih—, B = —fz (1) Landau pole moves down t&; = 10'” GeV [2]. Thus

€Rr ¢ mg o7 the Landau pole is by no means academic.
wheree (er) is the bare (renormalized) chargey is the To find a solution to this problem, one must consider a
renormalized fermion masaj; is the number of flavors, nonperturbative formulation of QED. Thus it is natural to
andA is the ultraviolet cutoff. When one attempts to sendinvestigate the problem on the lattice. On the lattice the
the cutoff to infinity while keeping fixed, one finds that inverse lattice spacing takes over the role of the ultraviolet
e diverges at cutoff, a~! ~ A. Early calculations have shown that the

_ gl noncompact formulation of the theory using staggered

A= AL = mge P, (2)  fermions undergoes a second order chiral phase transition

the location of the Landau pole. The problem can also p&t strong coupling [3,4]:
seen by looking at the gauge invariant part of the photon

propagator am
D(k) _ 1 @)
K k0= (B1/D Ik /mp)) (0.0) p======== .

e? e?
which has a ghost pole &t = A7. This would mean that
the entire theory is applicable only for momenta smaller
thanA.. On the other hand, when one keepBxed and
sends the cutoff to infinity, the renormalized charge goeJhe solid lineam = 0, m being the bare masg? > ¢?

to zero, meaning that the theory is trivial. The situationis a line of first order chiral phase transitions, where
in two-loop perturbation theory is much the same. Theamg, o = a*(J) # 0, even though the bare mass is

(renormalized)3 function zero. The dashed linem = 0, e> > ¢ is a line of
962 second order phase transitions on whighg, o = 0. A
Br = mg JER | = Biey + B2e& + ... (4)  meaningful continuum limit can be taken at the tricritical
am 2 i — 2 2
R le point am = 0, e = eZ, because here we can taketo
remains positive for alle?, and the Landau pole is Z€ro while keepingny fixed. o
displaced to lower values To understand the continuum limit of the theory, we
5 /B need to know the renormalized charge as a function of the
A = meel/Biek Baek 5) cutoff in the critical region. We have recently computed
L K B1 + Boex ' the chiral condensate on large lattices [5]. In this Letter
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fate of the Landau pole in QED. e2D(k) e
Fermion mass—Let us begin with the renormalized where IT is the polarization function. In the infinite

mass. We obtaimmyg from the fermion propagator as volume limit we then have

outlined in [6]. We are using staggered fermions which

we computeamy andeg with the aim to understand the 1 1 (k. mg. L) . ©6)

in the continuum limit correspond &, = 4 flavors of Lz _ 1 = —TI1(0, mg, ). (7)
. ; . . 2 MR

dynamical Dirac fermions. The results are shown in e ¢

Fig. 1. We have already seen that the nonperturbatiVeis

We have made the phenomenological observation in [6&ctually very close to the result of one-loop renormalized

that the chiral condensate is a function ofamyg alone in  perturbation theory [6]. So it is reasonable to make
the critical region, and in [5] we have found an equation ofan ansatz which is inspired by renormalization group
state (EOS) which describes very well. Therefore we improved two-loop perturbation theory. In [7] it is shown
choose to expressmy indirectly in terms ofo(e?,am)  that to next-to-leading logarithmic order the polarization
rather than directly as a function ef, am. In Fig. 2 we function can be written
plot o againstamz. We see that the data from alllie %
on the same curve. We find thatis well described by II1=U- I In(1 — ¢*U), (8)
a polynomial. Combining the EOS with the polynomial
gives the curves shown in Fig. 1 and the extrapolation t
am = 0. (Here we have used fit 1 of [5]. Our results
do not change qualitatively if we use any of the other
fits described there.) Far/e? < 1/e2 chiral symmetry V =uvy+ vU. 9)
is broken, an_d even atm = Olthe renormalized mass is This is motivated by the smalk? and m12e lim-
nonzero. This means there is an excluded region s,hovvilgS

in white in Fig. 1 (the accessible region being shown For a’mp < a’k’ <1 we should have
9. 9 9 V = (B2/2)Ina%k?, and for a?k? < a’mi <1 we

in gray). should haveV = (8,/2)In a*mi. The one-loop result

Renormalized charge-The renormalized charge is has th 4 fit thi | of
obtained from the residue of the photon propagatfpr= U has these properties. We fit this ansatz to a total o
’ 52 photon propagators oi6* and 12* lattices for various

> o )

