
VOLUME 80, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 5 JANUARY 1998

r
s a

ntity
us
has
on,
Cumulative Reaction Probability without Absorbing Potentials
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Cumulative reaction probability, introduced in the collision theory by W. H. Mille
[J. Chem. Phys.62, 1899 (1975)], characterizes a net efficiency of a rearrangement process a
function of the total energy of the collision system. We derive a formula that expresses this qua
in terms of the outgoing wave Green function. Our formula is free from the ambiguities of previo
formulations; in particular, no absorbing potentials are required for its implementation. The formula
a potentially wide range of applications in atomic and molecular collision physics. As an illustrati
we consider the rearrangement processes in thedtm system for the energies up to then ­ 6 threshold.
[S0031-9007(97)04887-4]
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Collisions resulting in rearrangement of particles con
stituting the colliding fragments play an important role in
many phenomena, providing a basic mechanism of m
tual transformations between different physical specie
Numerous examples of rearrangement collisions (we u
this term interchangeably with “reactions”) are given by
variety of electron transfer processes, chemical reactio
and nuclear reactions. Their most detailed description
contained in the blockSabsEd of the scattering matrix off-
diagonal with respect to the indicesa andb specifying ar-
rangements. The matrix elementsSnanb sEd of this block,
wherena andnb label different asymptotic states in the ar
rangementsa andb, respectively, determine all the state
to-state reaction probabilities betweena andb. However,
in many situations it would suffice to know a net effi-
ciency of the reaction as a function of the total energyE
of the collision system. This feature is characterized b
thecumulative reaction probability,

NabsEd ­ TrfSabsEdSy
absEdg ­

X
nanb

jSnanb sEdj2, (1)

introduced in the collision theory by Miller [1]. An
excellent account on the physical meaning of this quanti
can be found in [2]. We just note thatNabsEd enables one
to determine the reaction rate constant, which is often t
only characteristic required for applications. This alon
warrants the need for developing methods capable
evaluatingNabsEd directly, i.e., without first calculating
the matrixSabsEd. Besides, there is a deeper argumen
in support of focusing onNabsEd rather than onSabsEd.
As can be seen from (1),NabsEd is invariant under
the unitary transformations mixing the asymptotic state
separately in each arrangement. The interactions caus
the rearrangement decay exponentially with the increa
of the distances between initial and/or final fragmen
of the reaction, while the interactions governing th
dynamics within the same arrangement may have a mu
longer range. Thus a direct calculation ofNabsEd may
present an easier computational task due to a reduct
of the size of the region to be considered. Moreove
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the asymptotic states, hence the matrixSabsEd, may be
defined poorly (collisions between metastable states),
even not defined at all (collisions in external fields), whi
the notion of arrangements and the cumulative reacti
probabilityNabsEd may still have a physical meaning.

Recently, Seideman and Miller [3] derived an altern
tive representation forNabsEd,

NabsEd ­ 4 TrfGp
´sEd´aG´sEd´bg , (2)

which has opened the first avenue towards the dire
evaluation of this quantity. HereG´sEd ­ sH 2 E 2

