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Cumulative Reaction Probability without Absorbing Potentials
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Cumulative reaction probability, introduced in the collision theory by W.H. Miller
[J. Chem. Phys62, 1899 (1975)], characterizes a net efficiency of a rearrangement process as a
function of the total energy of the collision system. We derive a formula that expresses this quantity
in terms of the outgoing wave Green function. Our formula is free from the ambiguities of previous
formulations; in particular, no absorbing potentials are required for its implementation. The formula has
a potentially wide range of applications in atomic and molecular collision physics. As an illustration,
we consider the rearrangement processes inltpesystem for the energies up to the= 6 threshold.
[S0031-9007(97)04887-4]

PACS numbers: 34.10.+x, 36.10.Dr, 82.20.Pm

Collisions resulting in rearrangement of particles con-the asymptotic states, hence the maSjx(E), may be
stituting the colliding fragments play an important role in defined poorly (collisions between metastable states), or
many phenomena, providing a basic mechanism of mueven not defined at all (collisions in external fields), while
tual transformations between different physical specieshe notion of arrangements and the cumulative reaction
Numerous examples of rearrangement collisions (we usprobability N, (E) may still have a physical meaning.
this term interchangeably with “reactions”) are given by a Recently, Seideman and Miller [3] derived an alterna-
variety of electron transfer processes, chemical reactionsive representation fav,,;, (E),
and nuclear reactions. Their most detailed description is _ .
contained in the blocK,, (E) of the scattering matrix off- Nap(E) = 4THG,(E)eaGe(E)es], 2)
diagonal with respect to the indicesandb specifying ar- which has opened the first avenue towards the direct
rangements. The matrix elemersts,,, (E) of this block, evaluation of this quantity. Her&.(E) = (H — E —
wheren, andn,, label different asymptotic states in the ar- ie) ! is the outgoing wave Green function of the colli-
rangements: and b, respectively, determine all the state- sion system, ané = ¢, + g,. Formula (2) is ambigu-
to-state reaction probabilities betweemndb. However, ous, for in the limite — +0 assumed by the quantum
in many situations it would suffice to know a net effi- mechanics it leads to the uncertairftyx «. Instead of
ciency of the reaction as a function of the total enefyy resolving this uncertainty, the authors of [3] resorted to
of the collision system. This feature is characterized byegarding the infinitesimal positive constasatas an ab-
the cumulative reaction probability, sorbing potential [4] which is zero in the region important

for the rearrangement dynamics and turned on smoothly

Ny (E) = Tr[Sab(E)S;rb(E)] = Z 1S, n, (E)?>, (1) outside to assure the outgoing wave boundary conditions,

Nally with e, ande;, being the parts of introduced in the ar-
introduced in the collision theory by Miller [1]. An rangements andb, respectively. This approach has been
excellent account on the physical meaning of this quantitysuccessfully demonstrated by several examples (see [2],
can be found in [2]. We just note that,,(E) enables one and references therein) and justly attracted much interest.
to determine the reaction rate constant, which is often th&et the intrinsic ambiguity of Eqg. (2) remains unresolved
only characteristic required for applications. This alonewhich sets the grounds for the following criticisms. First,
warrants the need for developing methods capable aise of the absorbing potentials, though this might seem
evaluatingN,,(E) directly, i.e., without first calculating to be appealing as a means to avoid explicit imposing
the matrixS,,(E). Besides, there is a deeper argumenthe outgoing wave boundary conditions for constructing
in support of focusing oV, (E) rather than or8,,(E). the Green function (see, e.g., [5]), introduces arbitrari-
As can be seen from (1)N,,(E) is invariant under ness and makes the results dependent on one’s choice of a
the unitary transformations mixing the asymptotic statesgood” absorbing potential for a particular problem. Sec-
separately in each arrangement. The interactions causimand, even a good absorbing potential essentially modifies
the rearrangement decay exponentially with the increasthe dynamics in the region where it differs from zero and
of the distances between initial and/or final fragmentdeads to appearance of unphysical diverging states local-
of the reaction, while the interactions governing theized there [6], that is, precisely wheré,,(E) accumu-
dynamics within the same arrangement may have a mudates its value as according to Eq. (2). These problems
longer range. Thus a direct calculation 8f,(E) may question the consistency of the approach based on Eq. (2).
present an easier computational task due to a reductidleanwhile, the whole idea would benefit only if the limit
of the size of the region to be considered. Moreoverg — +0in Eq. (2) is taken properly.
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In this paper we derive a new formula f&¥,,(E)
which is free from the ambiguity discussed above. First
we briefly outline the derivation, and then consider an
illustrative example.