) o T A 0L o SOMLS vl of ¢ n e range0003 < an = 016

momentum that we ,can reach 287/_L. whereL is the 0.7 =1/e’ =022 close fo the critical point at
at, 1/e> = 0.19040(9) [5]. A plot for one particular param-

lattice size {, = 16 and 12 in our case). To extrapolate eter set is shown in Fig. 3. For the fit parameters we

to k = 0 we need to make a fit to the photon propagator. : _ _ _ o
The k dependence of the photon propagator is given by obtainwo 0.00207(2) and v, 0.0328(7), giving

here U is the one-loop perturbative result, aidthe
wo-loop one. The lattice result fdy is known [6]. For
V we make the ansatz
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FIG. 2. The chiral condensate against the renormalized mass
FIG. 1. The renormalized mass against the bare coupling oon 12* and 16* lattices for0.17 < 1/¢%> < 0.22 and 0.005 =<
12* and 16* lattices in the critical region. am = 0.16. The curve is a polynomial fit.
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amyg — o fermion loops are suppressed affd— 2, S0
that theg function vanishes. But this is of course not an
interesting zero of thg@ function.

The Landau pole—Having calculated the renormalized
mass and charge, we are now able to discuss the mapping
from the bare parametersm, e¢ to the renormalized
parametersumg, eg. Qualitatively this is displayed in
Fig. 5. One can choose amy = 0, am shown in the top
part of the figure by the gray region. This is then mapped
onto the corresponding gray region in the bottom part of
the figure. The lineam = 0, 0 = ¢? < ¢2 is mapped
onto the pointamg = 6123 =0. Fore? > ef we have
already seen in Fig. 1 thatmg > 0, even whenam =
0, because of chiral symmetry breaking. Thus the line
am = 0, e2 = ¢ = = is mapped onto the border line of
the gray regions, and the white area is inaccessible for
any combination of bare parameters. From this figure we

am

FIG. 3. The residue of the photon propagator against the
momentum forl/e? = 0.20,am = 0.005 on the 16* lattice.
The open symbols are the data, the solid symbols are the fit.

x2/d.of.=17. Two-loop continuum perturbation
theory would give v, = 8,/8; = 3/1672 = 0.0190.

In Fig. 4 we show the resulting function for e? = ¢2.

We compare this with the one-loop result. We see that
the B function is a little smaller than the one-loop value
and is positive. In particular this means that there is no
ultraviolet stable zero in th@ function out toek = ¢2,

the maximal value’s can take becausé; = 1[8,9]. As
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FIG. 4. Thep function against the renormalized charge. The
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solid curve is our result; the dashed curve is the lattice one-looFIG. 5. A sketch of the mapping from the bare parameter
result. plane (top) to the renormalized parameter plane (bottom).
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0.05 theory. In the bottom part of the figure the gray region

is again the allowed region, and the white region is in-
accessible. The border line is the lime: = 0. From

Eq. (7) we find the Landau pole by setting the bare charge
to infinity. This gives the dotted line. We see that it
completely lies in the inaccessible region. It runs roughly
parallel to the border linem = 0.

We also want to be sure that the photon propagator has
no ghost pole for any?>. Beyond leading logarithmic
order the extra pole in the photon propagator and the
divergence ire> need not appear at the same place. The
ghost pole position (in the infinite volume) is given by
1/k2D(k) = 0. It has a solution if

eiz < maxtl(k, mg, ) = 110, mg, ). (10)
R

The solution is given by the dashed line in the bottom part

: of Fig. 6. This lies close to the Landau pole, even deeper
0T o018 , , in the inaccessible region.

In conclusion, from Figs. 5 and 6 we see that the
triviality of QED is intimately connected with chiral
symmetry breaking. Any attempt to remove the cutoff
is always thwarted by the dynamically generated fermion
mass. In particular this means that spinor QED (with four
flavors) does not exist as an interacting theory, similar to
what Coleman and Weinberg [10] found for scalar QED.

We have restricted our analysis to pure QED. If there
were a non-Gaussian fixed point there might be other
relevant or marginal operators which could be added to
the action. This is a subject for further study.

We have also seen that chiral symmetry breaking
allows QED to escape the Landau pole problem. While
the bare parameters of the theory can take any values, the
renormalized parameters are restricted. The Landau pole
and ghost problem only occur deep in the inaccessiple
ampg region. Chiral symmetry breaking is always strong
enough to push the Landau pole above the cutoff.
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