i´d21 is the outgoing wave Green function of the colli
sion system, and́ ­ ´a 1 ´b. Formula (2) is ambigu-
ous, for in the limit ´ ! 10 assumed by the quantum
mechanics it leads to the uncertainty0 3 `. Instead of
resolving this uncertainty, the authors of [3] resorted
regarding the infinitesimal positive constant´ as an ab-
sorbing potential [4] which is zero in the region importan
for the rearrangement dynamics and turned on smoot
outside to assure the outgoing wave boundary conditio
with ´a and´b being the parts of́ introduced in the ar-
rangementsa andb, respectively. This approach has bee
successfully demonstrated by several examples (see
and references therein) and justly attracted much intere
Yet the intrinsic ambiguity of Eq. (2) remains unresolve
which sets the grounds for the following criticisms. Firs
use of the absorbing potentials, though this might see
to be appealing as a means to avoid explicit imposi
the outgoing wave boundary conditions for constructin
the Green function (see, e.g., [5]), introduces arbitra
ness and makes the results dependent on one’s choice
“good” absorbing potential for a particular problem. Se
ond, even a good absorbing potential essentially modifi
the dynamics in the region where it differs from zero an
leads to appearance of unphysical diverging states loc
ized there [6], that is, precisely whereNabsEd accumu-
lates its value as according to Eq. (2). These proble
question the consistency of the approach based on Eq.
Meanwhile, the whole idea would benefit only if the limi
´ ! 10 in Eq. (2) is taken properly.
© 1997 The American Physical Society 41
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In this paper we derive a new formula forNabsEd
which is free from the ambiguity discussed above. Fir
we briefly outline the derivation, and then consider a
illustrative example.

Our basic idea stems from the observation that the i
tial and final states of the system undergoing a reacti
are localized in different potential valleys in multidimen
sional configuration space, so the reaction can be trea
as a passage from one of these valleysa to anotherb
through a “reaction zone”I ; see Fig. 1. The reaction zone
I is a region adjacent to the potential ridge separati
the valleys. The rearrangement flux goes across the rid
through an energetically accessible window in the vicini
of the saddle point of the potential energy (SP in Fig. 1
also known as thetransition stateor activated complex
[7], and a wider part of the ridge becomes operative wh
the energy of the system grows. The concept of the rid
is well familiar from the Wannier theory of the thresh
old electron impact ionization of atoms and the theo
of the saddle-point electron production in ion-atom coll
sions; its role in fragmentation processes was discussed
Fano [8], and its importance in chemical reaction dynam
ics was emphasized by Nakamura [9]. Treating a react
as a passage between two regions in configuration sp
is a standard viewpoint in the theory of chemical rate pr
cesses [7]. In atomic collision physics, similar ideas we
used in the formulation given by Gerjuoy [10] and, withi
the impact parameter approach, in the method propo
by Demkov and Ostrovsky [11]. Such an approach wou
be in the spirit of the hyperspherical methodology ou
lined by Fano [8], though it is not used by many mor
conventional theoretical methods.

For concreteness of the derivation we adopt the fram
work of the hyperspherical method [8,12]. The configu
ration space is parametrized byR ­ sR, Vd, whereR is
the hyperradius andV is a collective notation for a set of
angular variables. The Schrödinger equation reads

fHsRd 2 EgcsRd ­ 0 , (3)

where

HsRd ­ 2
1
2

≠2

≠R2
1

HadsV; Rd 1
1
8 sd 2 1d sd 2 3d
R2

.

Hered is the dimension of the configuration space [d ­
3sN 2 1d for theN-body system], and the Jacobian facto
Rsd21dy2 is separated out. LetUnsRd and FnsV; Rd
be the eigenvalues and eigenfunctions of the adiaba
Hamiltonian HadsV; Rd, and let na snbd label different
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FIG. 1. Sketch of the part of the configuration space importa
for the rearrangement dynamics (see text).

open channels in the arrangementa sbd for the given total
energy E. Apart from a possible degeneracy,na snbd
coincides with the indexna snbd in Eq. (1). Let S be
a hypersphere of radiusRm (matching surface), and let
Sa sSbd be the segment where the functionsFna

sV; Rmd
fFnb sV; Rmdg are localized. We assume thatSa and Sb

do not overlap (see Fig. 1), which is always possible t
achieve by increasingRm. Recalling the discussion of the
previous paragraph, the cumulative reaction probabili
can be defined by

NabsEd ­
X
na

Z
Sb

dVjna sRd , (4)

where

jna
sRd ­

1
2i

µ
≠cna sRd

≠R
cp

na
sRd 2 cna

sRd
≠cp

na
sRd

≠R

∂
.