Our basic idea stems from the observation that the ini-
tial and final states of the system undergoing a reaction
are localized in different potential valleys in multidimen-
sional configuration space, so the reaction can be treated
as a passage from one of these valleyso anotherb
through a “reaction zond”; see Fig. 1. The reaction zone
I is a region adjacent to the potential ridge separating
the valleys. The rearrangement flux goes across the ridge
through an energetically accessible window in the vicinity
of the saddle point of the potential energy (SP in Fig. 1), ) ) )
also known as theransition stateor activated complex FIG. 1. Sketch of the part of the configuration space important

. . . for the rearrangement dynamics (see text).
[7], and a wider part of the ridge becomes operative when
the energy of the system grows. The concept of the ridge . )
is well familiar from the Wannier theory of the thresh- OPen channels in the arrangementb) for the given total
old electron impact ionization of atoms and the theoryenergy £. Apart from a possible degeneracy, (v»)
of the saddle-point electron production in ion-atom colli-coincides with the index, (n,) in Eq. (1). LetS be
sions; its role in fragmentation processes was discussed 8y hypersphere of radiug, (matching surface), and let
Fano [8], and its importance in chemical reaction dynam-S« (S5) be the segment where the functiods, (€2; Rr)
ics was emphasized by Nakamura [9]. Treating a reactioh®», (2 Rm)] are localized. We assume thgf and S,
as a passage between two regions in configuration spaé® not overlap (see Fig. 1), which is always possible to
is a standard viewpoint in the theory of chemical rate pro2chieve by increasing,,. Recalling the discussion of the
cesses [7]. In atomic collision physics, similar ideas werePrevious paragraph, the cumulative reaction probability
used in the formulation given by Gerjuoy [10] and, within can be defined by
the impact parameter approach, in the method proposed )
by Demkov and Ostrovsky [11]. Such an approach would Nap(E) = Z [S dQj,,(R), (4)
be in the spirit of the hyperspherical methodology out- Vo T
lined by Fano [8], though it is not used by many moreWhere
conventional theoretical methods. 1 <a¢vﬂ R) 8!#2(11))

For concreteness of the derivation we adopt the frame- Jn,(R) = 2 oR ¢,,(R) = ¢, (R) aR
Here ¢, (R) is an exact solution of Eqg. (3) such that

work of the hyperspherical method [8,12]. The configu-
at R — o0 it has an incoming wave of unit flux in the

ration space is parametrized B/ = (R, ()), whereRr is
channely, and only outgoing waves in all other channels,

the hyperradius anf is a collective notation for a set of
angular variables. The Schrodinger equation reads andj,, (R) is the radial component of the flux associated

[HR) — E]¢(R) = 0, (3) with ¢, (R). The radiusR,, is assumed to be sufficiently
large, so that the flux that passes througth does not
where return back. Similarly, one can defigg, (R) andj,, (R)
1 92 Hau(Q:R) + %(d —1)(d - 3) and rewrite the right-hand side of Eq. (4) withand b
H(R) = 3 aR2 + R2 . interchanged. Note that at this stage Eq. (4) appears to be

nonsymmetric with respect to these indices, although the
Hered is the dimension of the configuration space=f final formula is symmetric as will be seen shortly.
3(N — 1) for the N-body system], and the Jacobian factor An important step made in Eq. (4) is replacement of
RW-V/2 is separated out. LeU,(R) and ®,(Q;R) the summation oven, in Eq. (1) by the integration over
be the eigenvalues and eigenfunctions of the adiabatiQ € S,. To make a similar step for the arrangement
Hamiltonian H,4(Q2; R), and letv, (v,) label different | we use the Green formula,

(R)  IGR,R;E)
IR’ R’

s®) = 5 [ ao(omr:p) yw)), ©)

s
whereG(R, R’; E) is the kernel of the outgoing wave Green functi@g(E) [the same as in Eq. (2)] taken at— +0.
This formula holds for any solution of Eq. (3). Far,, (R) substituted in Eq. (5), the region of integration can be
reduced taS, because botly, (R') andG (R, R’; E) have only outgoing waves in the valldy The same is true with
a andb interchanged. Using these relations, from Eq. (4) we obtain
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This formula is the main result of this paper. It is ap-
parently more general than the derivation presented. |fPr zero total angular momentum. Thiu system lies
particular, it remains valid if the surfacgis modified ar- on the border between the realms of atomic physics and
bitrarily, with 9/0R replaced by the normal derivative to chemical reactions. Indeed, the process (10) resembles
S. Besides, though the asymptotic states were explicitlfhe electron transfer in ion-atom collisions, yet in terms
referred to in the derivation, Eq. (6) is free from such aof the mass ratios for the particles involved it is closer
reference and can be applied even if the asymptotic staté@ the light atom transfer reactions. Another peculiarity
are not defined. The only important physical conditionsof d7u which dictates its choice here is the presence of
assumed in Eq. (6) are (§, and S, do not overlap, i.e., the strong dipole coupling between the states of excited
the arrangements are well separated outsidand (ii) manifolds [16]. This feature mimics a situation where the
G(R,R’;E) with R andR’ lying in different valleys has asymptotic states are defined poorly.
only outgoing waves outsidg. As is illustrated below, =~ Our computational scheme is based on the hyperspher-
these conditions are much easier to meet by increaging ical elliptic coordinates [17], the slow/smooth variable
than to reach the region where the functiohs(R) and  discretization (SVD) method [18], and th&-matrix
4, (R) assume their asymptotic form. propagation technique of Ref. [19]. This yields tR

To implement Eq. (6) one has to construct the Greernatrix at the surface§ as a function of the energg
function G(R,R’;E). This can be done by different and the matching radiug,,. Then we can extract the
methods, even absorbing potentials [3—5] now can be useg®mplete scattering matrix by applying a two-dimensional
safely, provided that they are introduced outsideMore ~ matching procedure similar to that used in [20] and calcu-
elegantly G(R, R’; E) can be expanded in terms of Siegertlate the cumulative probability} (£) for the reaction (10)
states. The possibility to use such expansion reveals a#sing Eq. (1). Alternatively, we can obtaW(E) directly
important advantage of Eq. (6) over the formula derived’om Egs. (8) and (9). We use the muonic atomic units.
in [13]; see Ref. [14]. Recently, we have proposed arfigure 2 shows adiabatic potentials #ému. The dashed
efficient method for calculating the Siegert states [15] andine represents the potential ridge. For the Coulomb sys-
eventually we hope to apply it for implementing Eq. (6). tems, this is defined b¢'sp/R, whereCsp ~ —9.792 for
Here, we use an approach which falls most naturally in the/?. LetR;(E) be the radius where the ridge crosses the

framework of the hyperspherical method. BorE S, and  given energyE, i.e., R(E) = Csp/E. For R > R.(E)
R’ € S, we have different arrangements are separated by a potential bar-

/ / rier whose height and width grow with the increase of
GR,RSE) = Y G, @, (R, (A Ry). (7)  R. Thus one can expect th&t(E) estimates the size of

VaVph

/. * /. * /. /.
Nab(E)=%[ dQ[ dQ,(aG(R,R,E) dG*(R,R";E) n dG*(R,R;E) 0G(R,R";E)
Sa S

~ G(R.R:E) ~ G*(R.R%E) M). (©6)

dRIR'

Using Eq. (5), the matrixG,,,, can be expressed in terms

of the R matrix defined with respect to the same basis, 0 dtp(L=0)
G =2(I - ikR) 'R, (8) h N

whereik is the logarithmic derivative matrix for the out-

going wave solutions of Eq. (3). Methods of calculat- -0.05

ing the R matrix are well developed. The matrik can
be obtained by an appropriate matching procedure. For
Rn, — o it becomes diagonalk = diadk,], wherek,

8 (nau)

are the asymptotic values of the channel momenta. Wish-4 010
ing to disentangle the implementation of Eq. (6) from any ;Tx
reference to the asymptotic states, we substikutby the S
local valuesk, (R,,) at the surfaces. In this approxima- 0.15
tion, Eq. (6) takes the remarkably simple form 0.45

Nab(E) = Z kv,,(Rm)ka(Rm) |GV“V1,|2' (9) -0.50

VaVi -0.55 ;

Equations (8) and (9) provide a practical recipe to imple- 2 510 20 50 100 200 500
ment our approach. R(pau.)

As an illustration, we consider the reaction FIG. 2. The hyperspherical adiabatic potentialsdor.. The

t + ud(nl) = tu@'l’) + d (10)  ridge position is defined by-9.792/R in pa.u.
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- - - N(E) calculated forE up to then = 6 threshold, which is
e the highest energy we can treat wih, = 800. Qualita-
it /ITI(E) 1 tive discussion of these results in terms of the mechanisms
f' of the reaction (10) as well as more challenging applica-
ttpud-—tp+d (L=0, E=-0.1paun) | tions to chemical reactions will be reported elsewhere.
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