Here cna
sRd is an exact solution of Eq. (3) such that

at R ! ` it has an incoming wave of unit flux in the
channelna and only outgoing waves in all other channels
andjna

sRd is the radial component of the flux associate
with cna sRd. The radiusRm is assumed to be sufficiently
large, so that the flux that passes throughSb does not
return back. Similarly, one can definecnb

sRd andjnb
sRd

and rewrite the right-hand side of Eq. (4) witha and b
interchanged. Note that at this stage Eq. (4) appears to
nonsymmetric with respect to these indices, although th
final formula is symmetric as will be seen shortly.

An important step made in Eq. (4) is replacement o
the summation overnb in Eq. (1) by the integration over
V [ Sb. To make a similar step for the arrangementa,
we use the Green formula,
e

csRd ­
1
2

Z
S

dV0

µ
GsR, R0; Ed

≠csR0d
≠R0

2
≠GsR, R0; Ed

≠R0
csR0d

∂
, (5)

whereGsR, R0; Ed is the kernel of the outgoing wave Green functionG´sEd [the same as in Eq. (2)] taken at´ ! 10.
This formula holds for any solution of Eq. (3). Forcna

sRd substituted in Eq. (5), the region of integration can b
reduced toSa because bothcna sR0d andGsR, R0; Ed have only outgoing waves in the valleyb. The same is true with
a andb interchanged. Using these relations, from Eq. (4) we obtain
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NabsEd ­
1
4

Z
Sa

dV
Z

Sb

dV0

µ
≠GsR, R0; Ed

≠R
≠GpsR, R0; Ed

≠R0
1

≠GpsR, R0; Ed
≠R

≠GsR, R0; Ed
≠R0

2 GsR, R0; Ed
≠2GpsR, R0; Ed

≠R≠R0
2 GpsR, R0; Ed

≠2GsR, R0; Ed
≠R≠R0

∂
. (6)
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This formula is the main result of this paper. It is ap
parently more general than the derivation presented.
particular, it remains valid if the surfaceS is modified ar-
bitrarily, with ≠y≠R replaced by the normal derivative to
S. Besides, though the asymptotic states were explic
referred to in the derivation, Eq. (6) is free from such
reference and can be applied even if the asymptotic sta
are not defined. The only important physical condition
assumed in Eq. (6) are (i)Sa andSb do not overlap, i.e.,
the arrangements are well separated outsideS, and (ii)
GsR, R0; Ed with R andR0 lying in different valleys has
only outgoing waves outsideS. As is illustrated below,
these conditions are much easier to meet by increasingRm

than to reach the region where the functionscna sRd and
cnb

sRd assume their asymptotic form.
To implement Eq. (6) one has to construct the Gre

function GsR, R0; Ed. This can be done by different
methods, even absorbing potentials [3–5] now can be u
safely, provided that they are introduced outsideS. More
elegantly,GsR, R0; Ed can be expanded in terms of Siege
states. The possibility to use such expansion reveals
important advantage of Eq. (6) over the formula derive
in [13]; see Ref. [14]. Recently, we have proposed
efficient method for calculating the Siegert states [15] a
eventually we hope to apply it for implementing Eq. (6
Here, we use an approach which falls most naturally in t
framework of the hyperspherical method. ForR [ Sa and
R0 [ Sb we have

GsR, R0; Ed ­
X
nanb

Gnanb Fna sV; RmdFnb sV0; Rmd . (7)

Using Eq. (5), the matrixGnanb can be expressed in term
of theR matrix defined with respect to the same basis,

G ­ 2sI 2 ikRd21R , (8)

whereik is the logarithmic derivative matrix for the out
going wave solutions of Eq. (3). Methods of calcula
ing theR matrix are well developed. The matrixk can
be obtained by an appropriate matching procedure.
Rm ! ` it becomes diagonal,k ­ diagfkng, where kn

are the asymptotic values of the channel momenta. Wi
ing to disentangle the implementation of Eq. (6) from an
reference to the asymptotic states, we substitutekn by the
local valuesknsRmd at the surfaceS. In this approxima-
tion, Eq. (6) takes the remarkably simple form

NabsEd ­
X
nanb

kna sRmdknb sRmd jGnanb j
2. (9)

Equations (8) and (9) provide a practical recipe to impl
ment our approach.

As an illustration, we consider the reaction

t 1 mdsnld $ tmsn0l0d 1 d (10)
-
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for zero total angular momentum. Thedtm system lies
on the border between the realms of atomic physics a
chemical reactions. Indeed, the process (10) resemb
the electron transfer in ion-atom collisions, yet in term
of the mass ratios for the particles involved it is close
to the light atom transfer reactions. Another peculiarit
of dtm which dictates its choice here is the presence o
the strong dipole coupling between the states of excite
manifolds [16]. This feature mimics a situation where th
asymptotic states are defined poorly.

Our computational scheme is based on the hypersph
ical elliptic coordinates [17], the slow/smooth variable
discretization (SVD) method [18], and theR-matrix
propagation technique of Ref. [19]. This yields theR
matrix at the surfaceS as a function of the energyE
and the matching radiusRm. Then we can extract the
complete scattering matrix by applying a two-dimensiona
matching procedure similar to that used in [20] and calcu
late the cumulative probabilityNsEd for the reaction (10)
using Eq. (1). Alternatively, we can obtainNsEd directly
from Eqs. (8) and (9). We use the muonic atomic units
Figure 2 shows adiabatic potentials fordtm. The dashed
line represents the potential ridge. For the Coulomb sy
tems, this is defined byCSPyR, whereCSP ø 29.792 for
dtm. Let RrsEd be the radius where the ridge crosses th
given energyE, i.e., RrsEd ­ CSPyE. For R . RrsEd
different arrangements are separated by a potential b
rier whose height and width grow with the increase o
R. Thus one can expect thatRr sEd estimates the size of

FIG. 2. The hyperspherical adiabatic potentials fordtm. The
ridge position is defined by29.792yR in m a.u.
43
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FIG. 3. State-to-state (lines with symbols labeled asnl 2
n0l0) and cumulative (solid and dashed lines) probabilities f
the reaction (10) as functions of the matching radiusRm for
E ­ 20.1 m a.u. Forn fi n0, the probabilities are too small
to be seen in the figure. The dashed line is the sum of all
state-to-state contributions according to Eq. (1). The solid li
is the result obtained from Eq. (9).

the region essential for calculatingNsEd. This feature is
illustrated in Fig. 3. The probabilities of the2l $ 2l0 re-
active transitions as functions of the matching radiusRm
calculated atE ­ 20.1 oscillate wildly at smallRm and
keep varying appreciably even up to the largestRm ­ 800
considered here. However, the cumulative reaction pro
ability NsEd obtained either from Eq. (1) or from Eq. (9
rapidly stabilizes beyondRm ­ Rr s20.1d ø 100. [One
should not be surprized that the “probability”NsEd ex-
ceeds unity, mind the definition (1).] This value i
much smaller thanRm ­ 20 000 required to reproduce the
Gailitis-Damburg oscillations in the same energy ran
[16]. The behavior shown in Fig. 3 is typical for all en
ergies, except very narrow intervals around the react
thresholds. For chemical reactions, similar behavior w
indicated in [21]. Finally, Fig. 4 shows our results fo

FIG. 4. Solid curve—cumulative probability for the reac
tion (10); dashed curves—n 2 n0 contributions. Note the
break in scale shown by the vertical line.
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NsEd calculated forE up to then ­ 6 threshold, which is
the highest energy we can treat withRm ­ 800. Qualita-
tive discussion of these results in terms of the mechanis
of the reaction (10) as well as more challenging applic
tions to chemical reactions will be reported elsewhere.
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